
HAL Id: hal-01167380
https://hal.science/hal-01167380

Submitted on 2 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DASH in Twitch: Adaptive Bitrate Streaming in Live
Game Streaming Platforms

Karine Pires, Gwendal Simon

To cite this version:
Karine Pires, Gwendal Simon. DASH in Twitch: Adaptive Bitrate Streaming in Live Game Streaming
Platforms. VideoNext 2014 : 1st Workshop on Design, Quality and Deployment of Adaptive Video
Streaming, Dec 2014, Sydney, Australia. pp.13 - 18, �10.1145/2676652.2676657�. �hal-01167380�

https://hal.science/hal-01167380
https://hal.archives-ouvertes.fr

DASH in Twitch: Adaptive Bitrate Streaming in
Live Game Streaming Platforms

Karine Pires
Telecom Bretagne, France

karine.pires@telecom-bretagne.eu

Gwendal Simon
Telecom Bretagne, France

gwendal.simon@telecom-bretagne.eu

ABSTRACT
Live game streaming platforms such as Twitch allow gamers
to broadcast their gameplay over the Internet. The popular-
ity of these platforms boosts the market of eSport but poses
new delivery problems. In this paper, we focus on the im-
plementation of adaptive bitrate streaming in massive live
game streaming platforms. Based on three months of real
data traces from Twitch, we motivate the need for an adop-
tion of adaptive bitrate streaming in this platform to reduce
the delivery bandwidth cost and to increase QoE of view-
ers. We show however that a naive implementation requires
the reservation of a large amount of computing resources
for transcoding purposes. To address the trade-off between
benefits and costs, we formulate a management problem and
we design two strategies for deciding which online channels
should be delivered by adaptive bitrate streaming. Our eval-
uations based on real traces show that these strategies can
reduce the overall infrastructure cost by 40% in comparison
to an implementation without adaptive streaming.

Keywords
Live streaming; user-generated content; video encoding

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

1. INTRODUCTION
The market of video game competition (also known as

eSport) has been boosted by the rise of online live stream-
ing platforms [5]. Every month in 2013, around one mil-
lion gamers have broadcasted themselves playing games live,
and more than 40 millions of people have watched these
gameplay video channels [2]. This popularity has made the
leading live game streaming platform, namely Twitch1, be-
come the fourth largest source of US peak Internet traffic

1
http://twitch.tv

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
VideoNext’14, December 2, 2014, Sydney, Australia.
Copyright 2014 ACM 978-1-4503-3281-1/14/12 ...$15.00.
http://dx.doi.org/10.1145/2676652.2676657.

in February 2014 [6]. The rapidly rising bandwidth need
of live game streaming platforms requires infrastructure up-
dates and calls for the development of dedicated delivery
solutions.

In the recent years, video providers have deployed Adap-
tive Bitrate (ABR) streaming to cope with the heterogeneity
of devices and network connections. This technique applied
to live streams is also adopted by the online services of TV
companies [9]. However, to the best of our knowledge, the
implementation of ABR in live streaming services is limited
to a small number of video channels in dedicated servers. In
the case of massive live streaming platforms such as Twitch,
both the large number of concurrent channels and the use
of commodity servers in data-centers pose new problems.

Implementing ABR in massive live streaming platforms
yields some benefits and costs. On the negative side, for
each video channel, the raw live video stream should be
transcoded into multiple live streams at different resolu-
tions and bitrates. The consumption of computing resources
needed for the transcoding induces significant costs, espe-
cially with regards to the large number of concurrent video
channels. On the other hand, the benefits include the im-
provement of the Quality of Experience (QoE) for the end-
users and a reduction of the delivery bandwidth costs.

