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Abstract

We present a way to use Stein’s method in order to bound the Wasser-
stein distance of order 2 between a measure ν and another measure µ,
assumed to be the reversible measure of a diffusion operator, using non-
exchangeable pairs of random variables drawn from ν. We then show
that, whenever µ is the Gaussian measure γ, one can use exchangeable
pairs of random variables drawn from ν to bound the Wasserstein dis-
tance of order p, for any p ≥ 2, between ν and γ. Using our results,
we are able to obtain convergence rates for the multi-dimensional Central
Limit Theorem in terms of Wasserstein distances of order p ≥ 2. In a
second time, we use our approach to bound the Wasserstein distance of
order 2 between the measure of a Markov chain and the reversible mea-
sure of a diffusion process satisfying some technical conditions and tackle
two problems appearing in the field of data analysis: density estimation
for geometric random graphs and sampling via the Langevin Monte Carlo
algorithm.

1 Introduction

Stein’s method is a general approach to bound distances between two measures
and was first introduced by [27] to provide quantitative bounds for normal
approximation. This approach relies on the following observation: the Gaussian
measure γ is the only measure on Rd such that, for any compactly supported
smooth function (or test function) φ,∫

Rd
−xφ(x) +∇φ(x)dγ(x) = 0.

Hence, if another measure ν satisfies∫
Rd
−xφ(x) +∇φ(x)dν(x) ≈ 0
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on a sufficiently large set of functions, then ν should be close to γ. This idea
was later generalized by Barbour in [4] to deal with target measures assumed
to be invariant measures of diffusion processes with infinitesimal generators of
the form Lµ = b.∇+ < a,Hess >. Indeed, under such assumptions, one usually
has ∫

Rd
Lµφdµ = 0

for any test function φ. Thus, similarly to the Gaussian case, if a measure ν
satisfies ∫

Rd
Lµφdν ≈ 0

for a sufficiently large set of functions, then ν should be close to µ.
In practice, there are two main approaches to Stein’s method. In the first

approach, one considers a set of functions U and solves the Stein equation: for
any u ∈ U find fu such that

u−
∫
Rd
udµ = Lµfu.

From here, taking the integral over ν yields∫
Rd
udν −

∫
Rd
udµ =

∫
Rd
Lµfudν.

Thus, if

sup
u∈U

∣∣∣∣∫
Rd
Lµfudν

∣∣∣∣ ≤ ε,
then

sup
u∈U

∣∣∣∣∫
Rd
udν −

∫
Rd
udµ

∣∣∣∣ ≤ ε.
By choosing some specific set U , one is then able to obtain a bound on various
distances between µ and ν:

• if U = {u : Rd → R | ‖u‖∞ ≤ 1}, then supu∈U |
∫
Rd udν −

∫
Rd udµ| is the

total variation distance between µ and ν;

• in dimension 1, if U = {u : R → R | ∃t ∈ R, u(x) = 1x≤t}, then
supu∈U |

∫
R udν −

∫
Rd udµ| is the Kolmogorov distance between µ and ν;

• if U = {u : Rd → R | ∀x, y ∈ Rd, ‖u(y) − u(x)‖ ≤ ‖y − x‖}, then
supu∈U |

∫
Rd udν−

∫
Rd udµ| is the Wasserstein distance of order 1 between

µ and ν.

However, solving the Stein equation can be difficult as it involves computations
depending on the target measure µ which are usually difficult to carry out in
the multi-dimensional setting. So far, one of the most generic way to solve Stein
equation requires µ to be a strictly log-concave measure of Rd assumed to be
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the invariant measure of a diffusion process with generator Lµ = b.∇+ ∆ [19].
Yet, for many applications, these assumptions are not general enough.

The second approach to applying Stein’s method consists in finding an op-
erator Lν such that, for any test function φ : Rd → R,∫

Rd
Lνφdν = 0,

in which case we say ν is invariant under Lν . One then aims at bounding a
given distance between ν and µ by a discrepancy between Lµ and Lν . There
are many ways to obtain such an operator Lν . The most classical approach
consists in using an exchangeable pair (X,X ′) drawn from ν where a pair of
random variable (X,X ′) is said to be exchangeable if (X,X ′) and (X ′, X) follow
the same law. In this case, ν is invariant under the operator Lν where, for any
test function φ,

∀x ∈ Rd,Lνφ(x) = E[(X ′ −X)(φ(X ′) + φ(X)) | X = x].

In fact, the exchangeability condition is not always required: in dimension one,
one can recover standard results for the Gaussian measure or the Poisson dis-
tribution by using any pair of random variables (X,X ′) drawn from ν [25]. In
this case, ν is invariant under the operator Lν where, for any test function φ,

∀x ∈ Rd,Lνφ(x) = E

[∫ X′

0

φ(y)dy −
∫ X

0

φ(y)dy | X = x

]
.

The relative ease with which one can build an exchangeable pair is the main
strength of this approach. In contrast, other approaches to building a suitable
operator Lν , such as Stein kernels or biasing techniques, are usually hard to
compute in the multi-dimensional setting.

In this work, we adapt the approach from [18], originally designed for Stein
kernels, to operators of the form Lνf(x) = E[f(X ′) − f(X)|X = x] where
(X,X ′) is a pair of random variables drawn from ν. However, we cannot ob-
tain a meaningful bound from a single pair of random variables, hence we use
a stochastic process (Xt)t≥0 such that, for any t ≥ 0, Xt is drawn from ν.
Whenever µ is the Gaussian measure γ, we show in Theorem 1 how to use the
stochastic process (Xt)t≥0 to bound the Wasserstein distance of order 2 between
ν and γ. We then generalize this result by considering more general target mea-
sures in Theorem 5 and Corollary 6. In order to apply this latter result, we only
require µ to be the reversible measure of a diffusion process with a generator of
the form Lµ = b.∇+ < a,Hess > such that the measure of the diffusion pro-
cess converges exponentially fast to its invariant measure. Then, still following
an approach from [18], we use a to bound Wasserstein distances of any order
p ≥ 1 between the measure of the random variables and the one-dimensional
Gaussian measure in Theorem 7 using (Xt)t≥0. Finally, we extend this result
to the multi-dimensional setting in Theorem 9 by requiring that, for any t ≥ 0,
(Xt, X0) is an exchangeable pair.
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Obtaining convergence rates for the Central Limit Theorem is the most
classical application of Stein’s method. However, when it comes to Wasserstein
distances, standard results obtained using Stein’s method are usually restricted
to a smoothed Wasserstein distance of order 1 (see e.g. Section 12 [11]). While
the Stein kernel approach of [18] could be used to derive convergence rates for
Wasserstein distances of any order, the resulting bounds would involve proper-
ties of the Stein kernel which cannot be easily computed in practice. Using our
result, we are able to derive convergence rates in the Central Limit Theorem
for Wasserstein distances of order p ≥ 2 which only involves moments of the
random variables considered. More precisely, if we consider i.i.d random vari-
ables X1, ..., Xn in Rd with E[X1] = 0 and E[X1X

T
1 ] = Id admitting a finite

moment of order p + q for p ≥ 2, q ∈ [0, 2], then the Wasserstein distance of
order p between the measure of Sn = n−1/2

∑n
i=1Xi and the Gaussian measure

is bounded by

Cp

(
n−1/2+(2−q)/2pE[‖X1‖p+q]1/p + n−m/4E[‖X1‖2+m]1/2

+

{
o(n−m/4) if m < 2

d1/4‖E[X1X
T
1 ‖X1‖2]‖1/2 if m = 2

)
,

where Cp > 0 is a constant depending only on p and m = min(4, q + 2). For
p, q = 2, our result improves on the multi-dimensional result of [33] which
requires ‖X1‖ to be almost surely bounded and suffers from an additional log n
factor. In fact, the dependency on n obtained in our bound is optimal as it
matches optimal results for the one-dimensional setting obtained in [23] for
p = 2, in [26] for p > 2, q = 0 and in [7] for p > 2, q = 2. Still, the dependency
of our bound with respect to the moments of X1, and thus to the dimension, can
be suboptimal. Indeed, for p, q = 2, our bound scales (at least) linearly with
respect to the dimension. Yet, if all the coordinates of X1 are independent,
then one can use the one-dimensional result to obtain a bound which scales
with the square root of the dimension. Hence, one can expect tighter bounds
can be obtained under stronger assumptions. For instance, if the measure of X1

satisfies a Poincaré inequality for a constant C > 0, it is possible to use an an
approach based on the Stein kernel to bound the Wasserstein distance of order
2 between the measure of Sn and the Gaussian measure by n−1/2

√
d(C − 1)

[12] thus improving on our result whenever the constant C is small with respect
to the dimension.

In the last few years, Stein’s method was also used to give convergence rates
in stead-state diffusion approximation in a series of papers [8, 10, 9] in order to
study invariant measures of Markov chains appearing in queuing systems. See-
ing these Markov chains as approximations of continuous diffusion processes,
one can use Stein’s method to bound the distance between the invariant mea-
sures of the Markov chains and the invariant measures of the limiting diffusion
processes. However, the computations involved in these results are specific to
the Markov chains and diffusion processes considered. We generalize this ap-
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proach in Corollary 11 in which we bound the Wasserstein distance of order 2
between the invariant measure of a Markov chain and the reversible measure
of a diffusion process using quantities appearing in standard results in diffusion
approximation. Let us emphasize that using an approach based exchangeable
pairs would require the Markov chain considered to be reversible, thus leading
to a weaker result. Using our result, we are able to tackle a couple of prob-
lems relative to the field of data analysis and involving invariant measures of
non-reversible Markov chains. We first provide quantitative bounds for the con-
vergence of invariant measures of random walks on random geometric graphs.
In a second time, we evaluate the complexity of a Monte Carlo algorithm for
approximate sampling.

2 Notations

For x ∈ Rd and k ∈ N, we denote by x⊗k ∈ (Rd)⊗k the tensor of order k of x,

∀j ∈ {1, . . . , d}k, (x⊗k)j1,...,jk =

k∏
i=1

xji .

For any x, y ∈ (Rd)⊗k and any symmetric positive-definite d × d matrix A, we
pose

< x, y >A=
∑

l,j∈{1,...,d}k
xlyj

k∏
i=1

Aji,li ,

and, by extension,
‖x‖2A =< x, x >A .

For simplicity, we denote by ‖.‖ the traditional Hilbert-Schmidt norm, corre-
sponding to ‖.‖Id . For any smooth function φ and x ∈ Rd, we denote by
∇kφ ∈ (Rd)⊗k the k-th gradient of φ:

∀j ∈ {1, . . . , d}k, (∇kφ(x))j =
∂kφ

∂xj1 . . . ∂xjk
(x).

Finally, the Wasserstein distance of order p ≥ 1 between two measures µ and ν
on Rd is defined as

Wp(µ, ν) = inf
π

(∫
Rd×Rd

‖x− y‖pπ(dx, dy)

)1/p

,

where π has marginals µ and ν.

3 The approach

Let E be a convex domain of Rd and let ν and µ be two measures with support
E. Suppose µ is a reversible measure for the diffusion process with generator
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Lµ = b.∇+ < a,Hess >HS where b : Rd → Rd and a : Rd → Rd ⊗ Rd are
smooth functions on E and a is symmetric positive-definite on all of E. For any
measure dη = hdµ, the Fisher information of η with respect to µ and a is given
by

Iµ(η) =

∫
E

‖∇h‖2a
h

dµ.

