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We consider the Besov space B p,q α (G) on a unimodular Lie group G equipped with a sublaplacian ∆. Using estimates of the heat kernel associated with ∆, we give several characterizations of Besov spaces, and show an algebra property for B p,q α (G) ∩ L ∞ (G) for α > 0, 1 ≤ p ≤ +∞ and 1 ≤ q ≤ +∞. These results hold for polynomial as well as for exponential volume growth of balls.

Introduction and statement of the results

We use the following notations. A(x) B(x) means that there exists C independent of x such that A(x) ≤ C B(x) for all x. A(x) ≃ B(x) means that A(x) B(x) and B(x) A(x). The parameters which the constant is independent to will be either obvious from context or recalled.

Introduction

Let d ∈ N * . In R d , the Besov spaces B p,q α (R d ) are obtained by real interpolation of Sobolev spaces and can be defined, for p, q ∈ [1, +∞] and α ∈ R, as the subset of distributions S ′ (R d ) satisfying

f B p,q α := ψ * f L p + ∞ k=1 2 kα ϕ k * f L p q 1 q < +∞ (1) 
where, if ϕ ∈ S(R d ) is supported in B(0, 2)\B(0, 1 2 ), ϕ k and ψ are such that F ϕ k (ξ) = ϕ(2 -k ξ) and F ψ(ξ) = 1 -∞ k=1 ϕ(2 -k ξ). The norm of the Besov space B p,q α (R d ) can be also written by using the heat operator. Indeed, Triebel proved in [START_REF] Triebel | Characterizations of Besov-Hardy-Sobolev spaces via harmonic functions, temperatures, and related means[END_REF][START_REF] Triebel | Theory of function spaces[END_REF], Section 2.12.2] that for all p, q ∈ [1, +∞], all α > 0 and all integer m > α 2 ,

f B p,q α ≃ f L p + ∞ 0 t (m-α 2 )q ∂ M H t ∂t M f q L p dt t 1 q
(2)

where H t = e t∆ is the heat semigroup (generated by -∆). Note that we can give a similar characterization by using, instead of the heat semigroup, the harmonic extension or another extensions obtained by convolution (see [START_REF] Uspenskiȋ | Imbedding theorems for classes with weights[END_REF][START_REF] Mironescu | Traces of weighted sobolev spaces. old and new[END_REF]).

Another characterization in term of functional using differences of functions was done. Define for

M ∈ N * , f ∈ L p (R d ), x, h ∈ R d the term ∇ M h f (x) = M l=0 M l (-1) M-l f (x + lh)
and then for M > α > 0, p, q ∈ [1, +∞]

S p,q α,M f = R d |h| -αq ∇ M h f q L p 1 q . ( 3 
)
We have then for all α > 0, p, q ∈ [1, +∞] and M ∈ N with M > α,

f B p,q α ≃ f L p + S p,q α,M f. ( 4 
)
One of the remarkable property of Besov spaces (see [START_REF] Danchin | A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations[END_REF]Proposition 1.4.3], [START_REF] Runst | Mapping properties of non-linear operators in spaces of triebel-lizorkin and besov type[END_REF]Theorem 2,p. 336], [START_REF] Mironescu | Traces of weighted sobolev spaces. old and new[END_REF]Proposition 6.2]) is that B p,q α (R d ) ∩ L ∞ (R d ) is an algebra for the pointwise product, that is for all α > 0, all p, q ∈ [1, +∞], one has

f g B p,q α f B p,q α g L∞ + f L ∞ g B p,q α . ( 5 
)
The idea of [START_REF] Danchin | A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations[END_REF] consists in decomposing the product f g by some paraproducts. The authors of [START_REF] Mironescu | Traces of weighted sobolev spaces. old and new[END_REF] wrote B p,q α (R d ) as a trace of some weighted (non fractional) Sobolev spaces, and thus deduced the algebra property B p,q α (R d ) ∩ L ∞ (R d ) from the one of W p,k (R d )∩L ∞ (R d ). Notice also that, when α ∈ (0, 1) and M = 1, the algebra property of B p,q α (R d )∩L ∞ (R d ) is a simple consequence of (4).

The property [START_REF] Bui | Calderón reproducing formulas and new Besov spaces associated with operators[END_REF] have also been studied in the more general setting of Besov spaces on Lie groups. Gallagher and Sire stated in [START_REF] Gallagher | Besov algebras on Lie groups of polynomial growth[END_REF] an algebra property for Besov spaces on H-type groups, which are a subclass of Carnot groups. In order to do this, they used a some paradifferential calculus and a Fourier transform adapted to H-groups.

Moreover, in the more general case where G is a unimodular Lie group with polynomial growth, they used the definition of Besov spaces obtained using Littlewood-Paley decomposition proved in [START_REF] Furioli | Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth[END_REF]. When α ∈ (0, 1), they proved a equivalence of the Besov norms with some functionals using differences of functions, in the spirit of (3), and thus they obtained an algebra property for B p,q α (G) ∩ L ∞ (G). They shows a recursive definition of Besov spaces and wanted to use it to extend the property [START_REF] Bui | Calderón reproducing formulas and new Besov spaces associated with operators[END_REF] to α ≥ 1. However, it seems to us that there is a small gap in their proof and they actually proved the property f g B p,q α ( f B p,q α + f L ∞ )( g B p,q α + g L ∞ ). In our paper, we defined Besov spaces on unimodular Lie group (that can be of exponential growth) for all α > 0, and then we proved an algebra property on them. We used two approaches. One with functionals in the spirit of (3) and the other one using paraproducts. We did not state any results on homogeneous Besov spaces because the definition of these spaces need a particular work (a extension of the work in [START_REF] Bui | Calderón reproducing formulas and new Besov spaces associated with operators[END_REF] to α / ∈ (-1, 1) should work). However, we have no doubt that our methods work once we get the proper definition of homogeneous Besov spaces with some good Calderón-Zygmund formulas.

Note that methods used in [START_REF] Gallagher | Besov algebras on Lie groups of polynomial growth[END_REF] or in the present paper are similar to the ones in [START_REF] Coulhon | Sobolev algebras on Lie groups and Riemannian manifolds[END_REF] and [START_REF] Badr | Algebra properties for Sobolev spaces -Applications to semilinear PDE's on manifolds[END_REF], where fractional Sobolev spaces L p α (G) are considered on unimodular Lie groups (and on Riemannian manifolds). In these two last articles, the authors proved the algebra property for L p α (G) ∩ L ∞ (G) when p ∈ (1, +∞) and α > 0.

Lie group structure

In this paper, G is a unimodular connected Lie group endowed with its Haar measure dx. We recall that "unimodular" means that dx is both left-and right-invariant. We denote by L the Lie algebra of G and we consider a family X = {X 1 , . . . , X k } of left-invariant vector fields on G satisfying the Hörmander condition (which means that the Lie algebra generated by the family X is L). Denote I ∞ (N) = l∈N {1, . . . , k} l . Then if I = (i 1 , . . . , i n ) ∈ I ∞ (N), the length of I will be denoted by |I| and is equal to n, whereas X I denotes the vector field X i1 . . . X in .

A standard metric, called the Carnot-Caratheodory metric, is naturally associated with (G, X) and is defined as follows. Let l : [0, 1] → G be an absolutely continuous path. We say that l is admissible if there exist measurable functions a 1 , . . . , a k :

[0, 1] → C such that l ′ (t) = k i=1 a i (t)X i (l(t)) for a.e. t ∈ [0, 1].
If l is admissible, its length is defined by |l| =

1 0 k i=0 |a i (t)| 2 1 2
dt. For any x, y ∈ G, the distance d(x, y) between

x and y is then the infimum of the lengths of all admissible curves joining x to y (such a curve exists thanks to the Hörmander condition). The left-invariance of the X i 's implies the left-invariance of d. For short, |x| denotes the distance between the neutral e and x, and therefore d(x, y) = |y -1 x| for all x and y in G.

For r > 0 and x ∈ G, we denote by B(x, r) the open ball with respect to the Carnot-Caratheodory metric centered at x and of radius r. Define also by V (r) the Haar measure of any ball of radius r.

From now and abusively, we will write G for (G, X, d, dx). Recall that G has a local dimension (see [START_REF] Nagel | Balls and metrics defined by vector fields. I. Basic properties[END_REF]):

Proposition 1.1. Let G be a unimodular Lie group and X be a family of left-invariant vector fields satisfying the Hörmander condition. Then G has the local doubling property, that is there exists C > 0 such that

V (2r) ≤ CV (r) ∀0 < r ≤ 1.
More precisely, there exist d ∈ N * and c, C > 0 such that

cr d ≤ V (r) ≤ Cr d ∀0 < r ≤ 1.
For balls with radius bigger than 1, we have the result of Guivarc'h (see [START_REF] Guivarc | h. Croissance polynomiale et périodes des fonctions harmoniques[END_REF]): 

cr D ≤ V (r) ≤ Cr D ∀r ≥ 1,
or G has exponential growth and there exist

c 1 , c 2 , C 1 , C 2 > 0 such that c 1 e c2r ≤ V (r) ≤ C 1 e C2r ∀r ≥ 1.
We consider the positive sublaplacian ∆ on G defined by

∆ = - k i=1 X 2 i .
We will denote by H t = e -t∆ the heat semigroup on G associated with ∆.