In this paper, we study the trade-off between benefits and
costs for the implementation of ABR in live game streaming
platforms. First, we analyze three months of real traces from
Twitch. We highlight some key characteristics of this plat-
form in Section 2. Second, we identify that one key problem
is to decide which video channels should be broadcasted as
usual (i.e. by directly forwarding to the viewers the raw
video received from the broadcaster) and which channels
should be delivered with ABR streaming (see Section 3.1).
Third, we present in Section 3 two strategies, according to
whether the decision of delivering a given channel by ABR
can be taken while this channel is online (on-the-fly strate-
gies) or only when the channel starts broadcasting (at-the-
startup strategies). Finally, we compare in Section 4 both
strategies in a realistic scenario based on our real traces from
Twitch and a dataset for the population [3].

By extension, our work applies to any live streaming plat-
form without regard to the type of the broadcasted videos.
This paper is also part of a wider study related to video
transcoding in the cloud, more specifically in data-centers
where resources are shared, commoditized servers. We dis-
cuss these points in Section 5.

http://twitch.tv

2. INTRODUCING TWITCH
In Twitch we distinguish broadcasters and viewers. The

broadcasters are registered gamers, who are in charge of one
channel. We will interchangeably use the terms channel and
broadcaster hereafter. A channel can be either online at a
given time, which means that the broadcaster is broadcast-
ing a gameplay live, or offline when the user is disconnected.
A channel can alternatively switch from offline to online and
vice versa. When a channel is online, we say that it corre-
sponds to a session. The number of viewers watching a
session can change over the time of the session. We illus-
trate in Figure 1 the evolution of the popularity of a given
channel over time, this channel containing two sessions.

online online

nb. of viewers

time

t1 t′1 t2 t′2

session 1 session 2

Figure 1: A life in a channel

2.1 Twitch Dataset
Twitch provides an Application Programming Interface

(API) that allows anybody to fetch information about the
state of Twitch. We used a set of synchronized computers
to obtain a global state every five minutes (in compliance to
API restrictions) between January 6 and April 6, 2014. We
fetched information about the total number of viewers, the
total number of concurrent online channels, the number of
viewers per session, and some channels metadata. We then
filtered the broadcasters having abnormal behavior (e.g. no
viewer over the three months or only one five-minute ses-
sion). The dataset, containing more than five millions ses-
sions, is available on a public website.2

2.2 Characterizing Twitch
We give in the following a short analysis of the main char-

acteristics of Twitch. We represent the minimum and max-
imum values per day that we observed from the 288 daily
measures.

Delivery Needs. We evaluate the overall bandwidth needed
to deliver video channels to the viewers (we do not take
into account the bandwidth required from the broadcast-
ers to Twitch data-center). Twitch is a regular Over-The-
Top (OTT) service with unicast transmission to viewers, so
we sum up the bitrates of each session multiplied by the
number of viewers for this session. We see in Figure 2a that
the daily bandwidth peak is often more than 1.5Tbps with
a peak at more than 2Tbps. Moreover, the delivered traffic
is sustained with minimum daily bandwidth always above
400Mbps.

2
http://dash.ipv6.enstb.fr/dataset/videonext-2014/

Computing Needs. Another infrastructure cost is the
data-center, which, among others, processes the incoming
raw video from broadcasters and prepares the streams to be
delivered. We present in Figure 2b the average number of
concurrent online channels, which is a metric for estimating
the data-center dimensions. Between 4,000 and 8,000 con-
current sessions always require data-center processing. Such
sustained incoming traffic requires a computing infrastruc-
ture that, to our knowledge, is unique in the area of live
streaming.

