
HAL Id: hal-01167357
https://hal.science/hal-01167357v1

Submitted on 24 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing end-to-end QoS Paths in the Internet
Considering Multiple Alliances

Romain Jacquet, Géraldine Texier, Alberto Blanc

To cite this version:
Romain Jacquet, Géraldine Texier, Alberto Blanc. Computing end-to-end QoS Paths in the
Internet Considering Multiple Alliances. Networks 2014 : 16th International Telecommunica-
tions Network Strategy and Planning Symposium, Sep 2014, Funchal, Portugal. pp.1 - 6,
�10.1109/NETWKS.2014.6959248�. �hal-01167357�

https://hal.science/hal-01167357v1
https://hal.archives-ouvertes.fr

Computing end-to-end QoS Paths in the
Internet Considering Multiple Alliances

Romain Jacquet∗, Géraldine Texier∗, Alberto Blanc∗
∗Telecom Bretagne/Irisa, 2 rue de la châtaigneraie, Cesson Sévigné, 35576, France

Email: {firstname.lastname}@telecom-bretagne.eu

Abstract—Value added services like VoIP, videoconfer-
encing and IPTV need end-to-end Quality of Service (QoS)
guarantees in order to work correctly. As the Internet is a
collection of Autonomous Systems (AS), most of the time
the communication endpoints belong to different ASes, so
that all the ASes traversed by the communication must
cooperate in order to offer end-to-end guarantees. Yet
each AS is usually unwilling to disclose any detail about
its internal network. To address this confidentiality issue
we propose a system where each AS publishes a list of
offers, specifying the QoS guarantees between its entry
and exit points, without specifying anything else about its
internal network. As proposed in several works, it is also
possible for ASes to form alliances, which can be seen as
“macro ASes” that publish the available offers between
the entry and exit points of the alliance. In this paper
we present ACQA, an algorithm that can find end-to-end
paths satisfying given QoS constraints by combining the
offers of several alliances and/or ASes.

I. INTRODUCTION

In the Internet, value-added services (HD video, on-
line games, cloud computing) represent an ever increas-
ing share of the total traffic. In order to achieve their
full potential, these services need end-to-end Quality
of Service (QoS) guarantees on several parameters like
bandwidth, delay, and packet loss. Several studies have
addressed the problem of finding paths satisfying a set
of given requirements. This problem is also known as
multi-constrained routing, which is known to be NP
complete [1].

Practical solutions to this problem must be scalable,
given the size of the Internet, and must also allow
each Autonomous System (AS) to keep confidential its
internal structure. The latter problem can be addressed
by combining several Service Level Agreements (SLA),
one for each AS. An SLA is a contract, where each AS
specifies what guarantees it can offer between an entry
and an exit point. As these guarantees apply only within
a single domain, one must combine several SLAs in
order to offer end-to-end guarantees. For such a solution
to work, each AS needs only to publish a list of SLAs
that it can offer between its entry and exit points. It
does not need to disclose how these guarantees are
implemented, meeting the confidentiality requirement.

Moreover, each AS is free to choose different technical
solutions, respecting its autonomy with respect to other
ASes.

As the number of ASes in the Internet is large (about
50000 at the time of this writing [2]), and as some of
them have non-overlapping geographical coverage, it is
conceivable that a certain number of ASes could form
alliances (or federations). Several works have already
proposed different variants of such a scheme [3]–[7].
We define an alliance as a group of ASes that trust
each other and that agree to share business and/or
technical policies, similarly to what has been proposed
by the ETICS project [4]. Given the number of ASes
in the Internet we conjecture that they will create more
than one alliance, with each AS belonging to only one
alliance and with some ASes remaining independent
(i.e., they do not belong to any alliance).

Unlike previous works that deal with finding QoS
paths within a single alliance, we introduce ACQA
an algorithm capable of finding end-to-end QoS paths
involving several ASes and/or alliances. This is an
extension of the SANP algorithm [8], which can find
feasible non-dominated paths in a graph comprised only
of ASes (i.e., no alliances). ACQA outperforms SANP
as the paths it finds tend to dominate the paths found
by SANP (based on the generational distance [9] and
zitzler [10] metrics).