Definition of Besov spaces

Definition 1.3. Let G be a unimodular Lie group. We define the Schwartz space S(G) as the space of functions ϕ ∈ C ∞ (G) where all the seminorms

N I,c (ϕ) = sup x∈G e c|x| |X I ϕ(x)| c ∈ N, I ∈ I ∞ (N)
are finite. The space S ′ (G) is defined as the dual space of S(G).

Remark 1.4. Note that we have the inclusion S(G) ⊂ L p (G) for any p ∈ [1, +∞]. As a consequence, L p (G) ⊂ S ′ (G).

Definition 1.5. Let G be a unimodular Lie group and let α ≥ 0, p, q ∈ [1, +∞]. The space f ∈ B p,q α (G) is defined as the subspace of S ′ (G) made of distributions f such that, for all t ∈ (0, 1), ∆ m H t f ∈ L p (G) and satisfying

f B p,q α := Λ p,q α f + H 1 2 f p < +∞, where Λ p,q α f := 1 0 t m-α 2 ∆ m H t f p q dt t 1 q
if q < +∞ (with the usual modification if q = +∞) and m stands for the only integer such that α 2 < m ≤ α 2 + 1. Remark 1.6. Lemma 2.6 provides that the heat kernel h t is in S(G) for all t > 0. Thus H t ϕ ∈ S(G) whenever t > 0 and ϕ ∈ S(G). When f ∈ S ′ (G), the term X I H t f denotes the distribution in S ′ (G) defined by

X I H t f, ϕ = (-1) |I| f, H t X I ϕ ∀ϕ ∈ S(G).

Statement of the results

Proposition 1.7. Let G be a unimodular Lie group. The one has for all p ∈ [1, +∞], all multi indexes I ∈ I ∞ (N) and all t ∈ (0, 1),

X I H t f p ≤ C I t -|I| 2 f p ∀f ∈ L p (G) .
Remark 1.8. In particular, one has that t∆H t p 1 once t ∈ (0, 1) and for all p ∈ [1, +∞]. When p ∈ (1, +∞), since ∆ is analytic on L 2 (and thus on L p ), we actually have t∆H t p 1 for all t > 0. The case

The following result gives equivalent definitions of the Besov spaces B p,q α only involving the Laplacian.

Theorem 1.9. Let G be a unimodular Lie group and p, q ∈ [1, +∞] and α ≥ 0.

If m > α 2 and t 0 a real in (0, 1) if α = 0 [0, 1) if α > 0 , then the following norms are equivalent to the norm of B p,q α (G).

(i)

1 0 t m-α 2 ∆ m H t f p q dt t 1 q + H t0 f p . (ii) H t0 f p +   j≤-1 2 j(m-α 2 ) ∆ m H 2 j f p q   1 q . (iii) H t0 f p +   j≤-1   2 -j α 2 2 j+1 2 j |(t∆) m H t f | dt t p   q   1 q
if we assume that α > 0.

Remark 1.10. Here and after, we say that "a norm N is equivalent to the norm in B p,q α " if and only if the space of distributions f ∈ S ′ such that ∆ m H t f is a locally integrable function in G for all t > 0 and N (f ) < +∞ coincides with B p,q α and the norm N is equivalent to • B p,q α . The previous theorem allows us to recover some well known facts about Besov spaces in R d .

Corollary 1.11. [Embeddings] Let G a unimodular Lie group, p, q, r ∈ [1, +∞] and α ≥ 0. We have the following continuous embedding B p,q α (G) ⊂ B p,r α (G) once q ≤ r.

Corollary 1.12. [Interpolation]

Let G be a unimodular Lie group. Let s 0 , s 1 ≥ 0 and 1 ≤ p 0 , p 1 , q 0 , q 1 ≤ ∞.

Define s * = (1 -θ)s 0 + θs 1 1 p * = 1 -θ p 0 + θ p 1 1 q * = 1 -θ q 0 + θ q 1 .
The Besov spaces form a scale of interpolation for the complex method, that is, if

s 0 = s 1 , (B p0,q0 s0 , B p1,q1 s1 ) [θ] = B p * ,q * s * .
The following result is another characterization of Besov spaces, using explicitly the family of vector fields X.

Theorem 1.13. Let G be a unimodular Lie group, p, q ∈ [1, +∞] and α > 0. Let m be an integer strictly greater than α. Then

H 1 2 f p +   j≤-1 2 j m-α 2 max t∈[2 j ,2 j+1 ] sup |I|≤ m X I H t f p q   1 q (6)
is an equivalent norm in B p,q α (G). With the use of paraproducts, we can deduce from Corollary 1.12 and Theorem 1.13 the complete following Leibniz rule.

Theorem 1.14. Let G be a unimodular Lie group, 0 < α and p, p 1 , p 2 , p 3 , p 4 , q ∈ [1, +∞] such that

1 p 1 + 1 p 2 = 1 p 3 + 1 p 4 = 1 p .
Then for all f ∈ B p1,q α ∩ L p3 and all g ∈ B p4,q α ∩ L p2 , one has

f g B p,q α f B p 1 ,q α g L p 2 + f L p 3 g B p 4 ,q α . ( 7 
)
Remark 1.15. The Leibniz rule implies that B p,q α (G) ∩ L ∞ (G) is an algebra under pointwise product, that is

f g B p,q α f B p,q α g L ∞ + f L ∞ g B p,q
α . Let us state another characterization of B p,q α in term of functionals using differences of functions. Define ∇ y f (x) = f (xy) -f (x) for all functions f on G and all x, y ∈ G. Consider the following sublinear functional

L p,q α (f ) = |y|≤1 ∇ y f p |y| α q dy V (|y|) 1 q . Theorem 1.16. Let G be a unimodular Lie group. Let p, q ∈ [1, +∞]. Then for all f ∈ L p (G), L p,q α (f ) + f p ≃ Λ p,q α (f ) + f p once α ∈ (0, 1).
Remark 1.17. When G has polynomial volume growth, Theorem 1.16 is the inhomogeneous counterpart of Theorem 2 in [START_REF] Saloff-Coste | Analyse sur les groupes de Lie à croissance polynômiale[END_REF]. Note that this statement is new when G has exponential volume growth. Remark 1.18. From Theorem 1.16, we can deduce the Leibniz rule stated in Theorem 1.14 in the case α ∈ (0, 1).

As Sobolev spaces, Besov spaces can be characterized recursively.

Theorem 1.19. Let G be a unimodular Lie group. Let p, q ∈ [1, +∞] and α > 0. Then f ∈ B p,q α+1 (G) ⇔ ∀i, X i f ∈ B p,q α (G) and f ∈ L p (G). Remark 1.20. Note that a similar statement is established in [START_REF] Gallagher | Besov algebras on Lie groups of polynomial growth[END_REF]. However, we prove this fact for p ∈ [1, +∞] while the authors of [START_REF] Gallagher | Besov algebras on Lie groups of polynomial growth[END_REF] used the boundedness of the Riesz transforms and thus are restricted to p ∈ (1, +∞).

Estimates of the heat semigroup 2.1 Preliminaries

The following lemma is easily checked: Lemma 2.1. Let (A, dx) and (B, dy) be two measured spaces. Let K(x, y) :

A × B → R + be such that sup x∈A B K(x, y)dy ≤ C B and sup y∈B A K(x, y)dx ≤ C A . Let q ∈ [1, +∞]. Then for all f ∈ L q (B) A B K(x, y)f (y)dy q dx 1 q ≤ C 1-1 q B C 1 q A f q ,
with obvious modifications when q = +∞.