Channel Popularity. The distribution of popularity in
User Generated Content (UGC) platforms typically follows
the Zipf law [7]. We first need to check whether the pop-
ularity of Twitch broadcasters follows a Zipf law as well.
Considering the Equation 1 we produce an approximation
of the Zipf parameters using a fitting curve process on the
R software. We validate the results of the approximation
by calculating the Normalized Root-Mean-Square Deviation
(NRMSD) between the real data and the fitting curve. The
mean NRMSD value is 0.0095 with confidence intervals lesser
than 1%. In other words, broadcaster popularity in Twitch
follows a Zipf law. We then analyze the value of the α param-
eter, which says how much heterogeneous is the popularity
of broadcasters. The larger α is, the more heterogeneous is
the platform. Figure 2c shows the results obtained for the
Zipf α coefficient. The horizontal line indicates the value
found on YouTube [7]. What is relatively surprising here is
the high value of α for Twitch. Although α is often lower
than 1 in other UGC platforms, it is always larger than 1.3
over the three months, and even sometimes above 1.5. Such
a large α coefficient characterizes both a sharp difference be-
tween the most popular channels and the others, and a long
tail of unpopular channels.

Fi(x) = Aix
−α (1)

Raw Videos. The raw live stream is the video encoded
at the broadcaster side and transmitted to the data-center
of Twitch. This video can be encoded in various resolutions
and bitrates. Our dataset confirms the intuitive idea that
quality and popularity are connected. It is likely to be a
circular dependency where the better is the quality of the
video, the more attractive to viewers and the more popu-
lar it becomes. And by being more popular and successful,
broadcasters would be more willing to increase the quality
of their videos by, for example, investing on better equip-
ment. In the Figure 3, we show the ratio of sessions with
raw video at a given resolution, as well as the ratio of viewers
on a channel with a video at this resolution. The sessions
with videos at a resolution lesser than 720p represent 40%
of the total amount of sessions but they attract only 8% of
the total viewers. Figure 4 shows the Cumulative Distribu-
tion Function (CDF) of the bitrates of sessions for the three
most popular resolutions. The bitrates of 720p and 1080p
channels are significantly higher than for 480p channels. To
emphasize the gap, we draw a thin vertical line at 2 Mbps.
Only half of the video sessions at both 720p and 1080p have
a bitrate lower than 2Mbps although such a bitrate is larger
than 90% of the bitrates of 480p channels.

http://dash.ipv6.enstb.fr/dataset/videonext-2014/

0 10 20 30 40 50 60 70 80 90
0

1 000

2 000

Days

B
a
n
d
w
id
th

(G
p
b
s)

max min

(a) Bandwidth usage for live video delivery

0 10 20 30 40 50 60 70 80 90
0

2 000

4 000

6 000

8 000

10 000

Days

N
b
.
o
f
o
n
li
n
e
ch

a
n
n
el
s

max min

(b) Number of concurrent online channels

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

VoD

Days

Z
ip

f
α

co
effi

ci
en

t

max min

(c) Zipf α coefficient

Figure 2: Three months in Twitch

240p 360p 480p 720p 1080p

0

0.2

0.4

0.6

Representation

S
es
si
o
n
s
a
n
d
v
ie
w
er
s
ra
ti
o

Nb. of Sessions Nb. of Viewers

Figure 3: Number of sessions and viewers by video repre-
sentation

3. WHICH CHANNELS TO TRANSCODE
We extract three main ideas from the measurements of

Section 2.2. First, ABR streaming is required to cope with
high delivery cost and with the inaccessibility of the most
popular channels to a fraction of the population. Second,
applying ABR to all channels requires a significant amount
of computing resources because the number of concurrent
sessions is high. Third, all channels should not be treated
equally since only a few ones are popular. In the following,
we introduce the problem of deciding the subset of channels
to which ABR should apply. We then present two strategies.

3.1 Trade-off and Problem Definition
We distinguish two types of process when the raw live

video of an online channel is received by Twitch:

• The traditional process consists of preparing the raw
live stream (e.g. for sanity check and better web-
page integration), and then delivering it directly to
the viewers requesting it.

• The transcoding process consists of transcoding the raw
live stream into multiple live video streams and of us-
ing ABR streaming to deliver the session to the view-
ers, typically with a standardized technology [1].