The remainder of the paper is organized as follows:
we present our model in Section II and related works in
Section III. In Section IV, we introduce ACQA and in
Section V we present and discuss the simulation results.

II. MODEL

A. The Internet AS Graph

The Internet topology is often modeled as a graph
G(V,E) where V is a set of vertices representing the
ASes and E is a set of edges representing the inter-
domain links. We assume that each AS is willing to
publish a list of available SLAs, describing the QoS
guarantees it can offer between two of its Autonomous
System Border Routers (ASBRs). Each SLA lists the

guarantees offered on a certain number of metrics (e.g.,
bandwidth, delay, packet loss) for each pair of entry-exit
point, and the corresponding price. Note that an AS can
decide not to offer any guarantees between a certain
number of ASBRs by publishing an SLA advertising
zero capacity as well as infinite delay and packet loss
between these ASBRs, in other words the AS can offer
only a best effort service between some of its ASBRs.
As long as these best-effort-only SLAs are the exception
and not the norm, it will be possible to offer end-to-
end QoS guarantees, in most cases, thanks to the great
variety of paths in the Internet.

We represent an AS by a complete graph in which
all the interfaces of its ASBRs are connected. These
intra-domain links represent the SLAs offered by the
ASes. It is important to note that they do not represent
at all the internal topology of the ASes. Hence, the
confidentiality property of the ASes is respected. We
connect each interface of the ASBR to exactly one
interface of an ASBR belonging to a different AS. These
edges represent the Inter-domain links. We characterized
each intra-domain link by a vector w with K weights
representing the K additives QoS metrics. For sim-
plicity reasons, we assume the QoS metrics to be the
same in both directions so that we use an undirected
graph. Figure 1 shows a sample topology of six ASes
with the corresponding ASBRs. While the constraint of
having each ASBR connected to only one ASBR in a
different AS might seem a limitation of the model, it
can be easily addressed by using multiple ASBRs to
represent any ASBR that is connected to more than one
ASBR belonging to another domain. In other words,
one can think of the ASBR as actually representing the
interfaces of the router.

Fig. 1: Representation of the AS-offers and alliance-
offers within the Internet

B. Alliances

Starting from a graph G(V,E) as defined above
(Section II-A), it is possible to construct an Alliance-
graph G′(V ′, E′) in which the nodes represent either
ASes or alliances. In the same way the ASes publish
offers (AS-offer) between the interfaces of its ASBRs,

we assume that alliances publish offers (alliance-offers)
between the edge-interfaces of its edge-ASBRs. An
edge-interface is an interface connected with another
interface that belongs to an AS outside the alliance. An
edge-ASBR is an ASBR that has at least one edge-
interface. For rest of the paper we denote an edge-
interface of an edge-ASBR as an edge-ASBRI. We
connect by a complete graph the edge-ASBRIs of an
alliance.

These intra-alliance links represent the offers (SLAs)
of the alliances, hiding the internal topology for confi-
dentiality purposes. We characterize each intra-alliance
link by a vector w with K weights representing the
K additives QoS metrics associated to the SLA offered
between the linked nodes. Just like each AS is free to
decide the SLAs it offers, it is up to each alliance to
define a list of available SLAs. The ASes belonging to
the alliance do not need to specify how these alliance-
SLAs are implemented inside the alliance. As an ex-
ample, let’s assume that the ASes B, C and D in the
AS-level in Figure 1 decide to form an alliance named
Alliance1. The corresponding Alliance-level topology is
shown in the top layer in Figure 1.

III. RELATED WORKS

Several works have already considered the notion of
alliance between different ASes. Most of them focuses
on finding QoS paths within a single alliance. The
FP7 project ETICS [4] introduced different notions of
alliance, depending on the trust between the members,
the business and/or technical policies that are shared
to a lesser degree. For example, in an open association
(lower level of trust), only bilateral agreements between
neighbors (SLAs exchanges) are allowed. It is possible
to build end-to-end paths by combining the SLAs of the
ASes along a path.