Lemma 2.2. Let (a, b) ∈ (Z ∪ {±∞}) 2 such that a < b, 0 < α < β two real numbers and q ∈ [1, +∞]. Then there exists C α,β > 0 such that for any sequence (c n ) n∈Z , one has b j=a 2 jα b n=a 2 -max{n,j}β c n q b n=a 2 (α-β)n c n q . Proof: We have b j=a 2 jα b n=a 2 -max{n,j}β c n q = b j=a b n=a K(n, j)d n q with d n = 2 n(α-β) c n and K(n, j) = 2 (j-n)α 2 (n-max{j,n})β .
According to Lemma 2.1, one has to check that

sup j∈[[a,b]] b n=a K(n, j) 1 and sup n∈[[a,b]] b j=a K(n, j) 1.
For the first estimate, check that

sup j∈[[a,b]] b n=a K(n, j) = sup j∈[[a,b]]   2 j(α-β) j n=a 2 n(β-α) + 2 jα b n=j+1 2 -nα   ≤ sup j∈Z   2 j(α-β) j n=-∞ 2 n(β-α) + 2 jα +∞ n=j+1 2 -nα   1, since β -α > 0 and α > 0.
The second estimate can be checked similarly:

sup n∈[[a,b]] b j=a K(n, j) = sup j∈[[a,b]]   2 -nα n j=a 2 jα + 2 n(β-α) b j=n+1 2 j(α-β)   1.
Proposition 2.3. Let s ≥ 0 and c > 0. Define, for all t ∈ (0, 1) and all x, y ∈ G,

K t (x, y) = |y -1 x| 2 t s 1 V ( √ t) e -c |y -1 x| 2 t .
Then, for all q ∈ [1, +∞],

G G K t (x, y)g(y)dy q dx 1 q g q .
Proof: Let us check that the assumptions of Lemma 2.1 are satisfied. For all x ∈ G and all t ∈ (0, 1),

G K t (x, y)dy = 1 V ( √ t) G |y -1 x| 2 t s e -c |y -1 x| 2 t dy = 1 V ( √ t) |y -1 x| 2 <t |y -1 x| 2 t s e -c |y -1 x| 2 t dy + 1 V ( √ t) |y -1 x| 2 ≥t |y -1 x| 2 t s e -c |y -1 x| 2 t dy = I 1 + I 2 .
The term I 1 is easily dominated by 1. As for I 2 , it is estimated as follows:

I 2 = ∞ j=0 1 V ( √ t) 2 j √ t≤|y -1 x|<2 j+1 √ t |y -1 x| 2 t s e -c |y -1 x| 2 t dy ∞ j=0 V (2 j+1 √ t) V ( √ t)
4 js e -c4 j .

Notice that Propositions 1.1 and 1.

2 imply that V (2 j+1 √ t) V ( √ t) 2 jd if 2 j √ t ≤ 1 and V (2 j+1 √ t) V ( √ t) = V (2 j+1 √ t) V (1) V (1) V ( √ t) e C2 j 2 jd (8) if 2 j √ t ≥ 1. Hence, ∞ j=0 V (2 j+1 √ t) V ( √ t) 4 js e -c4 j ∞ j=0 e -c ′ 4 j 1,
which yields with the uniform estimate

G K t (x, y)dy 1. (9) 
In the same way, one has

G K t (x, y)dx 1.
Lemma 2.1 provides then the desired result.

Proposition 2.4. Let s ≥ 0 and c > 0. Define

K(t, y) = |y| 2 t s V (|y|) V ( √ t) e -c |y| 2 t .
Then, for all q ∈ [1, +∞],

1 0 G K(t, y)g(y)dy q dt t 1 q G |g(y)| dy V (|y|) 1 q
.

Proof: Let us check again that the assumptions of Lemma 2.1 are satisfied, that are in our case

sup t∈(0,1) G K(t, y)dy ≤ C B and sup y∈G 1 0 K(t, y) dt t ≤ C A .
The first one is exactly as the estimate [START_REF] Furioli | Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth[END_REF].For the second one, check that

1 0 K(t, y) dt t = 1 0 V (|y|) V ( √ t) |y| 2 t s e -c ′ |y| 2 t dt t |y| 2 0 V (|y|) V ( √ t) |y| 2 t s e -c ′ |y| 2 t dt t + ∞ |y| 2 |y| 2 t s dt t +∞ j=0 4 -j |y| 2 4 -(j+1) |y| 2 V (|y|) V ( √ t) |y| 2 t s e -c ′ |y| 2 t dt t + 1 +∞ j=0 V (|y|) V (2 -j+1 |y|)
4 js e -c4 j + 1

+∞ j=0 2 j(d+2s) e C2 j e -c4 j + 1 1,
where the last but one line is obtained with the estimate (8).

Estimates for the semigroup

Because of left-invariance of ∆ and hypoellipticity of ∂ ∂t +∆,

H t = e -t∆ has a convolution kernel h t ∈ C ∞ (G) satisfying, for all f ∈ L 1 (G) and all x ∈ G, H t f (x) = G h t (y -1 x)f (y)dy = G h t (y)f (xy)dy = G h t (y)f (xy -1 )dy.
The kernel h t satisfies the following pointwise estimates. Proposition 2.5. Let G be a unimodular Lie group. For all I ∈ I ∞ (N), there existC I , c I > 0 such that for all x ∈ G, all t ∈ (0, 1], one has

|X I h t (x)| ≤ C I t |I| 2 V ( √ t) exp -c I |x| 2 t .
Proof: It is a straightforward consequence of Theorems VIII.2.4, VIII.4.3 and V.4.2. in [START_REF] Th | Analysis and geometry on groups[END_REF].

Lemma 2.6. Let G be a unimodular group. Then h t ∈ S(G) for all t > 0.

Proof: The case t < 1 is a consequence of the estimates on h t . For t ≥ 1, just notice that S(G) * S(G) ⊂ S(G).

Proposition 2.7. For all I ∈ I ∞ (N) and all p ∈ [1, +∞], one has

X I H t f p t -|I| 2 f p ∀t ∈ (0, 1], ∀f ∈ L p (G).
Proof: Proposition 2.5 yields for any t ∈ (0, 1]

X I H t f p t -|I| 2 G G K t (x, y)f (y)dy p dx 1 p where K t (x, y) = 1 V ( √ t) exp -c |y -1 x| 2 t .
The conclusion of Proposition 2.7 is an immediate consequence of Proposition 2.3.

Littlewood-Paley decomposition

We need a Littlewood-Paley decomposition adapted to this context. In [START_REF] Gallagher | Besov algebras on Lie groups of polynomial growth[END_REF], the authors used the Littlewood-Paley decomposition proven in [9, Proposition 4.1], only established in the case of polynomial volume growth. We state here a slightly different version of the Littlewood-Paley decomposition, also valid for the case of exponential volume growth.

Lemma 3.1. Let G be a unimodular group and let m ∈ N * . For any ϕ ∈ S(G) and any f ∈ S ′ (G), one has the identities

ϕ = 1 (m -1)! 1 0 (t∆) m H t ϕ dt t + m-1 k=0 1 k! ∆ k H 1 ϕ
where the integral converges in S(G), and

f = 1 (m -1)! 1 0 (t∆) m H t f dt t + m-1 k=0 1 k! ∆ k H 1 f
where the integral converges in S ′ (G).

Proof: We only have to prove the first identity since the second one can be obtained by duality.

Let ϕ ∈ S(G). Check first the formula

(m -1)! = +∞ 0 (tu) m e -tu dt t = 1 0 (tu) m e -tu dt t + m-1 k=0 (m -1)! k! u k e -u .
Thus by functional calculus, since ϕ ⊂ L 2 (G), one has

ϕ = 1 (m -1)! 1 0 (t∆) m H t ϕ dt t + m-1 k=0 1 k! ∆ k H 1 ϕ, ( 10 
)
where the integral converges in L 2 (G). Since the kernel h t of H t is in S(G) for any t > 0 (see Lemma 2.6), the formula (10) will be proven if we have for any c ∈ N and any

I ∈ I ∞ (N), lim u→0 N I,c u 0 (t∆) m H t ϕ dt t = 0. (11) 
Let n > |I| 2 be an integer. Similarly to [START_REF] Gallagher | Besov algebras on Lie groups of polynomial growth[END_REF], one has for all x ∈ G and all t ∈ (0, 1),

H t ϕ(x) = 1 (n -1)! 1 t (v -t) n-1 ∆ n H v ϕ(x)dv + n-1 k=0 1 k! (1 -t) k ∆ k H 1 ϕ(x).
Hence, for all x ∈ G and all u ∈ (0, 1), we have the identity

u 0 (t∆) m H t ϕ(x) dt t = 1 (n -1)! 1 t ∆ n+m H v ϕ(x) min{u,v} 0 t m-1 (v -t) n-1 dt dv + n-1 k=0 1 k! ∆ k+m H 1 ϕ(x) u 0 t m-1 (1 -t) k dt. Note that min{u,v} 0 t m-1 (v -t) n-1 dt u m v n-1 and u 0 t m-1 (1 -t) k dt u m .
Therefore, the Schwartz seminorms of u 0 (t∆) m H t ϕ dt t can be estimated by

N I,c u 0 (t∆) m H t ϕ dt t u m 1 0 v n-1 sup x∈G e c|x| |X I ∆ m+n H v ϕ(x)|dv + u m n-1 k=0 sup x∈G e c|x| |X I ∆ k+m H 1 ϕ(x)|. ( 12 
)
Check then that for all w ∈ (0, 1] and all l ∈ N, we have

sup x∈G e c|x| |X I ∆ l H w ϕ(x)| = sup x∈G e c|x| X I H w ∆ l ϕ(x) ≤ sup x∈G e c|x| G X I h w (y -1 x) |∆ l ϕ(y)|dy sup x∈G G e c|y -1 x| X I h w (y -1 x) e c|y| |∆ l ϕ(y)|dy sup x∈G G e c|y -1 x| X I h w (y -1 x) dy |I|=2l N I,c (ϕ) (13) 
where the third line holds because |x| ≤ y -1 x + |x|.