Let (Pt)t≥0 be the Markov semigroup with infinitesimal generator Lµ. Let
(Yt)t≥0 be a diffusion process with infinitesimal generator Lµ and initial condi-
tion Y0 drawn from ν. We denote by νt the measure of Yt. We assume that, for
any t > 0, νt admits a smooth density ht with respect to µ and Iµ(νt) <∞. By
construction, for any compactly supported smooth function φ,∫

E

φdνt =

∫
E

Ptφdν.

Since µ is the invariant measure of Lµ then, under reasonable assumptions,
νt converges to µ as t goes to infinity. We can thus control the distance between
µ and ν by controlling the distance between between νt and ν for any t > 0.
This can be achieved using Lemma 2 [22]

d+

dt
W2(ν, νt) ≤ Iµ(νt)

1/2, (1)

along with a bound on Iµ(νt). Let us derive such a bound.
We have

Iµ(νt) =

∫
E

‖∇ht‖2a
ht

dµ =

∫
E

< ∇ht,∇ log ht >a dµ =

∫
E

< ∇ht,∇vt >a,

where vt = log(ht). Since µ is reversible, it satisfies the following integration by
parts formula ∫

E

< ∇f,∇g >a dµ = −
∫
E

fLµgdµ,

for smooth functions f, g : Rd → R. Hence,

Iµ(νt) =

∫
E

< ∇ht,∇vt >a dµ = −
∫
E

htLµvtdµ = −
∫
E

Lµvtdνt.

By the definition of νt and the commutativity of Pt and Lµ,

Iµ(νt) = −
∫
E

PtLµvtdν = −
∫
E

LµPtvtdν.

Let us assume there exist two random variables X,X ′ drawn from ν and let
s > 0. Let φ be a test function, for any x ∈ Rd, let

Lνφ(x) =
1

s
E [φ(X ′)− φ(X)|X = x] ,
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we have ∫
Rd
LνPtφdν = E[Lνφ(X)] =

1

s
E[φ(X ′)− φ(X)] = 0.

Assuming Ptvt is real analytic on E, we have

LνPtvt(x) =
1

s
E

[ ∞∑
k=1

〈
(X ′ −X)⊗k

k!
,∇kPtvt(X)

〉
|X = x

]
.

Therefore,

Iµ(νt) = Iµ(νt) =

∫
E

(Lν − Lµ)Ptvtdν

= E
[〈

E
[
X ′ −X

s
− b(X) | X

]
,∇Ptvt(X)

〉]
+ E

[〈
E
[

(X ′ −X)⊗2

2s
− a(X) | X

]
,∇2Ptvt(X)

〉]
(2)

+ E

[ ∞∑
k=3

〈
E
[

(X ′ −X)⊗k

sk!
| X
]
,∇kPtvt(X)

〉]
.

The last step of the approach consists in exploiting the regularizing properties
of the semigroup Pt in order to bound Equation 2 by a quantity involving
E[Pt‖∇vt‖2a(X)]1/2 and the moments of X ′−X. Then, since Iµ(νt) is finite and

E[Pt‖∇vt‖2a(X)] =

∫
Rd
Pt‖∇vt‖2adν =

∫
Rd
‖∇vt‖2adνt = Iµ(νt),

we obtain a bound on Iµ(νt)
1/2 which can be turned into a bound on W2(µ, ν)

thanks to Equation 1. Let us note that, since a is positive-definite on all of E,
the bounds we derive on ‖∇kPtvt‖a imply Ptvt is real analytic on all of E [16].

3.1 Gaussian case

For x ∈ Rd, let dµ(x) = dγ(x) = (2π)−d/2e−
‖x‖2

2 dx be the Gaussian measure
on Rd. The measure γ is the reversible measure of the operator Lγ = −x.∇+∆
whose associated semigroup (Pt)t≥0 is the Ornstein-Uhlenbeck semigroup. Let
φ be a smooth function with compact support on Rd. For any x ∈ Rd, Ptφ
admits the following representation

Ptφ(x) =

∫
Rd
φ(xe−t +

√
1− e−2ty)dγ(y).

For any k > 0 and any i ∈ {1, . . . , d}k, let Hi be the multivariate Hermite
polynomial of index i, defined for any x ∈ Rd by

Hi(x) = (−1)ke
‖x‖2

2
∂k

∂xi1 . . . ∂xik
e−
‖x‖2

2 . (3)
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Using an integration by parts, we obtain

∇Ptφ(x) = e−t
∫
Rd
∇φ(xe−t +

√
1− e−2ty)dγ(y)

=
e−t√

1− e−2t

∫
Rd
yφ(xe−t +

√
1− e−2ty)dγ(y)

=
1√

e2t − 1

∫
Rd
H1(y)φ(xe−t +

√
1− e−2ty)dγ(y).

More generally, for k ∈ N, using k integrations by parts yields

∀i ∈ {1, . . . , d}k, (∇kPtφ(x))i =
1

(e2t − 1)k/2

∫
Rd
Hi(y)φ(xe−t+

√
1− e−2ty)dγ(y).

Since Hermite polynomials form an orthogonal basis of L2(γ) with norm

∀i ∈ {1, . . . , d}k, ‖Hi‖2γ =

∫
Rd
H2
i (y)dγ(y) =

d∏
j=1

(
k∑
l=1

δil,j

)
!,

we have, for any x ∈ Rd,∑
j∈{1,...,d}

∞∑
k=1

∑
i∈{1,...,d}k−1

e2t(e2t − 1)k−1

‖Hi‖2γ
(∇kPtφ)2j,i1,...,ik−1

(x)

=
∑

j∈{1,...,d}

∞∑
k=1

∑
i∈{1,...,d}k−1

(∫
Rd

Hi(y)

‖Hi‖γ
(∇φ(xe−t +

√
1− e−2ty))jdγ(y)

)2

=
∑

j∈{1,...,d}

∫
Rd

(∇φ(xe−t +
√

1− e−2ty))2jdγ(y)

=

∫
Rd
‖∇φ(xe−t +

√
1− e−2ty))‖2dγ(y)

= Pt‖∇φ‖2(x).

For any k ∈ N and any tensor M ∈ (Rd)⊗k, we pose

‖M‖2H =
∑

j∈{1,...,d}k

∑
i∈{1,...,d}k−1

‖Hi‖2γMj,i1,...,ik−1

and

S(t)2 =e−2tE

[∥∥∥∥E [X ′ −Xs
+X | X

]∥∥∥∥2
]

+
e−2t

e2t − 1
E

[∥∥∥∥E [ (X ′ −X)⊗2

2s
− Id | X

]∥∥∥∥2
]

+

∞∑
k=3

e−2t

(sk!)2(e2t − 1)k−1
E
[
‖E[(X ′ −X)⊗k | X]‖2H

]
.
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Applying Cauchy-Schwarz’s inequality to Equation 2, we obtain

Iγ(νt) ≤ S(t)

 ∞∑
k=1

∑
i∈{1,...,d}k−1

e2t(e2t − 1)k−1

‖Hi‖2γ
E

 ∑
j∈{1,...,d}

(∇kPtvt(X))2j,i1,...,ik−1

1/2

≤ S(t)E[Pt‖∇vt(X)‖2]1/2

= S(t)Iγ(νt)
1/2,

from which we deduce that

Iγ(νt)
1/2 ≤ S(t).

Now, according to Equation 1, integrating S(t) for t > 0 would give us a
bound on W2(ν, γ). However, S(t) suffers from integrability issues for small
values of t. To circumvent this issue, we use a stochastic process (Xt)t≥0 such
that, for any t ≥ 0, Xt has measure ν. Then, for any fixed t ∈ R, we can replace
X by X0 and X ′ by Xt in the previous computations to bound Iγ(νt)

1/2 by S(t)
where

S(t)2 =e−2tE

[∥∥∥∥E [Xt −X0

s
+X0 | X0

]∥∥∥∥2
]

+
e−2t

e2t − 1
E

[∥∥∥∥E [ (Xt −X0)⊗2

2s
− Id | X0

]∥∥∥∥2
]

+

∞∑
k=3

e−2t

(sk!)2(e2t − 1)k−1
E
[
‖E[(Xt −X0)⊗k | X0]‖2H

]
.

Then, if S(t) is integrable for t ≥ 0, we can use Equation 1 to obtain W2(ν, γ) ≤∫∞
0
S(t)dt.
So far, we have assumed the Fisher information of νt with respect to γ is

finite for any t > 0. By Remark 2.1 [20], this assumption is verified as long as
the second moment of ν is finite which is a necessary condition for W2(ν, γ) to
be finite in the first place.

Theorem 1. Let ν be a measure on Rd with finite second moment. Let (Xt)t≥0
be a stochastic process such that, for any t ≥ 0, Xt has measure ν. For any
s > 0,

W2(ν, γ) ≤
∫ ∞
0

S(t)dt,
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where

S(t)2 =e−2tE

[∥∥∥∥E [Xt −X0

s
+X0 | X0

]∥∥∥∥2
]

+
e−2t

e2t − 1
E

[∥∥∥∥E [ (Xt −X0)⊗2

2s
− Id | X0

]∥∥∥∥2
]

+

∞∑
k=3

e−2t

(sk!)2(e2t − 1)k−1
E
[
‖E[(Xt −X0)⊗k | X0]‖2H

]
.

Remark 2. For our result to produce non-trivial bounds, the quantity S(t) must
be finite and integrable for t ≥ 0. Since

∀k ∈ N,M ∈ (Rd)⊗k, ‖M‖H ≤ max
i∈{1,...,d}k−1

‖Hi‖γ‖M‖ ≤
√

(k − 1)!,

we have, by Jensen’s inequality and the triangle inequality,

etS(t) ≤ E[‖X0‖2]1/2 +

(
‖Id‖2

e2t − 1

)1/2

+
1

s

(
E

[ ∞∑
k=1

‖Xt −X0‖2k

k!(e2t − 1)k

])1/2

≤ E[‖X0‖2]1/2 +

(
d

e2t − 1

)1/2

+
1

s
E
[
e
‖Xt−X0‖

2

e2t−1

]1/2
.

Hence, since ν is assumed to have a finite second moment, it is sufficient for

e−tE
[
e
‖Xt−X0‖

2

e2t−1

]1/2
to be integrable for t ≥ 0 to obtain a non-trivial bound

with our result. Our following results, either dealing with more general target
measures and with Wasserstein distances of order p ≥ 1, also rely on a stochastic
process (Xt)t≥0 and can be shown to produce non-trivial bounds under similar
conditions.

3.2 General case

Let us first apply Cauchy-Schwarz’s inequality to Equation 2 in order to obtain

Iµ(νt)
2 ≤E

[∥∥∥∥E [X ′ −Xs
− b(X) | X

]∥∥∥∥2
a−1(X)

]
E[‖∇Ptvt(X)‖2a(X)]

+ E

[∥∥∥∥E [ (X ′ −X)⊗2

2s
| X
]
− a(X)

∥∥∥∥2
a−1(X)

]
E[‖∇2Ptvt(X)‖2a(X)]

(4)

+

∞∑
k=3

E

[∥∥∥∥E [ (X ′ −X)⊗k

sk!
| X
]∥∥∥∥2

a−1(X)

]
E[‖∇kPtvt(X)‖2a(X)].