In [5] the authors propose to compute QoS paths
within an alliance via the Routing Control Platform
(RCP) [11]. RCP is an architecture that aims at solving
the scalability issue of internal Border Gateway Protocol
in a large full mesh network. RCP has been designed
to correctly distribute the routes in fast and reliable
way among the routers. In the context of computing
QoS paths, the authors utilize the RCP architecture to
install a RCP entity within each domain of an alliance.
The RCP entities are responsible for establishing and
maintaining connections between each other and to
compute and to handle connection requests with QoS
requirements. To do so, they exchange reachability
information through TCP.

In [6], Service Level Specifications (SLS) must be
published to a neutral centralized third party, which is
responsible for negotiating, on behalf of the customer, a
chain of SLSs with the rest of the members such that the

customer request is satisfied. In [7], the authors use a
Q-learning algorithm to negotiate SLAs between NSPs
that belong to the same federation. In [12], the authors
present the notion of federation as a short association
between different stakeholders within the Internet in
order to achieve end-to-end services.

To the best of our knowledge, [3] is the only work
that considers several alliances when searching for end-
to-end QoS paths. They do not consider the notion
of “alliance-offer” but rather, an alliance is defined as
a group of ASes that share some information about
network services availability and reachability. User re-
quests specify only the source node, the requested
service and QoS constraints but not the destination node.
In our work we consider communications between two
given nodes and not between a node and any other node
capable of offering a certain service.

IV. ALGORITHM

We present ACQA an algorithm capable of finding
end-to-end QoS paths within a graph composed of ASes
and alliances. The basic idea of ACQA is to construct a
sub-graph covering a limited region around the shortest
path from the destination to the source in order to
identify feasible non-dominated paths that can satisfy a
connection request. The algorithm relies on the notion of
neighborhood, i.e., the set of nodes whose distance from
a reference node is at most r0. More precisely, as ex-
plained in section II-B, let G′ = {V ′, E′} be the AS and
alliance-level graph. The neighborhood of node i is the
set Ni = {V ′

i , E
′
i} where V ′

i = {x|d(i, x) ≤ r0, x ∈ V }
and E′

i = {e|e(j, k) ∈ E, j ∈ V ′
i , k ∈ V ′

i } where
d(i, j) is the distance (shortest path) between node i
and node j and e(j, k) is the edge between nodes j and
k. We suppose that each node i in the graph knows its
neighborhood Ni.

A source node ns wishing to find an end-to-end path
with destination node nd and with given QoS guarantees
will send a request q specifying the QoS constraints to
nd. The request is forwarded to nd through the existing
routing mechanism. Upon the reception of this request,
nd will execute the algorithm in Figure 2. For the sake
of simplicity, throughout the paper, we are going to
assume that this existing routing mechanism uses the
shortest path even though ACQA works with any other
routing criteria.

The execution of the algorithm starts at the desti-
nation (line 1), by initializing the variables T and G′′

(lines 2, 3) that will contain, respectively, the nodes in
the shortest path from the destination to the source and
the sub-graph. The loop starting at line 4 is repeated at
each node along the shortest path: the current node (n)
adds itself to the set T and then merges its neighborhood
with the sub-graph (line 6). Recall that (V ′

n, E
′
n) is the

ACQA(q, ns):
1: n← nd {phase 1}
2: T ← ∅ {set of the nodes already visited, it will

contain the shortest path between ns and nd}
3: G′′ ← (V ′′ ← ∅, E′′ ← ∅) {G′′ is the (initially

empty) sub-graph}
4: repeat
5: T ← T ∪ {n}
6: G′′(V ′′, E′′)← G′′(V ′′ ∪ V ′

n, E
′′ ∪ E′

n) {merge
the neighborhood of node n to the sub-graph}

7: if |V ′′| > M then
8: G′′ ← limitGraphSize(G′′,M ,T) {heuristic to

reduce the size of G′′}
9: end if

10: n← n.nextAS(ns)
11: n.send(G′′, q) {the request and the sub-graph are

forwarded to the next node (AS or alliance) on
the path toward ns}

12: until n = ns
13: return ns.selectPath(G′′) {phase 2}

Fig. 2: Computation of an end-to-end path between ns
and nd for request q.