We envision that only a fraction of online channels should
use ABR streaming: the popular channels with high bitrate
and resolution. For a given channel, ABR streaming gener-
ates two main benefits. First, it improves the QoE for all
the viewers having a downloading rate inferior to the raw

100 1 000 10 000
0

0.2

0.4

0.6

0.8

1
2Mbps

Video bit-rate (kbps)

C
D
F

o
f
th

e
se
ss
io
n
s

1080p 720p 480p

Figure 4: CDF of the session bitrates

video bitrate. We call them the degraded viewers. With-
out ABR, the degraded viewers experience video buffering
at a frequency that depends on the difference between their
downloading rate and video bitrate. Such a bad QoE causes
churn and degrades the reputation of the platform. Sec-
ond, ABR streaming reduces the overall needed bandwidth
for serving a population. Without ABR, Twitch should de-
liver the raw live video to all viewers. On the contrary with
ABR, the degraded viewers are served with a video stream
at a lower bitrate than the raw live stream.

We distinguish two cases for the degraded viewers: (i) the
viewer has his video session delayed in time but continues
to watch, therefore the overall amount of data transferred is
the same as any other viewer; (ii) the viewer experiences fre-
quent video buffering and is likely to quit, meaning no more
bandwidth will be used to deliver the video for that viewer.
Since our data has the current number of viewers watching a
channel, when a viewer quits a channel this viewers counter
is decreased. Thus viewers that quit are discarded, which
leads to viewers considered in this work are either satisfied
viewers or degraded viewers in the first case.

The problem is to decide which process should apply for
every online channel at a given time with respect to the
trade-off between extra-cost induced from the transcoding
process and the gains. To make it harder, switching from
one process to another while the channel is online is not
trivial. A possible implementation is to use ABR streaming
technologies for both decisions. The representation set of a

channel in the transcoded process contains the multiple live
video streams while it contains only the raw live stream for
channels in the traditional process. Thus, switching from
one process to another on-the-fly requires a revision of the
manifest with the new set of video representations and the
notification of all users about the manifest revision. Both
actions are not always possible with respect to the ABR
streaming technology.

Due to this uncertainty, we distinguish:

• On-the-fly strategies, where the decision of whether an
online channel should be transcoded or not can be
taken at anytime during a session. In Figure 1, an
on-the-fly strategy can decide to transcode or not the
channel at anytime between t1 and t′1 and between t2
and t′2.

• At-startup strategies, where the decision of whether
an online channel should be transcoded or not can be
taken only when the session starts. In Figure 1, the
decision at time t1 applies for the whole session 1 and
the decision at time t2 for the whole session 2.

In the following, we present a simple implementation for
each strategy type. Our goal is to keep the strategy as simple
as possible for a fast implementation.

3.2 On-the-Fly Strategy
An on-the-fly strategy is expected to perform well since

it is reactive to any event, including unexpected events like
flash crowd on a video channel or abrupt disinterest for an-
other. That is, it is possible to build a strategy that is close
to the optimal (with respect to the ability of the platform
provider to quantify the QoE of degraded viewers). In this
paper, our goal is not to define the best strategy but rather
to highlight the performances of on-the-fly strategies in gen-
eral. We thus design a simple strategy as follows.

First, we filter the broadcasters so that only broadcasters
with a raw live video at resolutions 480p, 720p, and 1080p
are considered as candidates for ABR streaming. Then, we
define a value j, which is the threshold on the number of
viewers. Every five minutes, all candidate broadcasters with
more than j viewers are selected to be transcoded. We call
this strategy threshold-j.

3.3 At-Startup Strategy
An at-startup strategy requires foreseeing the popularity

of a channel in the near future. Predicting video popular-
ity has become an important research topic with connection
to massive data treatment, artificial intelligence, and social
network observations. However, with the same motivations
as for the on-the-fly strategy, we rather stay simple in this
paper and left for future works the design of sophisticated
efficient strategies.