Our objective is to bound ‖∇kPtvt‖2a by a quantity involving Pt‖∇vt‖2a. To
obtain such bounds, we use the framework of Γ-calculus described in [3]. This
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approach relies on the iterated gradients Γi, defined recursively for any smooth
functions f, g by

Γ0(f, g) = fg;

Γi+1(f, g) =
1

2
[Lµ(Γi(f, g))− Γi(Lµf, g)− Γi(f,Lµg)] .

The triple (E,µ,Γ1) is called a Markov triple. The operators Γ1, also called the
Carré du champ operator, and Γ2 are efficient tools to study the properties of
the semigroup (Pt)t≥0 [3]. In particular if there exists ρ ∈ R such that, for any
smooth function φ,

Γ2(φ, φ) ≥ ρΓ1(φ, φ),

the Markov triple is said to verify a curvature-dimension condition, or CD(ρ,∞)
condition, under which the semigroup (Pt)t≥0 satisfies many interesting prop-
erties. For instance, under a CD(ρ,∞) condition, (Pt)t≥0 verifies the following
gradient bound (see e.g. Theorem 3.2.3 [3])

‖∇Ptφ‖2a ≤ e−2ρtPt(‖∇φ‖2a).

Hence, a CD(ρ,∞) condition is sufficient to bound the first term in Equation 4.
In the proof of Theorem 4.1 of [18], it is shown that, under a CD(ρ,∞) condition
for ρ > 0 and assuming there exists κ, σ > 0 such that for any smooth function
f , Γ3(φ, φ) ≥ κΓ2(φ, φ) and Γ2(φ, φ) ≥ σ‖∇2φ‖a,

‖∇2Ptφ‖2a ≤
κ

σ(eκt − 1)
Pt‖∇φ‖2a. (5)

However, while a CD(ρ,∞) is usually easy to verify, assumptions involving the
operators (Γk)k≥3 quickly becomes unpractical. Let us consider a simple one-
dimensional example for which Lφ = −b′φ′+φ′′. In this case, a CD(ρ,∞) condi-
tion is verified as long as b′′ ≥ ρ. On the other hand, following the computation
of Section 4.4 [18], in order to have Γ3(f, f) ≥ 3cΓ2(f, f) and Γ2(f, f) ≥ c‖f ′′‖a
for some c > 0, one requires

b(4) − b′b(3) + 2(b′′)2 − 6cb′′ ≥ 0

and
3(b(3))2 ≤ 2(u′′ − c)(b(4) − b′b(3) + 2(b′′)2 − 6cb′′).

Even in this rather simple case, these conditions are quite strong and obtaining
bounds on ‖∇kPtφ‖a for k > 2 in a similar manner would require even stronger
assumptions. In Section 6.1, we derive bounds on ‖∇kPtφ‖a under a simple
CD(ρ,∞) condition.

Proposition 3. If Lµ satisfies a CD(ρ,∞) condition for ρ ∈ R, then, for any
integer k > 0, any t > 0 and any smooth function φ,

‖∇kPtφ‖a ≤ fk(t)
√
Pt‖∇φ‖2a,

11



where

fk(t) =

e
−ρtmax(1,k/2)

(
2ρd

e2ρt/(k−1)−1

)(k−1)/2
if ρ 6= 0(

d(k−1)
t

)(k−1)/2
if ρ = 0.

Remark 4. The bounds we obtain are not dimension-independent as one could
expect from the Gaussian case or from Equation 5. We believe this dependency
to be an artifact of the proof.

Injecting these bounds in Equation 4, we obtain a bound on Iµ(νt)
1/2. Sim-

ilarly to the Gaussian case, this bound is not integrable for small values of t.
Again, we deal with this issue by using a stochastic process (Xt)t≥0 such that,
for each t > 0, Xt is drawn from ν. However, contrary to the Gaussian case,
we may also face integration issues when t goes to infinity whenever Lµ only
satisfies a CD(ρ,∞) condition with ρ ≤ 0. In this case, we are only able to
bound W2(ν, νT ) for T > 0.

So far, we have assumed the Fisher information of νt with respect to to µ is
finite. If a CD(ρ,∞) condition is satisfied, this assumption can be weakened.
Indeed, for any t, s > 0 and any measure η = hdµ, we have, by Theorem 5.5.2
[3]

Iµ(νt+s) ≤
2ρ

1− e−2ρt

∫
E

(Pt(hs log hs)− Pths log(Pths)) dµ ≤
2ρ

1− e−2ρt
Hµ(νs),

where Hµ(νs) is the entropy of νs with respect to µ.

Theorem 5. Suppose µ is the reversible measure of a diffusion operator Lµ
satisfying a a CD(ρ,∞) condition for ρ ∈ R. Let ν be a measure of Rd and let
(Xt)t≥0 be a stochastic process such that, for any t ≥ 0, Xt is drawn from ν. If
the entropy of νt with respect to µ is finite for any t > 0, then, for any s > 0,
T > 0,

W2(ν, νT ) ≤
∫ T

0

S(t)dt,

where

S(t)2 =f1(t)E

[∥∥∥∥E [Xt −X0

s
− b(X0) | X0

]∥∥∥∥2
a−1(X0)

]

+ f2(t)E

[∥∥∥∥E [ (Xt −X0)⊗2

2s
− a(X0) | X0

]∥∥∥∥2
a−1(X0)

]

+

∞∑
k=3

fk(t)

sk!
E[
∥∥E[(Xt −X0)⊗k | X0]

∥∥2
a−1(X0)

],

where the functions (fk)k≥1 are defined in Proposition 3.

If ρ > 0, we can set T to infinity in order to bound W2(ν, µ). On the other
hand, if ρ ≤ 0, it is still possible to bound W2(ν, µ) as long as we can bound
W2(νT , µ).

12



Corollary 6. Suppose µ is the reversible measure of a diffusion operator Lµ
satisfying a a CD(ρ,∞) condition for ρ ∈ R. Moreover, suppose there exists κ
such that, for any measure η and any t > 0, we have

W2(ηt, µ) ≤ e−κtW2(η, ν).

Let ν be a measure of Rd and let (Xt)t≥0 be a stochastic process such that, for
any t ≥ 0, Xt is drawn from ν. If the entropy of νt with respect to µ is finite
for any t > 0, then, for any s > 0, T > 0,

(1− e−κT )W2(ν, µ) ≤
∫ T

0

Stdt,

where St is defined in Theorem 5.

Proof. We have

W2(ν, µ) ≤W2(ν, νT ) +W2(νT , µ)

≤W2(ν, νT ) + e−κtW2(ν, µ).

The result is then obtained by plugging the bound on W2(ν, νT ) from Theorem 5.

Such an exponential convergence to µ can be verified under weaker conditions
than a CD(ρ,∞) inequality for ρ > 0. For example, if a = Id and b = −∇V ,
where V is a function from Rd to R, this assumption is satisfied whenever V is
strongly convex outside a bounded set C with bounded first and second order
derivatives on C [14]. An extension of this result for more general functions a
and for the manifold setting is proposed in [32].

4 Gaussian measure and Wasserstein distance
of any order

Whenever the target is the Gaussian measure, [18] used Stein kernels to obtain
an explicit expression of the score function vt = log(ht) which can be turned
into a bound for Wasserstein distances of order p ≥ 1 between the measure
ν and the Gaussian measure by using a simple modification of Lemma 2 [22]
giving

d+

dt
Wp(ν, µ) ≤

(∫
Rd
‖∇vt‖pdνt

)1/p

. (6)

Let us show a similar approach can be followed using a stochastic process

(Xt)t≥0. In order to bound
(∫

Rd ‖∇vt‖
pdνt

)1/p
we are going to provide a version

of ∇vt. By a simple integration by parts, one can see that ∇vt is characterized
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by the fact that, for any smooth test function φ,∫
Rd
∇φ(x)dνt(x) =

∫
Rd
∇φ(x)ht(x)dγ(x)

=

∫
Rd
∇(φht)(x)− φ(x)∇ht(x)dγ(x)

=

∫
Rd
xφ(x)ht(x)− φ(x)∇ht(x)γ(x)

=

∫
Rd
φ(x)(x−∇vt(x))dνt(x).

4.1 One-dimensional case

Let (X,X ′) be two random variables drawn from a measure ν on R and let Z
be a one-dimensional Gaussian random variable. For any k ∈ N, let Hk be the
Hermite polynomial of order k. For t > 0, let Ft = e−tX +

√
1− e−2tZ and for

any s > 0, let ρt be a real-valued function such that

∀x ∈ R, ρt(x) = E
[
e−t

(
X ′ −X

s
+X

)
+

e−2t√
1− e−2t

(
(X ′ −X)2

2s
− 1

)
Z|Ft = x

]
+ E

[ ∞∑
k=3

e−kt

s
√

1− e−2tk−1
(X ′ −X)k

k!
Hk−1(Z)|Ft = x

]
.

Let φ : R → R be a compactly supported smooth function. Since φ(Ft) =
φ(e−tX +

√
1− e−2tZ), we obtain, after successive integrations by parts with

respect to Z,

E[ρt(Ft)φ(Ft)] = E
[
e−tXφ(Ft)− e−2tφ′(Ft)

]
+E

[ ∞∑
k=1

e−kt
(X ′ −X)k

sk!
φ(k−1)(Ft)

]
.

Let Φ be a primitive function of φ. By the results of Section 3.1, the function
x → E[Φ(Ft) | X = x] = PtΦ(x) is real analytic. Hence, since X ′ and X have
the same measure, we have

E

[ ∞∑
k=1

e−kt
(X ′ −X)k

sk!
φ(k−1)(Ft)

]

=
1

s
E[Φ(e−tX ′ +

√
1− e−2tZ)− Φ(e−tX +

√
1− e−2tZ)]

= 0.

Then, using a last integration by parts with respect to Z,

E[(ρt(Ft)− Ft)φ(Ft)] = E[(e−tX − Ft)φ(Ft)− e−2tφ′(Ft)]

= E[
√

1− e−2tZφ(Ft)− e−2tφ′(Ft)]
= E[(e−2t − 1)φ′(Ft)− e−2tφ′(Ft)]
= −E[φ′(Ft)].
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Therefore, ρt is a version of v′t and, for p ≥ 1, we can bound(∫
R
|v′t|pdνt

)1/p

= E[|ρt(Ft)|p]1/p

by

Sp(t) ≤E
[∣∣∣∣E [Xt −X0

s
+X0 | X0

]∣∣∣∣p]1/p
+
e−2t‖H1‖p,γ√

1− e−2t
E
[∣∣∣∣E [ (Xt −X0)2

2s
− 1 | X0

]∣∣∣∣p]1/p
+

∞∑
k=3

e−kt‖Hk−1‖p,γ
k!s
√

1− e−2tk−1
E
[∣∣E[(Xt −X0)k | X0]

∣∣p]1/p ,
where ‖Hk‖pp,γ =

∫
R |Hk|pdγ. By Equation 6, integrating Sp(t) for t ≥ 0 would

give us a bound on the Wasserstein distance of order p between ν and the one-
dimensional Gaussian measure γ. Once again, we deal with integration issues
by using a stochastic process (Xt)t≥0 such that Xt is drawn from ν for any
t > 0.