However, for all x ∈ G and all w ∈ (0, 1], Proposition 2.5 yields that, for all x ∈ G,

G e c|y -1 x| X I h w (y -1 x) dy w -|I| 2 1 V ( √ w) G e c|y -1 x| e -c ′ |y -1 x| 2 w dy w -|I| 2 1 V ( √ w) G e -c ′ |y -1 x| 2 2w dy w -|I| 2 . ( 14 
)
By gathering the estimates ( 12), ( 13) and ( 14), we obtain

N I,c u 0 (t∆) m H t ϕ dt t u m   |I|≤2(m+n) N I,c (ϕ)   1 0 v n-1 v -|I| 2 dv + n-1 k=0 1 u m |I|≤2(m+n) N I,c (ϕ) u→0 ---→ 0,
which proves [START_REF] Guivarc | h. Croissance polynomiale et périodes des fonctions harmoniques[END_REF] and finishes the proof.

4 Proof of Theorem 1.9 and of its corollaries 4.1 Proof of Theorem 1.9

In this section, we will always assume that α ≥ 0, p, q ∈ [1, +∞].

Proposition 4.1. For all t 1 , t 0 ∈ (0, 1) and all integers m > α 2 ,

f p H t0 f p + 1 0 t m-α 2 ∆ m H t f p q dt t 1 q ∀f ∈ S ′ (G)
when α > 0 and

H t1 f p H t0 f p + 1 0 t m-α 2 ∆ m H t f p q dt t 1 q ∀f ∈ S ′ (G)
when α ≥ 0 and q < +∞, with the usual modification when q = +∞.

Proof: Lemma 3.1 (recall that L p (G) ⊂ S ′ (G)) yields the estimate

f p 1 0 t m ∆ m H t f p dt t + m-1 k=0 ∆ k H 1 f p .
However, for all k ∈ N,

∆ k H 1 f p ≤ C (1-t0) k H t0 f p . Then, when α > 0, f p 1 0 t m ∆ m H t f p dt t + H t0 f p 1 0 t m-α 2 ∆ m H t f p q dt t 1 q 1 0 t q ′ α 2 dt t 1 q ′ + H t0 f p 1 0 t m-α 2 ∆ m H t f p q dt t 1 q + H t0 f p ,
which prove the case α > 0.

If α = 0, Lemma 3.1 for the integer m + 1 implies

H t1 f p 1 0 t m+1 ∆ m+1 H t+t1 f p dt t + m k=0 ∆ k H 1+t1 f p 1 0 t m+1 t 1 ∆ m H t f p dt t + H t0 f p 1 0 t m ∆ m H t f p q dt t 1 q 1 0 t t 1 q ′ dt t 1 q ′ + H t0 f p 1 0 t m ∆ m H t f p q dt t 1 q + H t0 f p . Proposition 4.2. For all integers m > α 2 , 1 0 t m-α 2 ∆ m H t f p q dt t 1 q f p + 1 0 t m+1-α 2 ∆ m+1 H t f p q dt t 1 q
.

Proof: We use Lemma 3.1 and get

∆ m H t f = 1 0 s∆H s ∆ m H t f ds s + H 1 ∆ m H t f.
Thus,

1 0 t m-α 2 ∆ m H t f p q dt t 1 q ≤ 1 0 t m-α 2 1 0 ∆ m+1 H t+s f p ds q dt t 1 q + 1 0 t m-α 2 ∆ m H t+1 f p q dt t 1 q := I 1 + I 2 .
We start with the estimate of

I 1 . One has ∆ m+1 H t+s f = H s ∆ m+1 H t f = H t ∆ m+1 H s f . Then I 1 ≤ 1 0 t m-α 2 t 0 ∆ m+1 H t f p ds q dt t 1 q + 1 0 t m-α 2 1 t ∆ m+1 H s f p ds q dt t 1 q := II 1 + II 2 .
Notice

II 1 = 1 0 t m+1-α 2 ∆ m+1 H t f p q dt t 1 q
which is the desired estimate. As far as II 2 is concerned,

II 2 = 1 0 1 0 K(s, t)g(s) ds s q dt t 1 q with g(s) = s m+1-α 2 ∆ m+1 H s f p and K(s, t) = t s m-α 2 1l s≥t . Since 1 0 K(s, t) ds s 1 and 1 0 K(s, t) dt t 1, Lemma 2.1 yields then II 2 1 0 g(s) q ds s 1 q
which is also the desired estimate.

It remains to estimate I 2 . First, verify that Proposition 2.7 of H t implies ∆ m H t+1 f p f p . Then we obtain 

I 2 f p since 1 0 t q(m-α 2 ) dt t < +∞. Proposition 4.3. For all integers β ≥ γ > α 2 , 1 0 t β-α 2 ∆ β H t f p q dt t 1 q 1 0 t γ-α 2 ∆ γ H t f p q dt t 1 q . Proof: Proposition 2.7 implies ∆ β-γ H t 2 f p t γ-β f p . Then 1 0 t β-α 2 ∆ β H t f p q dt t 1 q 1 0 t γ-α 2 ∆ γ H t 2 f p q dt t 1 q 1 2 0 u γ-α 2 ∆ γ H u f p q du u 1 q ≤ 1 0 t γ-α 2 ∆ γ H t f p q dt t 1 q . Remark 4 
f p +   j≤-1 2 j(m-α 2 ) ∆ m H 2 j f p q   1 q
is an equivalent norm in B p,q α (G). Proof: Assertion (i) in Theorem 1.9 and the following calculus prove the equivalence of norms:

  j≤-1 2 j(m-α 2 ) ∆ m H 2 j f p q   1 q ≤   j≤-1 2 j 2 j-1 2 j(m-α 2 ) ∆ m H t f p q dt t   1 q 1 2 0 t m-α 2 ∆ m H t f p q dt t 1 q ≤ 1 0 t m-α 2 ∆ m H t f p q dt t 1 q =   j≤-1 2 j+1 2 j t m-α 2 ∆ m H t f p q dt t   1 q ≤   j≤-1 2 j(m-α 2 ) ∆ m H 2 j f p q   1 q
.

This proves item (ii) in Theorem 1.9.

Proposition 4.6. Let α > 0 and l > α 2 . Then

H 1 2 f p +   j≤-1   2 -j α 2 2 j+1 2 j (t∆) l H t f dt t p   q   1 q (15)
is an equivalent norm in B p,q α (G).

Proof: We denote by . B p,q α,1 the norm defined in [START_REF] Saloff-Coste | Analyse sur les groupes de Lie à croissance polynômiale[END_REF]. It is easy to check, using assertion (i) in Theorem 1.9, the Hölder inequality and the triangle inequality, that f B p,q α,1 f B p,q α . For the converse inequality, we proceed as follows. Fix an integer m > α 2 .