To predict the popularity of channels, we only base on
the history. The strategy comes from the observation that
a channel that has been popular in the past will be pop-
ular in the future. To estimate how popular was a past
session with respect to the context at that time, we focus
on a simple measure: the top-k channels, i.e. the k most
popular channels. Every five minutes, we collected the k
most popular channels. Overall, for each month, we gath-
ered more than 8,500 different sets of top-k channels. We
analyzed these sets and observed that the number of distinct
broadcasters is low. Typically for top-10 sets, around 500

broadcasters occupy the over 85,000 “spots” that are avail-
able every month.

We derive from this observation an at-startup strategy,
which we call top-k. On a periodic basis, we get the k most
popular broadcasters and we insert them to a list of candi-
date broadcasters. When a new session starts, the decision
to apply the transcoding process to the broadcaster is taken
if the broadcaster is in the list of candidates and if the raw
live video has a resolution 480p, 720p, or 1080p. Note that
we do not implement any mechanism for removing broad-
casters from the candidate list after a while, so this list con-
tinuously inflates with time but such a mechanism is trivial
to implement.

4. EVALUATION
We now evaluate the performances of both threshold-j

and top-k strategies and also show the feasibility of the im-
plementation of ABR for Twitch.

4.1 Settings
We use two real datasets for the setting of our evalua-

tion. The first dataset is our Twitch dataset as described
in Section 2. One time unit is five minutes, as the time
needed to refresh the API at Twitch. We use the informa-
tion of sessions (video bitrate, video resolution) and broad-
casters (number of viewers). Simulations were done with
three months of data and the figures present results of the
last month.

Population Download Rate Settings. The second dataset
comes from [3]. Since the Twitch API does not provide any
information about the viewers (neither their geographic po-
sitions, nor the devices and the network connections), we
need real data to set the download rates for the popula-
tion of viewers. The dataset presented in [3] gives multiple
measurements over a large number of 30s-long DASH ses-
sions from thousands of geographically distributed IP ad-
dresses. From their measurements, we infer the download
rate of each IP address for every chunk of the session and
thus obtain 500,000 samples of realistic download rates. Af-
ter filtering this set to remove abnormal rates, we randomly
associate one download rate for every viewer. For each point
in time and each channel we considered as many viewers as
its popularity accordingly to our twitch dataset.

Multi Bitrate Video Transcoding. When a session is
selected for a delivery by ABR streaming, the raw video
is transcoded into multiple live streams. We consider the
creation of one stream per resolution, only in smaller reso-
lutions than the one of the raw video. The bitrate of each
live stream depends on the bitrate of the raw video, as given
in Table 1. For example, let the raw video have a bitrate
of 2,000kbps and resolution 720p. The transcoded streams
have a bitrate of 1,400kbps for the 480p stream, of 1,000kbps
for the 360p, and of 600kbps for the 224p.

Strategies. We evaluate the top and threshold strategies
against two naive and extreme strategies: the none strategy
with no ABR implementation, and an all strategy where
all online channels are delivered by ABR. The former rep-
resents the current state of live game streaming platforms
while the latter is an upper bound of an implementation of
ABR streaming. For top and threshold, we set k = 50 and
j = 100 by default.

input resolution
480p 720p 1080p

output
res.

224p 0.5 ∗ n 0.3 ∗ n 0.25 ∗ n
360p 0.7 ∗ n 0.5 ∗ n 0.3 ∗ n
480p n 0.7 ∗ n 0.5 ∗ n
720p n 0.7 ∗ n
1080p n

Table 1: Bitrate of the streams transcoded from a raw video
stream having bitrate n kbps

4.2 Evaluations
In Figure 5, we depict three metrics that highlight the

trade-off related to the implementation of ABR on live stream-
ing services. In Figure 5a, we measure the average daily
bandwidth that is needed to deliver the video channels. The
first observation is that implementing ABR generates a non-
negligible reduction of the delivery. The aggregation of band-
width savings on every degraded viewer can nearly halve
the bandwidth between both extreme none and all strate-
gies. The top and threshold strategies are close to the all
strategy, which validates our strategy of implementing ABR
streaming only for the most popular channels.