Theorem 7. Let ν be a measure on R and let (Xt)t≥0 be a stochastic process
such that, for any t ≥ 0, Xt is drawn ν. We have, for any p ≥ 1, s > 0,

Wp(ν, γ) ≤
∫ ∞
0

Sp(t)dt,

where

Sp(t) ≤e−tE
[∣∣∣∣E [Xt −X0

s
+X0 | X0

]∣∣∣∣p]1/p
+
e−t‖H1‖p,γ√

e2t − 1
E
[∣∣∣∣E [ (Xt −X0)2

2s
− 1 | X0

]∣∣∣∣p]1/p
+

∞∑
k=3

e−t‖Hk−1‖p,γ
k!s
√
e2t − 1

k−1E
[∣∣E[(Xt −X0)k | X0]

∣∣p]1/p .
4.2 Multi-dimensional case

Let (X,X ′) be two random variables drawn from a measure ν on Rd and let Z be
a d-dimensional Gaussian random variable. Since there is no notion of primitive
function in the multi-dimensional setting, the previous approach cannot be used.
Instead, let us assume that (X,X ′) and (X ′, X) follow the same law (i.e. (X,X ′)
is an exchangeable pair). For any k ∈ N, any M ∈ (Rd)⊗k and any N ∈
(Rd)⊗k−1, we define the vector MN ∈ Rd by

∀i ∈ {1, . . . , d}, (MN)i =
∑

j∈{1,...,d}k−1

Mi,j1,...,jk−1
Nj .
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For any k ∈ N we denote by Hk : Rd → (Rd)⊗k the tensor of Hermite polyno-
mials of order k where

∀x ∈ Rd,∀i ∈ {1, . . . , d}k, (Hk(x))i = Hi(x),

where for any i ∈ {1, . . . , d}k, Hi is the multi-dimensional Hermite polynomial
of index i, see Equation 3. For t > 0, let Ft = e−tX +

√
1− e−2tZ and consider

the vector-valued function ρt defined by

∀x ∈ Rd, ρt(x) = E
[
e−t

(
X ′ −X

s
+X

)
+

e−2t√
1− e−2t

(
(X ′ −X)⊗2

2s
− Id

)
Z|Ft = x

]
+ E

[ ∞∑
k=3

e−kt

2s(k − 1)!
√

1− e−2tk−1
(X ′ −X)⊗kHk−1(Z) | Ft = x

]
.

For any integer k and any A,B ∈ (Rd)⊗k, let < A,B > be the Hilbert-Schmidt
scalar product between A and B. We have

ρt(x) = E
[
e−tX − e−2t√

1− e−2t
Z +

e−t

s
(X ′ −X) | Ft = x

]
+
e−t

2s
E

[
(X ′ −X)

∞∑
k=1

1

k!

〈
e−kt(X ′ −X)⊗k,

√
1− e−2t

−k
Hk(Z)

〉
| Ft = x

]
.

Let φ : Rd → R be a compactly supported smooth function. Since φ(Ft) =
φ(e−tX +

√
1− e−2tZ), successive integrations by parts with respect to Z yield

E[ρt(Ft)φ(Ft)] = E
[
e−tXφ(Ft)−

e−2t√
1− e−2t

∇φ(Ft)

]
+
e−t

s
E

[
(X ′ −X)

(
φ(Ft) +

1

2

∞∑
k=1

1

k!
< e−kt(X ′ −X)⊗k,∇kφ(Ft) >

)]
.

Let us pose F ′t = e−tX ′ +
√

1− e−2tZ. Since the function x → E[φ(Ft) | X =
x] = Ptφ(x) is real analytic, we have

E[ρt(Ft)φ(Ft)]

= E
[
e−tXφ(Ft)−

e−2t√
1− e−2t

∇φ(Ft)

]
+
e−t

s
E
[
(X ′ −X)

(
φ(Ft) +

φ(F ′t )− φ(Ft)

2

)]
= E

[
e−tXφ(Ft)−

e−2t√
1− e−2t

∇φ(Ft)

]
+
e−t

2s
E [(X ′ −X)(φ(F ′t ) + φ(Ft))] .

Since (X,X ′) is an exchangeable pair, E [(X ′ −X)(φ(F ′t ) + φ(Ft))] = 0. There-
fore,

E[(ρt(Ft)− Ft)φ(Ft)] = E[(−Ft + e−tX)φ(Ft)− e−2t∇φ(Ft)]

= E[
√

1− e−2tZφ(Ft)− e−2t∇φ(Ft)]

= E[(e−2t − 1)∇φ(Ft)− e−2t∇φ(Ft)]

= −E[∇φ(Ft)].
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Thus, ρt is a version of ∇vt. Let us consider some p ≥ 1. Applying Jensen’s
inequality and the triangle inequality, we have

E[‖∇vt(Ft)‖p]1/p ≤ e−tE
[∥∥∥∥E [X ′ −Xs

+X | X
]∥∥∥∥p]1/p

+
e−t√
e2t − 1

E
[∥∥∥∥E [ (X ′ −X)⊗2

2s
− Id | X

]
Z

∥∥∥∥p]1/p
+

∞∑
k=3

e−t

2s(k − 1)!(e2t − 1)(k−1)/2
E
[∥∥E[(X ′ −X)⊗k | X]Hk−1(Z)

∥∥p]1/p .
In order to refine this bound, we require the following result.

Lemma 8. Let Z be a Gaussian random variable. For any k ∈ N,M ∈ (Rd)⊗k,
we have

E[‖MHk−1(Z)‖p]1/p ≤

{
‖M‖H if 1 ≤ p ≤ 2

(p− 1)(k−1)/2‖M‖H if p > 2
.

Proof. First, if 1 ≤ p ≤ 2, then

E[‖MHk−1(Z)‖p]1/p ≤ E[‖MHk−1(Z)‖2]1/2 = ‖M‖H .

Let us consider p > 2. Since the Ornstein-Uhlenbeck semigroup (Pt)t≥0 is
hypercontractive (see e.g. Theorem 5.2.3 [3]), taking t = log(

√
p− 1), we have

∀φ ∈ L2(γ),E[|Ptφ(Z)|p]1/p ≤ E[φ(Z)2]1/2.

This inequality can be extended to vector-valued function φ, in which case we
have

∀φ, ‖φ‖ ∈ L2(γ),E[‖Ptφ(Z)‖p]1/p ≤ E[(Pt‖φ(Z)‖)p]1/p ≤ E[‖φ(Z)‖2]1/2.

Let k ∈ N and M ∈ (Rd)⊗k. For t = log(
√
p− 1), the entries of Hk−1 are

Hermite polynomials and thus eigenvectors of Pt with eigenvalue e−(k−1)t =
(p− 1)−(k−1)/2. Therefore

E[‖MHk−1(Z)‖p]1/p = (p− 1)(k−1)/2E[‖MPtHk−1(Z)‖p]1/p

= (p− 1)(k−1)/2E[‖PtMHk−1(Z)‖p]1/p

≤ (p− 1)(k−1)/2E[‖MHk−1(Z)‖2]1/2

≤ (p− 1)(k−1)/2‖M‖H
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Thanks to this result, we obtain

E[‖∇vt(Ft)‖p]1/p ≤ e−tE
[∥∥∥∥E [X ′ −Xs

+X | X
]∥∥∥∥p]1/p

+ e−t
√

max(1, p− 1)

e2t − 1
E
[∥∥∥∥E [ (X ′ −X)⊗2

2s
− Id | X

]∥∥∥∥p]1/p
+

∞∑
k=3

e−t

2s(k − 1)!

(
max(1, p− 1)

e2t − 1

)(k−1)/2

E
[∥∥E[(X ′ −X)⊗k | X]

∥∥p
H

]1/p
.

Again, we deal with integrability issues by using a stochastic process (Xt)t≥0
such that, for any t > 0, Xt is drawn from ν and (X0, Xt) is an exchangeable
pair of random variables.

Theorem 9. Let ν be a measure on Rd and let (Xt)t≥0 be a stochastic process
such that, for any t ≥ 0, Xt is drawn from ν and (X0, Xt) is an exchangeable
pair. For any p ≥ 1, s > 0,

Wp(ν, γ) ≤
∫ ∞
0

Sp(t)dt,

where,

Sp(t) = E
[∥∥∥∥E [Xt −X0

s
+X0 | X

]∥∥∥∥p]1/p
+ e−t

√
max(1, p− 1)

e2t − 1
E
[∥∥∥∥E [ (Xt −X0)⊗2

2s
− Id | X0

]∥∥∥∥p]1/p
+

∞∑
k=3

e−t

2s(k − 1)!

(
max(1, p− 1)

e2t − 1

)(k−1)/2

E
[∥∥E[(Xt −X0)⊗k | X0]

∥∥p
H

]1/p
.

5 Applications

5.1 Central Limit Theorem

Let X1, . . . , Xn be i.i.d. random variables taking values in Rd such that E[X1] =
0 and E[X⊗21 ] = Id. Let νn be the measure of Sn = n−1/2

∑n
i=1Xi. According

to the Central Limit Theorem, νn converges to the Gaussian measure γ. In this
Section, we quantify this convergence in terms of Wasserstein distance of order
p, for p ≥ 2. Let X ′1, . . . X

′
n be independent copies of X1, . . . , Xn and let I be a

uniform random variable on {1, . . . , n}. For any t > 0, we pose

(Sn)t = Sn + n−1/2(X ′I −XI)1‖X′I‖,‖XI‖≤
√
n(e2t−1).

By construction, ((Sn)t)t≥0 is a stochastic process and, for any t > 0, (Sn)t
is drawn from νn and ((Sn)0, (Sn)t) is an exchangeable pair. Applying Theo-
rem 7 with s = 1

n , see Section 6.2 for the detailed computations, we obtain the
following result.
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Theorem 10. Let X1, . . . , Xn be i.i.d. random variables in Rd with E[X1] = 0
and E[X⊗21 ] = Id. For any p ≥ 2, there exists Cp > 0 such that, if E[‖X1‖p+q] <
∞ for some q ∈ [0, p], then, taking m = min(4, p+ q)− 2, we have

Wp(νn, γ) ≤ Cp

(
n−1/2+(2−q)/2pE[‖X1‖p+q]1/p + n−m/4E[‖X1‖2+m]1/2

+

{
o(n−m/4) if m < 2

d1/4‖E[X⊗21 ‖X1‖2]‖1/2 if m = 2

)
.

5.2 Invariant measures and diffusion approximation

Let (Mn)n∈N be a Markov chain with transition kernel K and invariant measure
π. Suppose M0 is drawn from π. Then, by definition of the invariant measure,
For any t > 0, τ > 0, let

Xt = M0 + 1t≥τ (M1 −M0).

While, by the definition of the invariant measure, Xt is drawn from ν for any
t ≥ 0, (Xt, X0) is an exchangeable pair for any t ≥ 0 if and only if the (Mn)n≥0
is reversible. Hence, given a suitable target measure µ, we can use Corollary 6
to bound W2(π, µ) without requiring the (Mn)n∈N to be reversible.