Decomposition of f :

The first step is to decompose f as in Lemma 3.1

f = 1 (l -1)! 1 0 (t∆) l H t f dt t + l-1 k=0 1 k! ∆ k H 1 f in S ′ (G).
We introduce

f n = - 2 n+1 2 n (t∆) l H t f dt t dt and c n = 2 n 2 n-1 (t∆) l H t f dt t p .
Remark then that

f = 1 (l -1)! -1 n=-∞ f n + l-1 k=0 1 k! ∆ k H 1 f in S ′ (G). 2. Estimates of ∆ m H 2 j f n Note that ∆ m H 2 j f n = -∆ m H 2 n-1 +2 j 3.2 n-1 2 n (t∆) l H t-2 n-1 f dt t -∆ m H 2 n +2 j 2 n+1 3.2 n-1 (t∆) l H t-2 n f dt t = -∆ m H 2 n-1 +2 j 2 n 2 n-1 (t + 2 n-1 ) l ∆ l H t f dt t -∆ m H 2 n +2 j 2 n 2 n-1 (t + 2 n ) l ∆ l H t f dt t .
Then Proposition 2.7 implies,

∆ m H 2 j f n p [(2 (n-1) + 2 j ] -m 2 n 2 n-1 (t + 2 n-1 ) l ∆ l H t f dt t p + [2 n + 2 j ] -m 2 n 2 n-1 (t + 2 n ) l ∆ l H t f dt t p [2 n + 2 j ] -m 2 n 2 n-1 (t∆) l H t f dt t p . ( 16 
)
In other words,

∆ m H 2 j f n p 2 -nm c n if j ≤ n 2 -jm c n if j > n . ( 17 
) 3. Estimate of Λ p,q α ( f n ) As a consequence, j≤-1   2 j(m-α 2 ) ∆ m H 2 j n≤-1 f n p   q j≤-1   2 j(m-α 2 ) n≤-1 2 -m max{j,n} c n   q .
According to Lemma 2.2, since 0 < m -α 2 < m, one has j≤-1

2 j(m-α 2 ) ∆ m H 2 j f n p q -1 n=-∞ 2 -n α 2 c n q .
4. Estimate of the remaining term Remark that

f B p,q α H t0 f p + Λ p,q α f n + l-1 k=0 Λ p,q α ∆ k H 1 f .
From the previous step and Proposition 4.5, we proved that Λ p,q α f n f B p,q α,1 . In order to conclude the proof of Proposition 4.6, it suffices then to check that for all k ∈ [[0, l -1]], one has

∆ k H 1 f B p,q α f L p . ( 18 
)
Indeed, one has for all j ≤ -1

∆ m H 2 j ∆ k H 1 f p = ∆ m+k H 1+2 j f p 1 + 2 j -(m+k) f p f p .

Consequently,

j≤-1

2 j(m-α 2 ) ∆ m H 2 j ∆ k H 1 f p q f q p j≤-1 2 jq(m-α 2 ) f q p .

Proof of Theorem 1.13

Proof: (Theorem 1.13)

We denote by . B p,q α,Xsup the norm defined in [START_REF] Coulhon | Sobolev algebras on Lie groups and Riemannian manifolds[END_REF]. Since

∆ m H 2 j f p ≤ max t∈[2 j ,2 j+1 ] sup |I|≤2m X I H t f p ,
it is easy to check that f B p,q α f B p,q α,Xsup . For the converse inequality, it is enough to check that

f B p,q α,Xsup f B p,q
α,1 . We proceed then as the proof of Proposition 4.6 since Proposition 2.7 yields

max t∈[2 j ,2 j+1 ] sup |I|≤ m X I H t f n p 2 -n m 2 c n if j ≤ n 2 -j m 2 c n if j > n
with a proof analogous to the one of (17).

Embeddings and interpolation

Proof: Let us turn to interpolation properties of Besov spaces, that implies in particular Corollary 1.12.

(
Corollary 4.7. Let s 0 , s 1 , s ≥ 0, 1 ≤ p 0 , p 1 , p, q 0 , q 1 , r ≤ ∞ and θ ∈ (0, 1). Define s * = (1 -θ)s 0 + θs 1 ,

1 p * = 1 -θ p 0 + θ p 1 , 1 q * = 1 -θ q 0 + θ q 1 . i. If s 0 = s 1 then (B p,q0 s0 , B p,q1 s1 ) θ,r = B p,r s * .
ii. In the case where s 0 = s 1 , we have

(B p,q0 s , B p,q1 s ) θ,q * = B p,q * s . iii. If p * = q * := r, (B p0,q0 s0 , B p1,q1 s1 ) θ,r = B r,r s * . iv. If s 0 = s 1 , (B p0,q0 s0 , B p1,q1 s1 ) [θ] = B p * ,q * s * .
Proof: The proof is inspired by [2, Theorem 6.4.3].

Recall (see Definition 6.4.1 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]) that a space B is called a retract of A if there exists two bounded linear operators J : B → A and P : A → B such that P • J is the identity on B.

Therefore, we just need to prove that the spaces B p,q α are retracts of l α q (L p ) where, for any Banach space A (see paragraph 5.6 in [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]),

l α q (A) =      u ∈ A Z-, u ℓ α q (A) :=   j≤0 2 -j α 2 u j A q   1 q < +∞      .
Then interpolation on the spaces l α q (L p ) (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF], Theorems 5.6.1, 5.6.2 and 5.6.3) provides the result. Note the weight appearing l α q (A) is 2 -j α 2 (and not 2 j α 2 ) because we sum on negative integers.

Fix m > α 2 . Define the functional J by J f = ((J f ) j ) j≤0 where

(J f ) j = 2 jm ∆ m H 2 j-1 f if j ≤ -1 and (J f ) 0 = H 1 2 f. Moreover, define P on l α q (L p ) by Pu = 2m-1 k=0 1 k! ∆ k H 1 2 u 0 + 1 (2m -1)! j≤-1 2 -jm 2 j+1 2 j t 2m ∆ m H t-2 j-1 u j dt t .
We will see below that P is well-defined on l α q (L p ). Proposition 4.5 implies immediately that J is bounded from B p,q α to l α q (L p ). Moreover, Lemma 3.1 easily provides that

P • J = Id B p,q α .
It remains to verify that P is a bounded linear operator from l α q (L p ) to B p,q α . The proof is similar to the one of Proposition 4.6. Indeed, proceeding as the fourth step of Proposition 4.6, one gets

2m-1 k=0 1 k! ∆ k H 1 2 u 0 B p,q α u 0 p .
It is plain to see that

H 1 2 j≤-1 2 -jm 2 j+1 2 j t 2m ∆ m H t-2 j-1 u j dt t p ≤ j≤-1 2 -jm 2 j+1 2 j t 2m H 1 2 ∆ m H t-2 j-1 u j p dt t ≤ j≤-1 2 -jm 2 j+1 2 j t 2m H 1 2 ∆ m u j p dt t j≤-1 2 jm u j p u l α q (L p ) .
Then the proof of the boundedness of P is reduced to the one of

I :=   k≤-1   2 k(m-α 2 ) ∆ m H 2 k j≤-1 2 -jm 2 j+1 2 j t 2m ∆ m H t-2 j-1 u j dt t p   q   1 q u l α q (L p ) . ( 19 
)
Indeed,

I q k≤-1   2 k(m-α 2 ) j≤-1 2 -jm 2 j+1 2 j (t∆) 2m H t-2 j-1 +2 k u j dt t p   q k≤-1   2 k(m-α 2 )
j≤-1

2 jm ∆ 2m H 2 j-1 +2 k u j p   q k≤-1   2 k(m-α 2 )
j≤-1

2 jm (2 j + 2 k ) 2m u j p   q k≤-1   2 k(m-α 2 ) j≤-1 2 -2m max{j,k} 2 jm u j p   q
Check that 0 < m -α 2 < 2m. Thus, Lemma 2.2 yields

I q j≤-1 2 -j( α 2 +m) 2 jm u j p q ≤ u q l α q (L p ) ,
which proves [START_REF] Uspenskiȋ | Imbedding theorems for classes with weights[END_REF] and thus concludes the proof.

Algebra under pointwise product -Theorem 1.14

We want to introduce some paraproducts. The idea of paraproducts goes back to [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. The term "paraproducts" is used to a denotes some non-commutative bilinear forms Λ i such that f g = Λ i (f, g). They are introduced in some cases, where the bilinear forms Λ i are easier to handle than the pointwise product. In the context of doubling spaces, a definition of paraproducts is given in [START_REF] Bernicot | A T(1)-theorem in relation to a semigroup of operators and applications to new paraproducts[END_REF][START_REF] Frey | Paraproducts via H ∞ -functional calculus and a T (1)-Theorem for non-integral operators[END_REF]. We need to slightly modify the definition in [START_REF] Bernicot | A T(1)-theorem in relation to a semigroup of operators and applications to new paraproducts[END_REF] to adapt them to non-doubling spaces.

For all t > 0, define

φ t (∆) = - m-1 k=0 1 k! (t∆) k H t ,
and observe that the derivative of t → φ t (∆) is given by

φ ′ t (∆) = 1 (m -1)! 1 t (t∆) m H t := 1 t ψ t (∆).
Remark 5.1. Even if φ t actually depends on m, we do not indicate this dependence explicitly.

Recall that Lemma 3.1 provides the identity

f = 1 0 ψ t (∆)f dt t -φ 1 (∆)f in S ′ (G). ( 20 
) Proposition 5.2. Let p, q, r ∈ [1, +∞] such that 1 r := 1 p + 1 q ≤ 1. Let (f, g) ∈ L p (G) × L q (G).