neighborhood of node n and that each node knows its
own neighborhood. Note that all these sets are defined
whether n is a single AS or an alliance. The offers
published by an alliance are an example of an “open as-
sociation” as defined by the ETICS project: an alliance-
offer is the composition (juxtaposition) of several AS-
offers within the alliance and can be constructed by any
of the solutions proposed in Section III. It is reasonable
to consider that the alliance has several possibilities to
instantiate its offers, therefore each offer is valid for a
fairly long time (at least of the order of a few days, if
not weeks or months) and its cost can be computed in
advance. For each alliance, ACQA considers the offers
between the entry ASBR and each exit ASBR connected
to the following alliance (or AS) in the path. This is
possible because, when ACQA is searching for paths in
G′′ it first finds a path in G′′ and it considers the cost of
traversing an alliance (or an AS) only when it already
knows the next hop.

If the size of the sub-graph is above a given
threshold (line 7), we use the algorithm presented in
Figure 3 to reduce its size, as explained below. Once
the request reaches the source, G′′ is a connected sub-
graph containing both the source and the destination.
The source uses this sub-graph in phase 2 (line 13) to
compute the feasible and non-dominated paths between
itself and the destination. Figure 4 shows the resulting
sub-graph G′′ at the end of the first phase. In our
implementation (discussed in section V), the source uses
a modified depth first search to explore all the simple

limitGraphSize(G′′, M , T)

1: H ← (VH ← T,EH ← {e(j, k)|j ∈ T, k ∈ T})
2: while |VH | < M do
3: Cj ← {e(j, k)|k ∈ H} ∀j ∈ {G′′ \H}
4: l← argmaxj {|Cj |}
5: H ← (VH ∪ {l}, EH ∪ Cl)
6: end while
7: return H

Fig. 3: Heuristic to limit the size of G′′ to at most M
nodes

paths of length at most 8 within G′′. Note that the source
can use other algorithms (heuristics) to compute these
paths.

In order to improve the scalability of the algorithm
we use a heuristic to reduce the number of nodes in
the sub-graph. For each request we fix the maximum
number of nodes in the sub-graph as a multiple (α)
of the length of the shortest path between the source
and the destination. In the implementation presented
in section V, we set α = 50. Figure 3 presents the
algorithm used to ensure that the size of G′′ is at most
M . It starts by setting H to the portion of the shortest
path explored so far (line 1). Note that as each node
in T has either one or two of its neighbors in T , as it
is a node on the shortest path between the source and
the destination. Then (line 3) for each node j in G′′ but
not already in H , it builds the set Cj containing all the
edges between j and a node in H (e(j, k) = ∅, if there
is no edge between j and k). In line 4, l is set to the
node that is not already in H and that has the largest
number of edges connecting it to nodes already in H .
This node is added to H in line 5 with all the edges
connecting it to the nodes in H , so that H is always
connected. The algorithm adds one node to H at each
iteration of the while loop starting on line 2, until there
are M nodes in H .

ACQA is based on SANP [8], which is an algorithm
that can find end-to-end paths satisfying given QoS
constraints in a graph where each node is an AS. In
other words, SANP does not handle alliances. The basic
idea of SANP and ACQA is the same: they both build
a sub-graph by combining the neighborhoods of the
nodes along the shortest path between the source and
the destination.