In Figure 5b, we measure the gain in QoE for the view-
ers. Due to lack of space, we focus on only one simple met-
ric, which is the ratio of degraded viewers that can find in
ABR streaming a video stream with a bitrate lower than
their download rate. We observe in the dataset that, even
with ABR, some degraded viewers have still a download rate
lesser than the bitrate of the 224p stream. What we mea-
sure here is the ratio of the “addressable” degraded viewers.
Again the all strategy gives an upper bound, and both top
and threshold strategies allow most of these viewers to enjoy
a video stream that fits with their network connection.

Finally in Figure 5c, we measure the computing needs
with a metric in transcoding hours inspired from the current
practice in commercial cloud transcoding offers (e.g. Zen-
coder). Both input and output resolutions are used to deter-
mine the amount of transcoding hours. For example, a given
stream with 1 hour length and resolution 480p transcoded to
360p and 224p is counted as 3 hours of transcoding (1 input
+ 2 output). High-definition resolutions (720p and 1080p)
double the transcoding hours. In Figure 5c, the main ob-
servation is that we have to use a log scale on the y-axis to
keep it readable. It means that the transcoding hours of the
all strategy is one order of magnitude larger than for the top
and threshold strategies.

To summarize our results in a more practical way, we es-
timate the overall infrastructure cost for the four strategies.
We use the publicly available prizes of Zencoder and Ama-
zon FrontCloud to estimate the cost of the transcoding hours
and the delivered bandwidth, respectively. We present in
Figure 6 the synthesis. We see on the all strategy that the
gains in delivery are unfortunately counter-balanced by the
costs in transcoding. Both top and threshold strategies find
a better trade-offs with a significant reduction of delivery
cost at a negligible transcoding cost. Finally, we show that
the performance gap between top and threshold strategies
does not necessarily justify the implementation of on-the-fly
strategies. Sophisticated at-startup strategies are expected
to even reduce the gap.

None All Top Threshold

0 10 20
0

500

1 000

Days

A
v
g
.
b
a
n
d
w
id
th

(G
p
b
s)

(a) Bandwidth needed for streams delivery

0 10 20

0

0.5

1

None

All

Days

V
ie
w
er
s
ra
ti
o

(b) Ratio of addressed degraded viewers

0 10 20
100

1 000

10 000

Days

T
ra
n
sc
o
d
in
g
h
o
u
rs

(c) Transcoding hours

Figure 5: Evaluation of different metrics when implementing
ABR streaming on Twitch

4.3 Playing with Strategy Parameters
We evaluate the impact of parameters k and j for the

top and threshold strategies respectively. In Figure 7 we
represent the total estimation costs for different values of
k and j. What is interesting here is that these parameters
allow Twitch to adjust the trade-off between delivery and
transcoding according to any external constraint (e.g. price
variation, data-center load and maintenance operation).

None All ThresholdTop
0

50

100

150

-40%-39%

+5%

Strategies

T
o
ta
l
P
ri
ce

($
M
)

Delivery Transcode

Figure 6: Estimation of the total infrastructure costs

5. DISCUSSIONS
Related Works. To the best of our knowledge, no pre-
vious work can be directly related to ours. Most studies
related to live streaming platforms have dealt with Peer-to-
Peer (P2P) delivery (or peer-assisted), for which both the
transcoding and the delivery is under the responsibility of
every broadcaster. Transcoding live stream has also been
studied (including works on rate-adaptive technologies [4])
but the object of these works is not related to the manage-
ment of many concurrent transcoding process. The third line
of research having connection to our paper is the manage-
ment of data-centers for massive UGC platforms. However
no previous work has considered adaptivity in the treatment
of requests, so the trade-off between computing needs and
delivery cost has never been studied. Finally, Twitch has
been studied in [8], but the focus is on the analysis of the
behavior of a small number of professional broadcasters al-
though we study it at a macroscopic level with a quantitative
approach.