Corollary 11. Suppose µ and ν satisfy the assumptions of Corollary 6. Let π
be the invariant measure of a Markov chain with transition kernel K and let X
be a random variable drawn from π. Then, there exists C(ρ) > 0 such that, for
any 0 < τ < 1, s > 0,

(1− e−κ)W2(π, µ) ≤

C(ρ)

τE[‖b(X)‖2a−1 ]1/2 + E

[∥∥∥∥∫
y∈Rd

(y −X)K(X, dy)− b(X)

∥∥∥∥2
a−1(X)

]1/2
+ C(ρ)2

√
d

√τd+ E

[∥∥∥∥∫
y∈Rd

(y −X)⊗2

2
K(X, dy)− a(X)

∥∥∥∥2
a−1(X)

]1/2
+
C(ρ)3 log(τ)d

3
√

2s
E

[∥∥∥∥∫
y∈Rd

(y −X)⊗3K(X, dy)

∥∥∥∥2
a−1(X)

]1/2

+

∞∑
k=4

C(ρ)k
√
d(k − 1)

k−1

k!
√
τ
k−3

s
E

[∥∥∥∥∫
y∈Rd

(y −X)⊗kK(X, dy)

∥∥∥∥2
a−1(X)

]1/2
.

Proof. This result is obtained by applying Corollary 6 with T = 1 and remarking
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that for any integer k > 0 and any 0 ≤ t ≤ 1,

fk(t) ≤


emax(1,k/2)ρ

(
d(k−1)

t

)(k−1)/2
if ρ > 0(

d
t

)(k−1)/2
if ρ = 0

e(1+max(1,k/2))|ρ|
(
d(k−1)

t

)(k−1)/2
if ρ < 0

.

Let us note that the quantities appearing in our bound are natural as they
appear in standard diffusion approximation results (see e.g. Section 11.2 [28]).

5.2.1 Invariant measure of random walks on nearest neighbors graphs

Let X1, . . . , Xn be i.i.d. random variables on Rd drawn from a measure µ with
smooth density f . Let Xn be the set of points (X1, . . . , Xn) and let rXn be a
function from Rd to R+. A graph G with vertices Xn and edges {(x, y) ∈ X 2 |
‖x − y‖2 ≤ rXn(x)} is called a random geometric graph. These graphs are at
the center of many data analysis algorithms, such as Spectral clustering [30],
semi-supervised label propagation [6] or dimensionality reduction [5], which use
the properties of such graphs to process the data Xn. However, these algorithms
usually consider the sole graph structure while discarding all other information
regarding the data, such as the coordinates of the data points, and one may
wonder whether critical information regarding the data could be loss in the
process. To answer this question, [31] proposed to check whether it is possible
to estimate the density f from which the data is drawn using only the structure
of a random geometric graph. Indeed, if we can recover f , we should be able to
recover most of the statistical information contained in the initial data.

As n gets to infinity, it has been shown by [29] that, if rXn converges, after a
proper rescaling, to a deterministic function r̃ : Rd → R+, then random walks on
the random geometric graphs Gn with radii rXn converge, as n goes to infinity,
to diffusion processes with infinitesimal generator

Lµ̃ = r̃2
(
∇ log f.∇+

1

2
∆

)
.

Since the density of the invariant measure µ̃ of the limiting diffusion process has

density proportional to f2

r̃2 , one can derive an estimator of f from an estimator
of µ̃. Since random walks on the graphs Gn converge to diffusion processes
with invariant measure µ̃, it seems natural to use the invariant measures of the
random walks to estimate µ̃. In fact, in this context, [15] proved, under technical
assumption on rXn , that invariant measures of random walks on the graphs Gn
converge weakly to µ̃. Let us show how our results can be used to quantify this
convergence in terms of Wasserstein distance of order 2 by tackling the specific
case of nearest neighbors graphs.
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Nearest neighbors graphs are obtained by picking an integer k > 0 and
setting

rXn(x) = inf

{
s ∈ R+|

n∑
i=1

1‖Xi−x‖≤s ≥ k

}
and are extremely popular in data analysis as they are sparse. If k is correctly
choosen, random walks on such graph approximate diffusion processes with
infinitesimal generator

Lµ̃ = f−2/d(∇ log f.∇+ ∆),

whose invariant measure µ̃ has a density proportional to f2+2/d. Let us quantify
the Wasserstein distance of order 2 between the invariant measure of a k-nearest
neighbors graph and µ̃. To avoid boundary issues, let us assume µ is a measure
on the flat torus T = (R/Z)d with strictly positive smooth density f . For any
integer k ≤ n, we denote by πk,n an invariant measure of a random walk on the
k-nearest neighbor graphs with vertices Xn. We have the following result.

Proposition 12. There exists C > 0 such that, for any positive integers k, n,

P

(
W2(πk,n, µ̃) ≤ C

(√
log nn1/d

k1/2 + 1/d
+

(
k

n

)1/d
))
≥ 1− C

n
.

In particular, if n >> k >> log(n)d/(2+d)n2/2+d then W2(πk,n, µ̃) converges,
in terms of Wasserstein distance of order 2, to µ̃. However, a couple problems
still remain. First, we only manage to obtain a convergence for a metric on the
space of measures but we would require a point-wise convergence of πk,n to use
it as an actual estimator of f . The second problem is that our bound is likely to
be suboptimal. In practice, we want k to be small as it leads to sparser graphs
but according to our result k should be at least of order log(n)d/(d+2)n2/(2+d).
This is counterintuitive since our assumptions on k gets weaker as the dimension
inscreases while we would expect the problem of estimating µ̃ to be more com-
plex in higher dimensions. In fact, it is conjectured in [15] that it is sufficient
for n >> k >> log(n) for πk,n to converge weakly to µ̃ which would imply our
bound can be improved.

5.2.2 Analysis of a one-dimensional scheme for the Langevin Monte
Carlo algorithm

Quite often in Bayesian statistics, one needs to sample points from a probability
measure dµ on Rd with density f . To solve this task, multiple sampling algo-
rithms based on the Monte-carlo approach were proposed and analyzed. We
want to show how our bounds can be used to study the complexity of a simple
Monte-Carlo algorithm.

The measure µ is a reversible measure for the diffusion process Yt with
infinitesimal generator

Lµ = −∇u.∇+ ∆.
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Since, under mild assumptions on µ, the measure of Yt converges to µ as t goes
to infinity, one may want to sample points from µ by approximating Yt. Using
the Euler-Maruyama approximation scheme with timestep h, one can discretize
Yt using a Markov chain M with M0 = 0 and transitions given by

Mn+1 = Mn − h∇u(Mn) +
√

2hNn,

where N1, . . . ,Nn is a sequence of independent normal random variables with
mean 0 and covariance matrix Id. If the timestep h is small enough, one can
expect the invariant measure π of (Mn)n∈N to be close to µ. Hence, for n large
enough, the measure of Mn should be close to π and thus be close to µ. This
approach to sampling is known as the Langevin Monte-Carlo (LMC) algorithm
and was first proposed by [24].

One may then wonder how large n should be for a given metric between µ
and νn, the measure of Mn, to be smaller than ε. Answering this question is
linked to the choice of the timestep h as this parameter must satisfy some trade-
off: large values of h lead to a poor approximation of µ by π but the smaller h
is, the larger the number of iterations required for νn to be close to π. Recently,
[13] proved that, whenever log f is a strictly concave function (i.e. µ is a strictly
log-concave measure) and ∇ log f is Lipschitz continuous, the LMC algorithm
can reach an accuracy ε for the Wasserstein distance of order 2 in no more
than O(ε−2d log(d/ε)) steps. Since the complexity of each step of the Euler-
Maruyama discretization is of order d, the overall complexity of the algorithm
is bounded by O(ε−2d2 log(d/ε)). This rate can be improved whenever ∇2 log f
is Lipschitz continuous, in which case one only requires O(ε−1

√
d log(d/ε)) steps

to reach an accuracy ε which means the complexity of the algorithm is bounded
by O(ε−1d3/2 log(d/ε)). One may wonder if other discretization schemes would
perform better than the Euler-Maruyama scheme however the approach used
to obtain the previous bounds are specific to the Euler-Maruyama scheme. We
show how our result can be used to study the efficiency of other discretiza-
tion schemes. For instance, let e1, . . . , ed ∈ Rd be the canonical basis of Rd,
(In)n∈N be a uniform random variable on {1, . . . , d}, (Bn)n∈N be independent
Rademacher random variables and consider the following scheme

Mn+1 = Mn +

(
−h ∂u

∂xIn
(Mn) +

√
2hBn

)
eIn . (7)

Following the computations presented in Section 6.4, we obtain the following
result.

Proposition 13. Let µ be a measure of Rd with density f and let u = − log f .
Let h > 0 and let (Mn)n≥0 be a Markov chain with M0 = 0 and increments
given by Equation 7. Suppose ∇u(0) = 0 and assume there exists ρ > 0, L > 0
such that for all i ∈ {1, . . . , d} and x, y ∈ Rd,(

∂u

∂xi
(y)− ∂u

∂xi
(x)

)
(yi − xi) ≤ −ρ(yi − xi)2
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and (
∂u

∂xi
(y)− ∂u

∂xi
(x)

)2

≤ L(yi − xi)2.

There exist constants C1, C2 > 0 depending on ρ and L such that for any ε > 0,
if h = C1ε

2d−2 and n = C2h
−1d log(d/ε) then the measure νn of Mn satisfies

W2(νn, µ) ≤ ε.

Moreover, if µ is the Gaussian measure then the previous result holds true with
h = C1ε

2d−1.

Since each step of this one-dimensional discretization has a complexity inde-
pendent of the dimension, the overall complexity of the LMC algorithm with our
discretization scheme is bounded by O(ε−2d3 log(d/ε)) and by O(ε−2d2 log(d/ε))
when µ is the Gaussian measure. The discrepancy between the Gaussian case
and the more general case is due the dependency on the dimension of the func-
tion fk defined in Proposition 3 which we believe is suboptimal (see Remark 4).
Hence we conjecture the correct complexity of the LMC algorithm using the one-
dimensional discretization scheme to be bounded by O(ε−2d2 log(d/ε)) for target
measures µ satisfying the assumptions of Proposition 13. Under this conjec-
ture, the complexity of this one-dimensional discretization scheme matches the
standard complexity of O(ε−2d2 log(d/ε)) of the Euler-Maruyama scheme under
slightly stronger assumptions. However, we are not able to recover the bet-
ter complexity of O(ε−1d3/2 log(d/ε)) obtained for the Euler-Maruyama scheme
whenever ∇2u is Lipschitz continuous. As this stronger assumption should be
verified in most practical cases, the Euler-Maruyama scheme should be more
efficient than the one-dimensional scheme in practice.

6 Proofs

6.1 Proof of Proposition 3

We are going to prove the result for the case ρ 6= 0, the case ρ = 0 can be
obtained in a similar manner. In order to prove the Proposition, we need to
prove an equivalent to the integration by parts used in the Gaussian case.

Lemma 14. Suppose Lµ satisfies a CD(ρ,∞) condition for ρ ∈ R. Then, for
any compactly supported smooth function φ, and any t > 0,

‖∇Ptφ‖2a ≤
2ρ

e2ρt − 1
Pt|φ|2.

Proof. Consider a compactly supported smooth function φ and let t > 0. For
any 0 ≤ s ≤ t let

Λ(s) = Ps(Γ0(Pt−sφ, Pt−sφ)).
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Since Lµ is the infinitesimal generator of the semi-group (Pt)t≥0, we have
d
dtPtφ = LµPtφ = PtLµφ. Hence, the derivative of Λ is equal to

Λ′(s) = LµPs(Γ0(Pt−sφ, Pt−sφ))− 2Ps(Γ0(LµPt−sφ, Pt−sφ))

= Ps (LµΓ0(Pt−sφ, Pt−sφ)− 2Γ0(LµPt−sφ, Pt−sφ))

= 2Ps(Γ1(Pt−sφ, Pt−sφ)).