V. SIMULATION RESULTS

We have implemented ACQA in a simulator, in
order to evaluate its performance and to compare it with
SANP. The simulator takes as input a graph, the offers
of each node and a list of connection requests. Each

Fig. 4: AS and alliances in the computed sub-graph

node in the graph is either an AS or an alliance. Each
node is associated with a list of offers that specify the
delay, the cost and the bandwidth available between any
two of its entry points. In other words a node can be
seen as a full mesh between all the ASBRs of the AS
(or alliance). Both the cost and the delay of each offer
are uniformly distributed on [1, 50] and the capacity of
each link is 1000. Connection requests arrive according
to a Poisson process, with an average of one connection
each 20 seconds. Each connection request specifies the
source and destination AS and the constraints for the
delay, the cost and the bandwidth. In order to simulate
end-nodes, we introduce a “virtual” node (vi) in each
AS and in each alliance. We connect this node to all the
ASBRs of its AS. The QoS parameters of these links
are randomly selected for each connection, using the
same distribution as the other intra-domain links.

In order to build an Internet-like AS-graph, we use
Inet [13] to generate a graph with 2000 nodes, where
each node is an AS. Then we use the MCL [14]
algorithm to build nine alliances with 429, 188, 99,
65, 52, 42, 30, 28 and 25 nodes respectively. MCL
uses a random walk to determine “attractive nodes” and
“attracted nodes.” An attractive node and its attracted
nodes form an alliance. MCL ensures that a node cannot
belong to different alliances and that each alliance is
a connected graph. We use the original Inet graph
with 2000 nodes to run SANP and the graph with
the alliances to run ACQA. In both cases we set the
neighborhood radius (r0) to 1.

We have simulated 1000 requests using both SANP
and ACQA. The source and destination AS are chosen
at uniformly at random. The delay and cost constraints
are uniformly distributed on [1 × 106, 10 × 106] and
the bandwidth constraint is 1. We have chosen these
loose constraints in order to ensure that both SANP
and ACQA will stop only when they have reached
the destination and not because the constraints are not
satisfied. (We have also considered the case where the

bandwidth is a limiting constraint and we present these
results below.) For 22 requests all the paths found
by SANP are dominated by at least one path found
by ACQA; for these requests we can say that ACQA
is better than SANP. For five requests we have the
opposite. Note that in these cases, there is at least one
solution in a set that dominates all the solutions in the
other. Therefore in these cases it is possible to say that
one algorithm is actually better than the other. For the
remaining 973 requests we cannot immediately establish
which algorithm is better. In the following section we
present the metrics that we have used to characterize
these solutions.

A. Comparing Solutions

Zitzler [10] introduced a metric that counts the
average number of solutions in a set that are dominated
by at least one solution in another set. Formally, for two
sets of solutions A and B

C(A,B) ,
|{b ∈ B;∃a ∈ A : a � b}|

|B|

where a � b means that a dominates b and |A| is the
order (cardinality) of set A. C(A,B) = 1 means that
each solution in B taken individually is dominated by
at least one solution in A while C(A,B) = 0 means
that none of the solutions in B are dominated by a
solution in A. As an example, in Figure 5: C(A,B) = 1

4
and C(B,A) = 0

3 = 0. Note that the situation corre-
sponding to the 22 requests mentioned above does not
correspond to the case the C(A,B) = 1; for example
in the case of Figure 5 those 22 requests correspond to
the case where there is at least one solution in A that
dominates all the solutions in B.

Even though one could say that if path a dominates
b (a � b) then path a is better than path b, it is still
worthwhile to compute the distance between these two
paths. The generational distance G [9] computes how
far a solution in a set is from its closest solution in
the other set. We use a slightly modified version of
G that computes the mean of the Euclidean distances
between each solution in A and its closest solution in
B. Formally,

G(A,B) ,
1

n

n∑
i=1

gi.

where n = |A|. If ai is dominated by its closest solution
in B we set gi = −di where di is the euclidean distance
between ai and its closest solution in B, we set gi =
di if ai dominates its closest solution in B and gi =
0 otherwise. As an example in Figure 5, G(A,B) =
g1+g2+g3

3 where g1 is positive, g2 and g3 are equal to
0. If we compute G(B,A), the distance between b2 and
its nearest solution in A (i.e., a1) would be negative.