Future Works. This paper is a preliminary work in the
more general context of implementing interactive multime-
dia services at a massive scale. We introduce an infrastruc-
ture management problem and we reveal that some sim-
ple strategies can significantly cut the overall infrastructure
costs while increasing the QoE of end-users. Many future
works can derive from this paper. First the optimization
problem requires a formal definition and analysis. We vol-
untarily neglect many details in our formulation in order to
provide the global picture. However a more formal and ac-
curate formulation should include a more precise estimation
of the QoE gain for the degraded viewers, a better model
for the transcoding computing needs, and the management
of different hardware computing resources. Second, more
efficient strategies can be designed. We present here simple
strategies but more sophisticated strategies are expected to
yield better performances, especially for at-startup strate-
gies. A more comprehensive analysis of the levers that make
a session become popular as well as recent statistical ap-
proaches to deal with popularity forecasting represent ap-
pealing research. Third, the integration in practical plat-
forms and real implementation also bring additional diffi-
culties, from a technical perspective with, for example, the
integration of standard, but also from a business perspec-
tive. Typically, Twitch has recently started offering ABR
for some “partner” premium broadcasters.

10 20 30 40 50 100 500 1K
0

50

100

k

T
o
ta
l
P
ri
ce

($
M
)

Delivery Transcode

10 25 50 100 250 500 1K 10K
0

50

100

j

T
o
ta
l
P
ri
ce

($
M
)

Figure 7: Estimation of the total infrastructure costs for
different values of k and j in top and threshold strategies

6. REFERENCES
[1] Guidelines for Implementation: Live Services based on

DASH-IF IOPs. DASH Industry Forum, Aug. 2014.
http://is.gd/pmJZgC.

[2] Twitch.tv: 2013 retrospective, Jan. 2014.
http://twitch.tv/year/2013.

[3] S. Basso, A. Servetti, E. Masala, and J. C. D. Martin.
Measuring DASH streaming performance from the end
users perspective using neubot. In ACM MMSys, 2014.

[4] N. Bouzakaria, C. Concolato, and J. L. Feuvre.
Overhead and performance of low latency live
streaming using MPEG-DASH. In IEEE IISA, 2014.

[5] D. Cryan. eSports video: A cross platform growth
story. Technical report, IHS Tech., June 2014.
http://is.gd/NHVdfi.

[6] D. Fitzgerald and D. Wakabayashi. Apple Quietly
Builds New Networks. Wall Street Journal, Feb. 2014.
http://is.gd/MXc2b7.

[7] F. Guillemin, B. Kauffmann, S. Moteau, and
A. Simonian. Experimental analysis of caching
efficiency for youtube traffic in an isp network. In IEEE
ITC, 2013.

[8] M. Kaytoue, A. Silva, L. Cerf, W. M. Jr., and C. Räıssi.
Watch me playing, i am a professional: a first study on
video game live streaming. In ACM WWW Conf., 2012.

[9] N. Weil. The State of MPEG-DASH Deployment.
Technical report, Streaming Media, Apr. 2014.
http://is.gd/8Pcu78.

http://is.gd/pmJZgC
http://twitch.tv/year/2013
http://is.gd/NHVdfi
http://is.gd/MXc2b7
http://is.gd/8Pcu78

	Introduction
	Introducing Twitch
	Twitch Dataset
	Characterizing Twitch

	Which Channels to Transcode
	Trade-off and Problem Definition
	On-the-Fly Strategy
	At-Startup Strategy

	Evaluation
	Settings
	Evaluations
	Playing with Strategy Parameters

	Discussions
	References