Similarly, the second derivative of Λ is

Λ′′(s) = 4Ps(Γ2(Pt−sφ, Pt−sφ)).

By our assumption, Λ′′(s) ≥ 2ρΛ′(s). Hence, by Gronwall’s Lemma, Λ′(s) ≥
e2ρsΛ′(0). Thus, we have

Γ1(Ptφ, Ptφ) =
2ρ

e2ρt − 1

∫ t

0

e2ρsΓ1(Ptφ, Ptφ)ds

=
2ρ

e2ρt − 1

∫ t

0

e2ρsΛ′(0)ds

≤ 2ρ

e2ρt − 1

∫ t

0

Λ′(s)ds

≤ 2ρ

e2ρt − 1
(Pt(Γ0(φ, φ))− Γ0(Ptφ, Ptφ))

≤ 2ρPt(Γ0(φ, φ))

e2ρt − 1

≤ 2ρPt|φ|2

e2ρt − 1
.

Let us prove Proposition 3 by induction. Let us assume a CD(ρ,∞) con-
dition is verified for ρ 6= 0. Then, by Theorem 3.2.4 [3], for any compactly
supported smooth function φ,

‖∇Ptψ‖a ≤ e−ρtPt‖∇ψ‖a. (8)

Now, let k ∈ N and suppose that, for any compactly supported smooth function
φ,

∀i ≤ k, ‖∇iPtφ‖a ≤ e−ρtmax(1,i/2)

(
2ρd

e(2ρt)/(k−1) − 1

)(i−1)/2

.

Let x ∈ Rd and let (e1, . . . , ed) be an orthonormal basis of Rd with respect to
the a(x)-scalar product < ., . >a(x). We have

‖∇k+1Ptφ(x)‖2a(x) =

d∑
i=1

‖∇k < ∇Ptφ(x), ei >a(x) φ‖2a(x)

d∑
i=1

lim
ε→0
‖∇k(Ptφ(x+ εa(x)ei)− Ptφ(x))‖2a(x).
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Let ε > 0 and let (Xt)t≥0 and (X̃t)t≥0 be two diffusion processes with
infinitesimal generator Lµ, started respectively at x and x + εae1. Letting

ψ(y) = E[φ(X̃t) | Xt = y], we have

Ptφ(x+ εa(x)ei)− Ptφ(x) = E[φ(X̃t)− φ(Xt)]

= E[E[φ(X̃t) | Xt]− φ(Xt)]

= Pt(ψ − φ)(x).

By our induction hypothesis, we have∥∥∇kPt(ψ − φ)(x)
∥∥2
a(x)
≤

e−ρtmax(2,k) k−1
k

(
2ρd

e2ρdt/k − 1

)k−1
Pt k−1

k

∥∥∇Pt/k(ψ − φ)(x)
∥∥2
a(x)

.

Then, applying Lemma 14,

∥∥∇kPt(ψ − φ)(x)
∥∥2
a(x)
≤ e−ρt(k−1)dk−1

(
2ρ

e2ρdt/k − 1

)k
Pt |ψ − φ|2 (x).

By Theorem 2.2 [17], Equation 8 implies that we can take X̃t such that, ‖X̃t −
Xt‖a−1(x) ≤ εe−ρt almost surely. Using such X̃t, we have

E
[

lim
ε→0

∣∣∣∣ψ(Xt)− φ(Xt)

ε

∣∣∣∣] = E
[

lim
ε→0

∣∣∣∣E [ψ(Xt)− φ(Xt)

ε
| Xt

]∣∣∣∣]
≤ E

[
lim
ε→0

∣∣∣∣ψ(Xt)− φ(Xt)

ε
| Xt

∣∣∣∣]
≤ E

[
lim
ε→0

∣∣∣∣∣‖X̃t −Xt‖a−1(x)

ε
‖∇φ(Xt)‖a(x) | Xt

∣∣∣∣∣
]

≤ e−ρtE
[
‖∇φ(Xt)‖a(x)

]
.

Since a similar result holds for any ei, we have shown that

‖∇k+1Ptφ‖2a ≤ e−ρt(k+1)

(
2ρd

e2ρdt/k − 1

)k (√
Pt‖∇φ‖2

)2
which concludes the proof by induction.

6.2 Proof of Theorem 10

We first need to state a multidimensional version of the Rosenthal inequality.
Let k > 0, p ≥ 2 and suppose Y1, . . . , Yn are independent random variables
taking values in (Rd)⊗k, then by Theorem 2.1 [1] there exists Cp > 0 such that

E

[∥∥∥∥∥
n∑
i=1

Yi − E[‖
n∑
i=1

Yi‖]

∥∥∥∥∥
p]1/p

≤ Cpn1/2E[‖Y1‖2]1/2 + n1/pE[‖Y1‖p]1/p.
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Hence, by Jensen’s inequality,

E

[∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
p]1/p

≤ E

[∥∥∥∥∥
n∑
i=1

Yi − E[‖
n∑
i=1

Yi‖]

∥∥∥∥∥
p]1/p

+ E[‖
n∑
i=1

Yi‖]

≤ Cp

(
E[‖

n∑
i=1

Yi‖2]1/2 + n1/2E[‖Y ‖2]1/2 + n1/pE[‖Y ‖p]1/p
)
,

so there exists C ′p > 0 such that

E

[∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
p]1/p

≤ C ′p
(
n‖E[Y1]‖+ n1/2E[‖Y1‖2]1/2 + n1/pE[‖Y1‖p]1/p

)
. (9)

We are now ready to start the proof of Theorem 10. Let Z be a Gaussian
random variable and let us pose X = X1, X ′ = X ′1 and α(t) = e2t − 1. In the
remainder of this proof, we are going to show there exist Cp > 0 such that

•
∫∞
0
e−tE[‖E[n((Sn)t − Sn) | Sn] + Sn‖p]1/pdt,

•
∫∞
0

e−2t
√
1−e−2t

E
[∥∥∥E [n ((Sn)t−Sn)⊗2

2 − Id | Sn
]∥∥∥p]1/p dt and

•
∑∞
k=3

(p−1)k/2
(k−1)!

∫∞
0

e−kt√
1−e−2tk−1E[‖E[n((Sn)t − Sn)⊗k | Sn]‖pH ]1/pdt

are bounded by

Cp

(
n−1/2+(2−q)/2pE[‖X‖p+q]1/p + n−m/4E[‖X‖2+m]1/2

+

{
o(n−m/4) if m < 2

d1/4‖E[X⊗2‖X‖2]‖1/2 if m = 2

)
.

Theorem 10 is then obtained using these bounds in Theorem 9.
In the remainder of this proof, Cp denotes a generic constant depending only

on p. For any t ≥ 0, we have, by definition of (Sn)t,

(Sn)t − Sn =
1√
n

(X ′I −XI)1‖XI‖,‖X′I‖≤
√
nα(t)

.

Since I and Sn are independent, we have, for any k ∈ N,

E[n((Sn)t − Sn)⊗k | Sn] = n−k/2E

[
n∑
i=1

(X ′i −Xi)
⊗k1‖Xi‖,‖X′i‖≤

√
nα(t)

| Sn

]
.

(10)
In particular, taking k = 1, we have

E[n((Sn)t−Sn)+Sn | Sn] =
1√
n
E

[
n∑
i=1

(X ′i −Xi)1‖Xi‖,‖X′i‖≤
√
nα(t)

+Xi | Sn

]
.
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Since X ′ is independent from Sn, E[X ′ | Sn] = E[X ′] = 0. Hence,

E[X ′1‖X‖,‖X′‖≤
√
nα(t)

| Sn] = −E[X ′1
max ‖X‖,‖X′‖≥

√
nα(t)

| Sn].

Therefore

E[(X ′−X)1‖X‖,‖X′‖≤
√
nα(t)

+X | Sn] = E[(X−X ′)1
max ‖X‖,‖X′‖≥

√
nα(t)

| Sn],

and

E[‖E[n((Sn)t − Sn) + Sn | Sn]‖p]1/p =

n−1/2E

[∥∥∥∥∥E
[

n∑
i=1

(Xi −X ′i)1max ‖Xi‖,‖X′i‖≥
√
nα(t)

| Sn

]∥∥∥∥∥
p]1/p

.

Applying Jensen’s inequality to get rid of the conditional expectation,

E[‖E[n((Sn)t−Sn)+Sn | Sn]‖p]1/p ≤ n−1/2E

[∥∥∥∥∥
n∑
i=1

(Xi −X ′i)1max ‖Xi‖,‖X′i‖≥
√
nα(t)

∥∥∥∥∥
p]1/p

.

Let us pose
Y = (X −X ′)1

max ‖X‖,‖X′‖≥
√
nα(t)

.

Since the (Xi)1≤i≤n and the (X ′i)1≤i≤n are i.i.d. random variables, so are the
((Xi−X ′i)1max ‖Xi‖,‖X′i‖≥

√
nα(t)

)1≤i≤n. Hence, we can use Equation 9 to obtain

E[‖E[n((Sn)t−Sn) | Sn]+Sn‖p]1/p ≤ Cp(n1/2‖E[Y ]‖+E[‖Y ‖2]1/2+n1/p−1/2E[‖Y ‖p]1/p).

Since X and X ′ follow the same law, E[Y ] = 0. On the other hand, we have

E[‖Y ‖p]1/p = E[‖X −X ′‖p1
max ‖X‖,‖X′‖≥

√
nα(t)

]1/p

≤ E[(‖X‖+ ‖X ′‖)p1
max ‖X‖,‖X′‖≥

√
nα(t)

]1/p

≤ 2E[max(‖X‖, ‖X ′‖)p1
max ‖X‖,‖X′‖≥

√
nα(t)

]1/p

≤ 2(nα(t))−q/2pE[max(‖X‖, ‖X ′‖)p+q]1/p

≤ 4(nα(t))−q/2pE[‖X‖p+q]1/p,

and, similarly,

E[‖Y ‖2]1/2 ≤ 4(nα(t))−m/4E[‖X‖2+m]1/2.

Overall, we obtained

E[‖E[n((Sn)t − Sn) + Sn | Sn]‖p]1/p ≤

Cp

(
n−m/4α(t)−m/4E[‖X‖2+m]1/2 + n−1/2+(2−q)/2pα(t)−q/2pE[‖X‖p+q]1/p

)
.
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Finally, since α(t) ≥ 2t,∫ ∞
0

e−tE[‖E[n((Sn)t − Sn) + Sn | Sn]‖pp]1/pdt ≤

Cp

(
n−m/4E[‖X‖2+m]1/2 + n−1/2+(2−q)/2pE[‖X‖p+q]1/p

)
.

Let us now bound the second order term. By Equation 10 for k = 2, we
have

E
[
n((Sn)t − Sn)⊗2

2
− Id | Sn

]
= E

[
(X ′I −XI)

⊗2

2
1‖XI‖,‖X′I‖≤

√
nα(t)

− Id | Sn
]

=
1

n
E

[
n∑
i=1

(
(X ′i −Xi)

⊗2

2
1‖Xi‖,‖X′i‖≤

√
nα(t)

− Id
)
| Sn

]
.