One has the formula

f g = Π f (g) + Π g (f ) + Π(f, g) -φ 1 (∆)[φ 1 (∆)f • φ 1 (∆)g] in S ′ (G),
where

Π f (g) = 1 0 φ t (∆)[ψ t (∆)f • φ t (∆)g] dt t and Π(f, g) = 1 0 ψ t (∆)[φ t (∆)f • φ t (∆)g] dt t . Proof: Since f g ∈ L r ⊂ S ′ (G), the formula (20) provides in S ′ (G) [f • g] = 1 0 ψ t (∆)[f • g] dt t -φ 1 (∆)[f • g]. ( 21 
)
We can use again twice (one for f and one for g) the identity [START_REF] Th | Analysis and geometry on groups[END_REF] to get

[f • g] = 1 0 ψ t (∆) 1 0 ψ u (∆)f du u -φ 1 (∆)f • 1 0 ψ v (∆)g dv v -φ 1 (∆)g dt t -φ 1 (∆) 1 0 ψ u (∆)f du u -φ 1 (∆)f • 1 0 ψ v (∆)g dv v -φ 1 (∆)g = 1 0 1 0 1 0 ψ t (∆)[ψ u (∆)f • ψ v (∆)g] dt du dv tuv - 1 0 1 0 ψ t (∆)[φ 1 (∆)f • ψ v (∆)g] dt dv tv - 1 0 1 0 ψ t (∆)[ψ u (∆)f • φ 1 (∆)g] dt du tu - 1 0 1 0 φ 1 (∆)[ψ u (∆)f • ψ v (∆)g] du dv uv + 1 0 ψ t (∆)[φ 1 (∆)f • φ 1 (∆)g] dt t + 1 0 φ 1 (∆)[ψ u (∆)f • φ 1 (∆)g] du u + 1 0 φ 1 (∆)[φ 1 (∆)f • ψ v (∆)g] dv v -φ 1 (∆)[φ 1 (∆) • φ 1 (∆)] := R(f, g) + 1 0 1 0 1 0 ψ t (∆)[ψ u (∆)f • ψ v (∆)g] dt du dv tuv -φ 1 (∆)[φ 1 (∆) • φ 1 (∆)]. ( 22 
)
The domain [0, 1] 3 can be divided in the subsets D(t, u, v), D(u, t, v) and D(v, u, t) where D(a, b, c) = {(a, b, c) ∈

[0, 1] 3 , a < min{b, c}}. Consequently,

1 0 1 0 1 0 ψ t (∆)[ψ u (∆)f • ψ v (∆)g] dt du dv tuv = 1 0 1 t 1 t ψ t (∆)[ψ u (∆)f • ψ v (∆)g] dt du dv tuv + 1 0 1 u 1 u ψ t (∆)[ψ u (∆)f • ψ v (∆)g] du dt dv utv + 1 0 1 v 1 v ψ t (∆)[ψ u (∆)f • ψ v (∆)g] dv du dt vut = 1 0 ψ t (∆)[{φ 1 (∆)f -φ t (∆)f } • {φ 1 (∆)g -φ t (∆)g}] dt t + 1 0 {φ 1 (∆) -φ u (∆)}[ψ u (∆)f • {φ 1 (∆)g -φ u (∆)g}] du u + 1 0 {φ 1 (∆) -φ v (∆)}[{φ 1 (∆)f -φ v (∆)f } • ψ v (∆)g] dv v := S(f, g) + Π f (g) + Π g (f ) + Π(f, g). ( 23 
)
It remains to check that R(f, g) + S(f, g) = 0. This identity, that can be proven with similar computations as (23), is left to the reader. Proposition 5.3. Let G be a unimodular Lie group. Let α > 0 and p, p 1 , p 2 , q ∈ [1, +∞] such that

1 p 1 + 1 p 2 = 1 p .
Then for all f ∈ B p1,q α and all g ∈ L p2 , one has

Λ p,q α [Π f (g)] f B p 1 ,q α g L p 2 .
Proof: Let m > α 2 and j ≤ -1. Notice that, for all u ∈ (0, 1),

∆ m H u Π f (g) p ≤ 1 0 ∆ m H u φ t (∆)[ψ t (∆)f • φ t (∆)g] p dt t .
Remark that φ t (∆)h r H t 2 h r for all r ∈ [1, +∞] and all h ∈ L r . As a consequence,

∆ m H u φ t (∆)[ψ t (∆)f • φ t (∆)g] p = φ t (∆)∆ m H u [ψ t (∆)f • φ t (∆)g] p ∆ m H t 2 +u [ψ t (∆)f • φ t (∆)g] p t 2 + u -m ψ t (∆)f • φ t (∆)g p min t -m , u -m ψ t (∆)f • φ t (∆)g p min t -m , u -m ψ t (∆)f p1 φ t (∆)g p2 min t -m , u -m (t∆) m H t f p1 g p2 .
We deduce then

Λ p,q α [Π f (g)] q g q p2 1 0 u m-α 2 1 0 (max{u, t}) -m (t∆) m H t f p1 dt t q du u g q p2 j≤-1 2 j(m-α 2 ) -1 n=-∞ 2 -m max{j,n} (2 n ∆) m H 2 n f p1 q g L p 2   n≤-1 2 -n α 2 q 2 nmq ∆ m H 2 n f q p1   1 q
, where we used Lemma 2.2 for the last line. As a consequence, we obtain if α ∈ (0, 2m),

Λ p,q α [Π f (g)] g L p 2   n≤-1 2 nq(m-α 2 ) ∆ m H 2 n f q p1   1 q g L p 2 f B p 1 ,q α
where we used Proposition 4.5 for the last line.

Proposition 5.4. Let G be a unimodular Lie group. Let α > 0 and p, p 1 , p 2 , p 3 , p 4 , q ∈ [1, +∞] such that

1 p 1 + 1 p 2 = 1 p 3 + 1 p 4 = 1 p .
Then for all f ∈ B p1,q α ∩ L p3 and all g ∈ B p4,q α ∩ L p2 , one has

Λ p,q α [Π(f, g)] f B p 1 ,q α g L p 2 + f L p 3 g B p 4 ,q α . Proof: Notice first that ∆ m H u Π(f, g) p ≤ 1 0 ∆ m H u H t (t∆) m [φ t (∆)f • φ t (∆)g] p dt t .
Let us recall then that

X i (f • g) = f • X i g + X i f • g. Consequently, since ∆ = k i=1 X 2 i , one has ∆ m [f • g] p ∆ m f • g p + f • ∆ m g p + 2m-1 k=1 sup |I1|=k sup |I2|=2m-k X I1 f • X I2 g p .
In the following computations, (Y

I1 , Z I2 ) denotes the couple (X I1 , X I2 ) if |I 1 | = 0 and |I 2 | = 0, (∆ |I1|/2 , I) if |I 2 | = 0 and (I, ∆ |I2|/2 ) if |I 1 | = 0. With these notations, one has ∆ m H u+t (t∆) m [φ t (∆)f • φ t (∆)g] p min t -m , u -m (t∆) m [φ t (∆)f • φ t (∆)g] p min t -m , u -m m-1 k,l=0 (t∆) m [(t∆) k H t f • (t∆) l H t g] p min t -m , u -m m-1 k,l=0 2m i=0 t m sup |I1|=i sup |I2|=2m-i Y I1 (t∆) k H t f • Z I2 (t∆) l H t g p = min t -m , u -m m-1 k,l=0 2m i=0 t m+k+l sup |I1|=i sup |I2|=2m-i Y I1 ∆ k H t f • Z I2 ∆ l H t g p min t -m , u -m m-1 k,l=0 2m i=0 t m+k+l sup |I1|=i+2k sup |I2|=2m+2l-i Y I1 H t f • Z I2 H t g p min t -m , u -m 2m≤k+l≤6m-4 k+l even t k+l 2 sup |I1|=k sup |I2|=l Y I1 H t f • Z I2 H t g p . Setting c n = 2m≤k+l≤6m-4 k+l even 2 n+1 2 n t k+l 2 sup |I1|=k sup |I2|=l Y I1 H t f • Z I2 H t g p dt t , one has Λ p,q α [Π(f, g)] q 1 0 u m-α 2 1 0 ∆ m H u+t (t∆) m [φ t (∆)f • φ t (∆)g] p dt t q du u 1 0     u m-α 2 1 0 min t -m , u -m 2m≤k+l≤6m-4 k+l even t k+l 2 sup |I1|=k sup |I2|=l Y I1 H t f • Z I2 H t g p dt t     q du u -1 j=-∞ 2 j(m-α 2 ) -1 n=-∞ 2 -m max{n,j} c n q n≤-1 2 -nq α 2 c q n
where the last line is a consequence of Lemma 2.2, since 0 < m -α 2 < m. It remains to prove that for any couple (k, l) ∈ N 2 satisfying 6m -4 ≥ k + l ≥ 2m and k + l even, we have

T :=   n≤-1 2 -nq α 2 2 n+1 2 n t k+l 2 sup |I1|=k sup |I2|=l Y I1 H t f • Z I2 H t g p dt t q   1 q f B p 1 ,q α g L p 2 + f L p 3 g B p 4 ,q α . ( 24 
)
1. If k = 0 or l = 0:

Since k and l play symmetric roles, we can assume without loss of generality that l = 0. In this case, k is even and

if k = 2k ′ , sup |I1|=k sup |I2|=0 Y I1 H t f • Z I2 H t g p = ∆ k ′ H t f • H t g p ≤ ∆ k ′ H t f p1 H t g p2 ≤ ∆ k ′ H t f p1 g p2 .
Therefore,

T ≤ g L p 2   n≤-1 2 -nq α 2 2 n+1 2 n t k ′ ∆ k ′ H t f p1 dt t q   1 q g L p 2 f B p 1 ,q α
where the second line is due to the fact that

k ′ ≥ m > α 2 . 2. If k ≥ 1 and l ≥ 1:
Define α 1 , α 2 , r 1 , r 2 , q 1 and q 2 by

α 1 = k k + l α , α 2 = l k + l α, k + l r 1 = k p 1 + l p 3 , k + l r 2 = k p 2 + l p 4 , k + l q 1 = k q , k + l q 2 = l q .
In this case, notice that k > α 1 and l > α 2 . One has then

sup |I1|=k sup |I2|=l X I1 H t f • X I2 H t g p ≤ sup |I1|=k X I1 H t f r1 sup |I2|=l X I2 H t g r2
and thus Hölder inequality provides

T ≤   n≤-1 2 n k-α 1 2 max t∈[2 j ,2 j+1 ] sup |I1|=k X I1 H t f r1 q1   1 q 1   n≤-1 2 n l-α 2 2 max t∈[2 j ,2 j+1 ] sup |I2|=l X I2 H t g r2 q2   1 q 2 f B r 1 ,q 1 α 1 g B r 2 ,q 2 α 2
where the second line is due to Theorem 1.13. Let θ = k k+l . Complex interpolation (Corollary 1.12) provides

(B p3,∞ 0 , B p1,q α ) [θ] = B r1,q1 α1 and (B p4,q α , B p2,∞ 0 ) [θ] = B r2,q2 α2 . Remark also that L s (G) is continuously embedded in B s,∞ 0
(G) (this can be easily seen from the definition of Besov spaces). As a consequence,

T f B r 1 ,q 1 α 1 g B r 2 ,q 2 α 2 f θ L p 3 f 1-θ B p 1 ,q α g θ B p 4 ,q α g 1-θ L p 2 f L p 3 g B p 4 ,q α + f B p 1 ,q α g L p 2
which is the desired conclusion.

Let us now prove Theorem 1.14

Proof: With the use of Propositions 5.2, 5.3 and 5.4, it remains to check that

H 1 2 [f • g] L p f B p 1 ,q α g L p 2 + f L p 3 g B p 4 ,q α (25) and φ 1 (∆)[φ 1 (∆)f • φ 1 (∆)g B p,q α f B p 1 ,q α g L p 2 + f L p 3 g B p 4 ,q α . ( 26 
)
The inequality (25) is easy to check. By Proposition 4.1, one has

H 1 2 [f • g] L p ≤ f • g p ≤ f p1 g p2 ≤ f B p 1 ,q α g L p 2 .
For (26), recall that (18) implies

φ 1 (∆)[φ 1 (∆)f • φ 1 (∆)g] B p,q α φ 1 (∆)f • φ 1 (∆)g L p φ 1 (∆)f p1 φ 1 (∆)g p2 f B p 1 ,q α g L p 2 .
6 Other characterizations of Besov spaces 6.1 Characterization by differences of functions -Theorem 1.16 Lemma 6.1. Let p, q ∈ [1, +∞] and α > 0. There exists c > 0 such that, for all f ∈ L p (G),

Λ p,q α (f ) G ∇ y f p e -c|y| 2 |y| α q dy V (|y|) 1 q . Proof: Since G ∂ht ∂t (y)dx = 0, ∂H t ∂t f (x) = G ∂h t ∂t (y)f (xy)dy = G ∂h t ∂t (y)[f (xy) -f (x)]dy = G ∂h t ∂t (y)∇ y f (x)dy. (27) 
Consequently,

∂H t ∂t f p ≤ G ∂h t ∂t (y) ∇ y f p dy.
Proposition 2.5 provides Λ p,q α (f )

1 0 t 1-α 2 G 1 tV ( √ t) e -c |y| 2 t ∇ y f p dy q dt t 1 q 1 0 t 1-α 2 G 1 tV ( √ t) e -c ′ |y| 2 t ∇ y f p e -c ′ |y| 2 t dy q dt t 1 q 1 0 t 1-α 2 G 1 tV ( √ t) e -c ′ |y| 2 t ∇ y f p e -c ′ |y| 2 dy q dt t 1 q = 1 0 G K(t, y)g(y) dy V (|y|) q dt t 1 q with c ′ = c 2 , g(y) = ∇y f p |y| α e -c ′ |y| 2 and K(t, y) = V (|y|) V ( √ t) |y| 2 t α 2 e -c ′ |y| 2 t
(note that we used the fact that t ∈ (0, 1) in the third line). Lemma 2.1 and Proposition 2.4 imply then

Λ p,q α (f ) G |g(y)| q dy V (|y|) 1 q = G ∇ y f p e -c|y| 2 |y| α q dy V (|y|) 1 q
. Proposition 6.2. Let p, q ∈ [1, +∞] and α > 0, then Λ p,q α (f ) L p,q α (f ) + f p .

Proof: According to Lemma 6.1, it is sufficient to check that

G ∇ y f p e -c|y| 2 |y| α q dy V (|y|) 1 q L p,q α (f ) + f p .
Since we obviously have

|y|≤1 ∇ y f p e -c|y| 2 |y| α q dy V (|y|) 1 q ≤ L p,q α (f ),
all we need to prove is

T = |y|≥1 ∇ y f p e -c|y| 2 |y| α q dy V (|y|) 1 q f p . Indeed, ∇ y f p ≤ 2 f p and thus T f p |y|≥1 e -c|y| 2 q dy 1 q f p   ∞ j=0 e -cq4 j V (2 j+1 )   1 q f p ,
where the last line holds because V (r) have at most exponential growth. Proposition 6.3. Let p, q ∈ [1, +∞] and α ∈ (0, 1). Then

L p,q α (f ) Λ p,q α (f ) + f p ∀f ∈ B p,q α (G). Proof: 1. Decomposition of f : The first step is to decompose f as f = (f -H 1 f ) + H 1 f.
We introduce

f n = - 2 n+1 2 n ∂H t f ∂t dt = - 2 n+1 2 n ∆H t f dt and c n = 2 n 2 n-1 ∂H t f ∂t p dt.
Remark then that f n p ≤ c n+1 and Lemma 3.1 provides

f -H 1 f = -1 n=-∞ f n in S ′ (G). 2. Estimate of X i f n : Let us prove that if n ≤ -1, one has for all i ∈ [[1, k]] X i f n p 2 -n 2 c n (28)
Indeed, notice first

f n = -2 2 n 2 n-1 ∆H 2t f dt = -2H 2 n-1 2 n 2 n-1 H t-2 n-1 ∆H t f dt := H 2 n-1 g n .
Proposition 2.7 implies then

X i f n p 2 -n 2 g n p 2 -n 2 2 n 2 n-1 H t-2 n-1 ∂H t f ∂t p dt 2 -n 2 2 n 2 n-1 ∂H t f ∂t p dt = 2 -n 2 c n .
If ϕ : [0, 1] → G is an admissible path linking e to y with l(ϕ) ≤ 2|y|,

∇ y f n (x) = 1 0 d ds f n (xϕ(s))ds = 1 0 k i=1 c i (s)X i f n (xϕ(s))ds.
Hence, (28) implies

∇ y f n p ≤ 1 0 k i=1 |c i (s)| X i f n (.ϕ(s)) p ds = X i f n p 1 0 k i=1 |c i (s)|ds 2 -n 2 c n 1 0 k i=1 |c i (s)|ds |y|2 -n 2 c n
where the second line is a consequence of the right-invariance of the measure and the last one follows from the definition of l(ϕ). Thus, one has

∇ y f n p |y|2 -n 2 c n if |y| 2 < 2 n c n+1 if |y| 2 ≥ 2 n (29) 3. Estimate of L p,q α (f -H 1 f ) As a consequence of (29), [L p,q α (f -H 1 f )] q = -1 j=-∞ 2 j <|y| 2 ≤2 j+1 ∇ y f p |y| α q dy V (|y|) -1 j=-∞ 2 j <|y| 2 ≤2 j+1 -1 n=-∞ ∇ y f n p |y| α q dy V (|y|) -1 j=-∞ 2 -jα 2 q   j n=-∞ c n+1 + -1 n=j+1 2 j-n 2 c n   q -1 j=-∞ 2 jq(1-α 2 ) -1 n=-∞ 2 -max{j,n} 2 [c n+1 + c n ] q -1 n=-∞ 2 -nα 2 [c n+1 + c n ] q 0 n=-∞ 2 -nα 2 c n q
Note that the third line holds since 2 j ≤ 1, so that V (2 j+1 ) V (2 j ) and the fifth one is obtained with Lemma 2.2, since α ∈ (0, 1).