Again, taking

Y =

(
(X ′ −X)⊗2

2
1‖X‖,‖X′‖≤

√
nα(t)

− Id
)

and using a combination of Jensen’s inequality and Equation 9, we obtain

E
[∥∥∥∥E [n ((Sn)t − Sn)⊗2

2
| Sn

]
− Id

∥∥∥∥p]1/p ≤
Cp

(
‖E [Y ] ‖+ n−1/2E

[
‖Y ‖2

]1/2
+ n1/p−1E [‖Y ‖p]1/p

)
.

First, since E
[
X⊗2

]
= E

[
X ′⊗2

]
= Id,

E [Y ] = E
[

(X ′ −X)⊗2

2
1
max ‖X‖,‖X′‖≥

√
nα(t)

]
.

For two x, y ∈
(
Rd
)⊗k

, we denote by < x, y > the corresponding Hilbert-
Schmidt scalar product between x and y. Letting Z and Z ′ be two random
variables such that X, X ′, Z, Z ′ are i.i.d. and denoting by C a generic positive
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constant, we have

‖E [Y ] ‖ =

√〈
E
[
(X ′ −X)⊗21

max ‖X‖,‖X′‖≥
√
nα(t)

]
,E
[
(Z ′ − Z)⊗21

max ‖Z‖,‖Z′‖≥
√
nα(t)

]〉
=

√
E
[
〈(X ′ −X)⊗2, (Z ′ − Z)⊗2〉 1

max ‖X‖,‖X′‖≥
√
nα(t)

1
max ‖Z‖,‖Z′‖≥

√
nα(t)

]
=

√
E
[
〈X ′ −X,Z ′ − Z〉2 1

max ‖X‖,‖X′‖≥
√
nα(t)

1
max ‖Z‖,‖Z′‖≥

√
nα(t)

]
≤ C

√
E
[
< X,Z >2 1

max ‖X‖,‖X′‖≥
√
nα(t)

1
max ‖Z‖,‖Z′‖≥

√
nα(t)

]
≤ C(nα(t))−m/2

√
E [< X,Z >2 max(‖X‖, ‖X ′‖)m max(‖Z‖, ‖Z ′‖)m]

≤ C(nα(t))−m/2
√

E [< X,Z >2 (‖X‖m + ‖X ′‖m)(‖Z‖m + ‖Z ′‖m)]

≤ C(nα(t))−m/2‖E[X⊗2(‖X‖m + ‖X ′‖m)]‖
≤ C(nα(t))−m/2(‖E[X⊗2‖X‖m]‖+ ‖E[X⊗2‖X ′‖m]‖).

Since X and X ′ are independent,

‖E[X⊗2‖X ′‖m]‖ =
√
dE[‖X‖m]

≤ d−1/2E[‖X‖2]E[‖X‖m]

≤ d−1/2E[‖X‖2+m]2/(2+m)E[‖X‖2+m]m/(2+m)

≤ d−1/2E[‖X‖2+m]

≤ d−1/2
d∑
i=1

E[X2
i ‖X‖m]

≤

√√√√ d∑
i=1

E[X2
i ‖X‖m]2

≤

√√√√ d∑
i,j=1

E[XiXj‖X‖m]2

≤ ‖E[X⊗2‖X‖m]‖.

Therefore, we have

‖E [Y ] ‖ ≤ C(nα(t))−m/2‖E[X⊗2‖X‖m]‖.

Let us remark that this bound may cause integration issues when m ≥ 1 since

e−t√
e2t − 1

α(t)−m/2 =
e−t

α(t)(m+1)/2
∼
t→0

1

(2t)(m+1)/2
.

In order to tackle this issue, let us remark that, replacing m by 0 in the previous
bound, we obtain

‖E [Y ] ‖ ≤ C‖E[X⊗2]‖ ≤ C
√
d.
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Let 0 < t0 < 1. Since α(t) ≥ 2t, there exists C > 0 such that∫ ∞
0

e−t√
α(t)
‖E [Y ] ‖dt

≤ C

(∫ t0

0

√
de−t√
α(t)

dt+ n−m/2‖E[X⊗2‖X‖m]‖
∫ ∞
t0

e−t

α(t)(m+1)/2
dt

)
.

Therefore, taking t0 = 1
n

(
‖E[X⊗2‖X‖m]‖√

d

)2/m
, there exists C > 0 such that

∫ ∞
0

e−t√
e2t − 1

‖E [Y ] ‖dt ≤ C

{
o(n−m/4) if m < 2

d1/4‖E[X⊗2‖X‖2]‖1/2 if m = 2
.

Let us now deal with the higher moments of Y . We have

E[‖Y ‖p] ≤ 2p(E[‖ (X ′ −X)⊗2

2
‖p] + ‖Id‖p)

≤ 2p(E[‖X‖p + dp/2)

≤ 2p(E[‖X‖2p1‖X‖≤√nα(t)] + E[‖X‖2]p/2)

≤ 2p((nα(t))(p−q)/2 + 1)E[‖X‖p+q].

and
E[‖Y ‖2] ≤ 4((nα(t))m−2 + 1)E[‖X‖2+m].

Putting everything together,

∫ ∞
0

e−t√
e2t − 1

E
[∥∥∥∥E [n ((Sn)t − Sn)⊗2

2
− Id | Sn

]∥∥∥∥p]1/p dt
≤ Cp

(
n−1/2+(2−q)/2pE[‖X‖p+q] + n−m/4E[‖X‖2+m]1/2

+

{
o(n−m/4) if m < 2

d1/4‖E[X⊗2‖X‖2]‖1/2 if m = 2

)
.

We are now left with dealing with the higher order terms. For k > 2, let

Y = E[(X ′ −X)⊗k1‖X‖,‖X′‖≤
√
nα(t)

| Sn].

By a combination of Equation 10, Jensen’s inequality to get rid of the conditional
expectation and Equation 9, we obtain

E[‖E[n((Sn)t − Sn)⊗k | Sn]‖pp]1/p ≤

n1−k/2‖E[Y ]‖+ n1/2−k/2E[‖Y ‖2]1/2 + n1/p−k/2E[‖Y ‖p]1/p.
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First, we have

E[‖Y ‖p] ≤ E[‖X ′ −X‖kp1‖X‖,‖X′‖≤√nα(t)]

≤ 2kpE[‖X‖kp1‖X‖≤√nα(t)]

≤ 2kp(nα(t))((k−1)p−q)/2E[‖X‖p+q],

and
E[‖Y ‖2] ≤ 4k(nα(t))k−1−m/2E[‖X‖2+m].

Then, sinceX ′ andX are i.i.d., E[Y ] = 0 for odd values of k. Let us now consider
an even integer k > 2. Let us denote by Z and Z ′ two random variables such
that X,X ′, Z, Z ′ are i.i.d. We have

‖E[Y ]‖ = E
[
< X ′ −X,Z ′ − Z >k 1‖X‖,‖X′‖≤

√
nα(t)

1‖Z‖,‖Z′‖≤
√
nα(t)

]1/2
≤ 2kE

[
< X,Z >k 1‖X‖,‖Z‖≤

√
nα(t)

]1/2
≤ 2kE

[
< X,Z >2 ‖X‖k−2‖Z‖k−21‖X‖,‖Z‖≤

√
nα(t)

]1/2
≤ 2k(nα(t))(k−m−2)/2E

[
< X,Z >2 ‖X‖m‖Z‖m

]1/2
≤ 2k(nα(t))(k−m−2)/2‖E[X⊗2‖X‖m]‖,

and, similarly, replacing m by 0,

‖E[Y ]‖ ≤ 2k(nα(t))(k−2)/2‖E[X⊗2]‖ ≤ 2k(nα(t))k/2−1
√
d.

Then, using the same integration procedure we used to bound the second order
term, we obtain∫ ∞

0

e−kt
√

1− e−2tk−1
E[‖E[n((Sn)t − Sn)⊗k | Sn]‖p]1/pdt

≤ Cp2k
(
n−1/2+(2−q)/2pE[‖X‖p+q] + n−m/4E[‖X‖2+m]1/2

+

{
o(n−m/4) if m < 2

d1/4‖E[X⊗2‖X‖2]‖1/2 if m = 2

)
.

Finally, since

∀M ∈ (Rd)⊗k, ‖M‖H ≤ max
i∈{1,...,d}k−1

‖Hi‖γ‖M‖ ≤
√

(k − 1)!‖M‖,
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we have

∞∑
k=3

(p− 1)k/2

(k − 1)!

∫ ∞
0

e−kt
√

1− e−2tk−1
E[‖E[n((Sn)t − Sn)⊗k | Sn]‖pH ]1/pdt

≤ Cp

(
n−1/2+(2−q)/2pE[‖X‖p+q] + n−m/4E[‖X‖2+m]1/2

+

{
o(n−m/4) if m < 2

d1/4‖E[X⊗2‖X‖2]‖1/2 if m = 2

)
,

which is the last bound required to conclude the proof.

6.3 Proof of Proposition 12

While T is not a domain of Rd, the arguments used in the proof of Theorem 5
still hold. Let µ̃ be the measure with density f̃ = Cf2+2/d, where C > 0 is a
renormalization factor. For any two smooth functions φ and ψ, we have, using
standard integrations by parts,∫

T

φf−2/d(∇ log f.∇ψ + δψ)dµ̃ = C

∫
T

φ(∇ log f.∇ψ +
1

2
δψ)f2dλ

=
C

2

∫
T

φ(∇ log f2.∇ψ + δψ)f2dλ

=
C

2

∫
T

φ÷ (f2∇ψ)dλ

= −C
2

∫
T

f2∇φ.∇ψdλ

=
C

2

∫
T

ψ ÷ (f2∇φ)dλ

=
C

2

∫
T

ψ(∇ log f2.∇φ+ δφ)f2dλ

=

∫
T

ψf−2/d(∇ log f.∇φ+ δφ)dµ̃,

hence µ̃ is a reversible measure for Lµ̃ = r̃2(∇ log f.∇+δ). As T is compact and
f is smooth and strictly positive, f−2/d∇ log f and f−2/d are smooth. Thus, Lµ̃
verifies a CD(ρ,∞) condition for some ρ ∈ R. Moreover, for any t > 0, (πk,n)t
is a measure with strictly positive smooth density and, since T is compact, finite
Fisher information with respect to µ̃. Finally, thanks to Corollary 2.2 [32], the
last assumption of Corollary 11 is verified.

We pose

s =

(
k

n

)2/d
∫
‖x‖≤1 x

2
1dx(∫

‖x‖≤1 1dx
)1+2/d
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and

rXn(x) = inf

{
s ∈ R+|

n∑
i=1

1‖Xi−x‖≤s ≥ k

}
.

In this Section, we show that there exists a constant C such that with probability
1− C

n ,

(i) supi∈{1,...,n}

∥∥∥ 1
ks

∑
Xj∈B(Xi,r̃)(Xj −Xi)− f−2/d∇ log f(Xi)

∥∥∥ ≤ C(
√
lognn1/d

k1/2+1/d +(
k
n

)2/d
);

(ii) supi∈{1,...,n}

∥∥∥ 1
ks

∑
Xj∈B(Xi,r̃)

(Xj−Xi)⊗2

2 − f(Xi)
−2/dId

∥∥∥ ≤ C (√ logn
k +

(
k
n

)2/d)
;

(iii) supi∈{1,...,n}

∥∥∥ 1
ks

∑
Xj∈B(Xi,r̃)(Xj −Xi)

⊗3
∥∥∥ ≤ C (√lognk1/d

n1/dk1/2
+
(
k
n

)2/d)
;

(iv) ∀m > 3, supi∈{1,...,n}

∥∥∥ 1
ks

∑
Xj∈B(Xi,r̃)(Xj −Xi)

⊗m
∥∥∥ ≤ Cm ( kn)(m−2)/d.

Proposition 12 is then obtained by applying Corollary 11 with s and τ = s.
Let x ∈ Rd. In the remainder of this proof C denotes a generic constant

depending only on d and f . and, for k > 0, we pose Vk =
∫
B(0,1) x

k
1dx and

Nr =

n∑
i=1

1Xi∈B(x,r).

For any 0 < ε < 1, Chernoff’s bound yields

P (|Nr − nPr| ≥ nεPr) ≤ 2e−
ε2nPr

3 . (11)

Taking rM =
(

2k
nV0 min f

)1/d
, we have PrM ≥ 2k

n . Hence, if k
log(n) is sufficiently

large, then P(NrM ≥ k) ≥ 1 − 1
n2 . Hence, P(rXn(x) ≥ rM ) ≥ 1 − 1

n2 . Using a

union-bound, P(supx∈Xn rXn(x) ≥ rM ) ≥ 1 − 1
n . Hence, for k

log(n) sufficiently

large,

∀m > 3,

∥∥∥∥∥∥1

k

∑
Xj∈B(Xi,r̃)

(Xj −Xi)
⊗m

∥∥∥∥∥∥ ≤ rmM
with probability 1− 1

n which implies (iv).
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Let us now prove the first inequality. We have

E[(Xi−x)1Xi∈B(x,r)]

=

∫
B(x,r)

(y − x)µ(dy)

=

∫
B(x,r)

(y − x)f(y)dy

=

∫
B(x,r)

(y − x)f(x) + (y − x)⊗2∇f(x) +
(y − x)⊗3∇2f(x)

2
+ Cr4dy

= V2r
d+2∇f(x) + Crd+4.

Let us pose b1 =
∑
Xi∈B(x,r)Xi − x. Since

E[(Xi − x)21Xi∈B(x,r)] ≤ r
2Pr,

applying Bernstein’s inequality yields

P
(∣∣b1 − nV2rd+2∇f(x)

∣∣ ≥ C (r√nPr log n+ nrd+4
))
≤ 2

n2
.

For r =
(

k
nV0f(x)

)1/d
, we have |Pr − k

n | ≤ C
(
k
n

)1+2/d
. Hence, by Equation 11,

P
(
|Nr − k| ≤ C

(√
k log n+

k1+2/d

n2/d

))
≥ 1− 1

n2
.

Let b2 =
∑
Xi∈B(x,rXn (x))

Xi − x. With probability greater than 1− 1
n2 ,

|b1 − b2| ≤ CrM
(√

k log n+
k1+2/d

n2/d

)
.

Putting everything together, we have, with probability 1− C
n2∥∥∥∥∥∥ 1

ks

∑
Xi∈B(x,r̃)

(Xi − x)− f−2/d∇ log f

∥∥∥∥∥∥ =

∥∥∥∥ b2ks − f−2/d∇ log f

∥∥∥∥
≤
∥∥∥∥ b1ks − f−2/d∇ log f

∥∥∥∥+ C

(√
log nn2/d

k1/2+2/d
+

1

k

)
≤ C

(√
log nn1/d

k1/2+1/d
+

(
k

n

)2/d
)
.

We finally obtain (i) using a union-bound and (ii) and (iii) can be obtained in
the same way.
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6.4 Proof of Proposition 13

Let n ∈ N, h > 0. We denote by πh the invariant measure of the Markov chain
(Mn)n≥0. We have, by the triangle inequality,

W2(νn, µ) ≤W2(νn, πh) +W2(πh, µ).

Before bounding these two terms, let us prove a few results on πh. Let X
be a random variable drawn from πh and let

ξ =

(
−h ∂u

∂xI
(X) +

√
2hB

)
eI ,

where I is a uniform random variable on {1, . . . , d} and B is a Rademacher
random variable. Let us bound the second moment of X. Since πh is the
invariant measure of (Mn)n≥0, X and X + ξ follow the same law, hence

0 = E[‖X + ξ‖2]− E[‖X‖2]

= E[2 〈X, ξ〉+ ‖ξ‖2]

= E
[
−2h

〈
X,

∂u

∂xI
(X)

〉
+ ‖ξ‖2

]
=

1

d
E
[
−2h

〈
X,

∂u

∂xI
(X)

〉
+ h2‖∇(u)(X)‖2

]
+ 2h.

By our assumption on u, we have

‖∇u(X)‖ ≤ L‖X‖

and 〈
X,

∂u

∂xI
(X)

〉
≥ ρ‖X‖2.

Therefore,
1

d
E[−hρ‖X‖2 + h2L2‖X‖] + 2h ≤ 0,

from which we deduce that

E[‖X‖2] ≤ 2dh

ρ(2h− L2h2)
≤ d

ρ
+O(dh). (12)

In addition to this bound, we can obtain a bound ‖X‖∞. Indeed, for any n ≥ 0
and any i ∈ {1, . . . , d}, we have

|Mn+1
i | ≤ |Mn

i − h
∂u

∂xi
(Mn

i )|+
√

2h

≤

(
(Mn

i )2 − 2Mn
i h

∂u

∂xi
(Mn

i ) + h2
(
∂u

∂xi
(Mn

i )

)2
)1/2

+
√

2h

≤ |Mn
i |
√

1− 2hρ+ h2L2 +
√

2h.
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Thus, since M0 = 0, ‖Mn‖∞ ≤
√
2

ρ
√
h

for any n ∈ N and, since πh is the invariant

measure of (Mn)n≥0,

‖X‖∞ ≤
√

2h

1−
√

1− 2hρ
√
h+ h2L2

a.s.

and, if h is sufficiently small,

‖X‖∞ ≤
2
√
h

hρ
√
h

a.s. (13)

Let us bound W2(νn, πh). For x ∈ Rd, we denote by νx the measure of

Mx = x+

(
−h ∂u

∂xI
(x) +

√
2hB

)
eI .

Let x, y ∈ Rd, we have, for any i ∈ {1, . . . , d},

E[(Mx
i −M

y
i )2] =

d− 1

d
(xi − yi)2 +

1

d

(
xi − yi − h

(
∂u

∂xi
(x)− ∂u

∂xi
(y)

))2

= (xi − yi)2 −
2h

d
(xy − yi)

(
∂u

∂xi
(x)− ∂u

∂xi
(y)

)
+
h2

d

(
∂u

∂xi
(x)− ∂u

∂xi
(y)

)2

≤
(

1 +
L2h2 − 2ρh

d

)
(xi − yi)2.

Hence, by definition of the Wasserstein distance,

W 2
2 (νx, νy) ≤ E[‖Mx −My‖2] ≤

(
1 +

L2h2 − 2ρh

d

)
‖x− y‖2.

Thus, applying Corollary 21 [21] for the Wasserstein distance of order 2 and
using Equation 12,

W2(νn, πh) ≤

(
1−

(
1 +

L2h2 − 2ρh

d

)1/2
)n

W2(ν0, πh)

≤
(

2ρh− L2h2

d

)n/2
W2(ν0, πh)

≤
(

2ρh− L2h2

d

)n/2
2dh

ρ(2h− L2h2)
.

Hence, there exists a constant C1 > 0 depending only on ρ and L such that, if
n = C1

d
hρ log(d/hε) then

W2(νn, πh) ≤ ε

2
. (14)

Let us now bound W2(πh, µ). By Equation 12, πh has finite second moment
and, by assumption, µ is a strictly log-concave measure. Hence, by Theorem
5.1 [2], (πh)t has finite entropy with respect to µ for t > 0. In the remainder of
this proof, we are going to show the following bounds.
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(i) E[ ξdh −∇u(X) | X] = 0;

(ii) E[‖E[ ξ
⊗2d
2h − Id | X]‖2] ≤ 4L4dh

ρ3 +O(dh2);

(iii) E[‖E[ ξ
⊗3d
h | X]‖2] ≤ (4 + 16L4

ρ4 )dh
2L2

ρ +O(dh3);

(iv) ∀k > 3,E[‖E[ ξ
⊗kd
h | X]‖2] ≤ 24kL2khk−2d

ρ2k
.

Then, using these bounds in Corollary 11 with s = h
d and τ = h, we obtain that

W2(πh, µ) ≤ O(d
√
h).

Moreover, whenever µ is the Gaussian measure, we can use a more refined
version of Corollary 11, obtained using Theorem 1, with s = h

d and τ = h to
obtain

W2(πh, µ) ≤ O(
√
dh).

Overall, there exists C2 > 0, depending on ρ, L such that if

h = C2ε
−2

{
d if µ is the Gaussian measure

d2 otherwise
,

then
W2(πh, µ) ≤ ε

2
. (15)

Proposition 13 is then obtained by combining Equations 14 and 15. In order to
conclude this proof, let us prove (i)-(iv).

Equation (i) is true by construction of ξ. Let us prove (ii). By our assump-
tion on u, we have

E

[∥∥∥∥E[
ξ⊗2d

2h
− Id | X]

∥∥∥∥2
]

= h2E

[
d∑
i=1

(∇u(X))4i

]

≤ h2L4E

[
d∑
i=1

(Xi)
4

]
.

Hence, by Equation 13 and Equation 12,

E

[∥∥∥∥E[
ξ⊗2d

2h
− Id | X]

∥∥∥∥2
]
≤ 4L4h

ρ2
E[‖X‖2] ≤ 2L4dh

ρ3
+O(dh2).

Let us now deal with (iii). We have,

E

[∥∥∥∥E[
ξ⊗3d

h
| X]

∥∥∥∥2
]

= 4h2E[‖∇u(X)‖2] + h3E

[
d∑
i=1

(∇u(X))6i

]

≤ 4L2h2E[‖X‖2] + h3L6E

[
d∑
i=1

(Xi)
6

]
.
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Thus, using Equation 13, our assumption on u and Equation 12,

E

[∥∥∥∥E[
ξ⊗3d

h
| X]

∥∥∥∥2
]
≤ (4 +

16L4

ρ4
)h2L2E[‖X‖2]

≤ (4 +
16L4

ρ4
)
dh2L2

ρ
+O(dh3).

Finally, we have

E

[∥∥∥∥E [ξ⊗kdh | X
]∥∥∥∥2
]

=
1

h2
EX

[
d∑
i=1

EB
[(
−(h∇u(X))i +

√
2hB

)k]2]

≤ 1

h2

d∑
i=1

E
[(
−(h∇u(X))i +

√
2hB

)2k]

≤ 22k−1

h2

(
h2kE

[
d∑
i=1

(∇u(X))2ki

]
+ 2khkd

)

≤ 22k−1

h2

(
h2kL2kE

[
d∑
i=1

(Xi)
2k

]
+ 2khkd

)

≤ 22k−1

h2

(
L2k22khkd

ρ2k
+ 2khkd

)
≤ 24kL2khk−2d

ρ2k
.
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