However

0 n=-∞ 2 -n α 2 c n q = 0 n=-∞ 2 -n α 2 2 n 2 n-1 ∂H t f ∂t p dt q 0 n=-∞ 2 -nq α 2 2 n(q-1) 2 n 2 n-1 ∂H t f ∂t q p dt 0 n=-∞ 2 n 2 n-1 t 1-α 2 ∂H t f ∂t p q dt t = 1 0 t 1-α 2 ∂H t f ∂t p q dt t = (Λ p,q α (f )) q .
(30)

4. Estimate of L p,q α (H 1 f ) With computations similar to those of the second step of this proof, we find that

∇ y H 1 f p |y| f p . Consequently, L p,q α (H 1 f ) ≤ f p |y|≤1 |y| q(1-α) dy V (|y|) 1 q ≤ f p   j≤-1 2 j <|y|≤2 j+1 |y| q(1-α) dy V (|y|)   1 q f p   j≤-1 2 qj(1-α)   1 q f p
where the third line is a consequence of the local doubling property.

Theorem 6.4. Let G be a unimodular Lie group and α ∈ (0, 1), then we have the following Leibniz rule. If p 1 , p 2 , p 3 , p 4 , p, q ∈ [1, +∞] are such that

1 p 1 + 1 p 2 = 1 p 3 + 1 p 4 = 1 p then for all f ∈ B p1,q α (G) ∩ L p3 (G) and all g ∈ B p4,q α (G) ∩ L p2 (G), one has f g B p,q α f B p 1 ,q α g L p 2 + f L p 3 g B p 4 ,q α . Proof: Check that ∇ y (f • g)(x) = g(xy) • ∇ y f (x) + f (x) • ∇ y g(x).
Thus, with Hölder inequality,

f g B p,q α ≃ f • g p + L p,q α (f • g) f p1 g p2 + L p1,q α (f ) • g L p 2 + f L p 3 • L p4,q α (g) f B p 1 ,q α g p2 + f L p 3 g B p 4 ,q α .

Characterization by induction -Theorem 1.19

Proposition 6.5. Let p, q ∈ [1, +∞] and α > -1. Let m > α 2 . One has for all

i ∈ [[1, k]] Λ p,q α (X i f ) Λ p,q α+1 f + f p = f B p,q α+1 .
Proof: The scheme of the proof is similar to Proposition 4.6.

Decomposition of f :

Let M be an integer with M > α+1 2 . We decompose f as in Lemma 3.1:

f = 1 (M -1)! 1 0 (t∆) M H t f dt t + M-1 k=0 1 k! ∆ k H 1 f
and we introduce

f n = - 2 n+1 2 n (t∆) M H t f dt t and c n = 2 n 2 n-1 t M ∆ M H t f p dt t .
Remark then that f n p ≤ c n+1 and 

f = 1 (M -1)! -1 n=-∞ f n + M-1 k=0 1 k! ∆ k H 1 f.
∆ m X i f n p 2 -n(m+ 1 2 ) c n . (31) 
Indeed, notice first

f n = -2 M 2 n 2 n-1 (t∆) M H 2t f dt t = -2 M H 2 n-1 2 n 2 n-1
H t-2 n-1 (t∆) M H t f dt t := H 2 n-1 g n .

Thus, since ∆ = -k i=1 X 2 i can be written as a polynomial in the X i 's, we obtain with the upper estimate of the heat kernel (Proposition 2.5),

∆ m X i f n p G G |∆ M X i h 2 n-1 (z -1 x)|g n (z)dz p dx 1 p 2 -n(m+ 1 2 ) V (2 n 2 ) G G exp -c |z -1 x| 2 2 n g n (z)dz p dx 1 p 2 -n(m+ 1 2 ) g n p 2 -n(m+ 1 2 ) c n
where the second line is due to the fact that V (2

n 2 ) V (2 n-1
2 ) and the last two lines are obtained by an argument analogous to the one for (28).

∆ m H t X i f n p 1 t m X i f n p 1 t m X i H 2 n-1 g n p
As a consequence, one has for all t ∈ (0, 1], ∆ m H t X i f n p = H t ∆ m X i f n p 2 -n(m+ Then, using the estimates on the heat kernel (Proposition 2.5)and the fact that ∆ = -X 2 i , we obtain 4. Estimate of Λ p,q α ( f n ) The two previous steps imply

∆ m H t X i f p G t -m-1 2 V ( √ t) G exp -c |x -1 y| 2 t |f ( 
∆ m H t X i f n p 2 -n(m+ 1 2 ) c n if t < 2 n t -m-1 2 c n+1 if t ≥ 2 n .
As a consequence,

1 0   t m-α 2 ∆ m H t X i -1 n=-∞ f n p   q dt t -1 j=-∞ 2 j <t≤2 j+1 t m-α 2 -1 n=-∞ ∆ m H t X i f n p q dt t -1 j=-∞   2 j(m-α 2 ) j n=-∞ 2 -j(m+ 1 2 ) c n+1 + -1 n=j+1 2 -n(m+ 1 2 ) c n   q -1 j=-∞ 2 j(m-α 2 ) -1 n=-∞ 2 -max{j,n}(m+ 1 2 ) [c n + c n+1 ] q -1 n=-∞ 2 -n α+1 2 [c n + c n+1 ] q 0 n=-∞ 2 -n α+1 2 c n q
where we used Lemma 2.2 for the fourth estimate, relevant since -1 < α 2 < m by assumption. We get then the domination

1 0   t m-α 2 ∆ m H t X i n f n p   q dt t 0 n=-∞ 2 -n α+1 2 c n q . ( 33 
)
However computations analogous to those leading to (30) prove that

0 n=-∞ 2 -n α+1 2 c n q 1 0 t M-α+1 2 ∆ M f p q dt t
Λ p,q α+1 f q .

(34)

Estimate of the remaining term.

Recall that

f = 1 (M -1)! -1 n=-∞ f n + M-1 k=0 1 k! ∆ k H 1 f.
We already estimated Λ p,q α ( f n ). What remains to be estimated is Λ p,q α ( 1 k! ∆ k H 1 X i f ). Proposition 2.7 provides as well

∆ m H t X i ∆ k H 1 f p ≤ ∆ m X i ∆ k H 1 f p f p .
As a consequence, we get,

1 0   t m-α 2 ∆ m H t X i M-1 k=0 1 k! ∆ k H 1 f p   q dt t f p 1 0 t q(m-α 2 ) dt t q f q p .
Corollary 6.6. Let p, q ∈ [1, +∞] and α > 0.

f B p,q α+1 ≃ f L p + k i=1 X i f B p,q α .
Proof: The main work was done in the previous proposition. Indeed, notice that Proposition 6.5 implies Λ p,q α+1 f = Λ p,q α-1 (∆f )

≤ k i=1 Λ p,q α-1 X i (X i f ) k i=1 X i f B p,q α ,
which provides the domination of the first term by the second one.

The converse inequality splits into two parts. The first one is the domination of Λ p,q α (X i f ) by f B p,q α+1 , which is an immediate application of Proposition 6.5. The second one is the domination of X i f p . But recall that Theorem 1.9 states that we can replace X i f p by H 1 2 X i f p in the Besov norm, and (32) provides that

H 1 2 X i f p f p ≤ f B p,q α .

. 4 . 9 . 4 . 5 .

 4945 Propositions 4.1, 4.2 and 4.3 imply (i) of Theorem 1.Proposition Let m > α 2 . Then

2 t.

 2 exp -c |x -1 y| Proposition 2.3 yields the estimate (32).

  of Corollary 1.11) The proof is analogous to the one of Proposition 2.3.2/2 in [17] using Proposition 4.5. It relies on the monotonicity of l q spaces, see [17, 1.2.2/4].

  1 2 ) c n , since H t is uniformly bounded.3. A second estimate of∆ m H t X i f n :Let us prove that for all f ∈ L p (G) and for all i ∈ [[1, k]], one has∆ m H t X i f p t -m-1 2 f p . ∆ m h t (x -1 y)f (y)dy.

					(32)
	First, notice that			
	∆ m H t X i f (x) =	G	∂ m ∂t m h t (y)(X i f )(xy)dy
	=	G	∂ m ∂t m h t (y)[X i f (x.)](y)dy
	= -	G	X i	∂ m ∂t m h t (y)f (xy)dy
	= -		
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