Fig. 5: Summary of the metrics

Using these metrics, we can now compare the 973
connections mentioned above. Figure 6 shows the CDF
of C(SANP,ACQA) and C(ACQA,SANP). We
remark that the CDF of C(ACQA,SANP) is always
below the CDF of C(SANP,ACQA) meaning that
the solutions found with ACQA tend to dominate more
often the paths found with SANP than the opposite.
Based on these observations we can conclude that for
the 973 requests, the solutions found by ACQA are
“better” than those found by SANP.

Figure 7 shows by “how much” the paths found
by ACQA tend to dominate the paths found by
SANP. For sake of clarity, when computing the
CDF of G(SANP,ACQA) and G(ACQA,SANP),
we do not take into account the cases where
G(SANP,ACQA) = 0 and G(ACQA,SANP) =
0 respectively. G(SANP,ACQA) = 0 (resp
G(ACQA,SANP) = 0) means that no solution found
with SANP (resp ACQA) taken individually dominates
or is dominated by its closest solution found with ACQA
(resp SANP). As we are interested in the distance
between two paths from different sets with one that
dominates the other, we can skip this information. First,
the CDF of G(SANP,ACQA) is negative for 70% of
the cases while G(ACQA,SANP) is negative for 30%
of the cases confirming that the paths found by ACQA
tend to dominate the paths found by SANP. Second,
given that the average cost (and delay) of a link is 25,
by looking at the x-axis we can conclude that, when
G(SANP,ACQA) is negative (i.e., the solution found
by ACQA dominates the solution found by SANP), the
path found by ACQA is relatively better than the one
found by SANP.

These results indicate that the “quality” of the paths
found by ACQA is better than those found by SANP.
Even though the constraints of each request are never a
limiting factor, we can conclude that, if this were not the
case, ACQA would be able to satisfy more connection
requests than SANP given that it finds paths that tend to
dominate those found by SANP. We have confirmed this

0.0 0.2 0.4 0.6 0.8 1.0
Zitzler metric

0.0

0.2

0.4

0.6

0.8

1.0

C(ACQA_SANP)

C(SANP_ACQA)

Fig. 6: Zitzler metric CDF

80 60 40 20 0 20 40 60
generational distance

0.0

0.2

0.4

0.6

0.8

1.0
G(ACQA_SANP)

G(SANP_ACQA)

Fig. 7: Generational Distance CDF

by simulating 1000 requests with the same loose delay
and cost constraints but with a capacity constraint of
999. As the capacity of each link is 1000, each link can
support only one connection. Of these 1000 requests,
570 have been satisfied with SANP while 739 requests
with ACQA. Once again ACQA outperforms SANP by
satisfying more requests.

The improved performance of ACQA can be ex-
plained by the fact that some of the nodes in the sub-
graph are alliances that can offer a greater diversity in
terms of paths than single ASes. Yet this solution is still
as scalable as SANP, given that the number of nodes
in the sub-graph is of the same order of magnitude in
ACQA and SANP. (Actually the sub-graph has fewer
nodes in ACQA.)

VI. CONCLUSION

In this article we have presented ACQA, an algo-
rithm capable of computing end-to-end QoS paths in
a graph comprised of alliances and ASes, where both
ASes and alliances publish a list of offers describing the
QoS guarantees that they can offer between their entry
and exit points (ASBRs). By constructing a sub-graph
containing some of the nodes between the source and
the destination, ACQA can compute a set of feasible
non-dominated paths. The source can then select one of
these paths based on its preferences.

We have shown that for the vast majority of the
requests the paths found by ACQA are better than the
paths found by SANP. Even though the size of the
sub-graph is of the same order of magnitude. In the
future, we want to investigate whether the way used
to construct alliance-offers have an influence on the
solutions found.

REFERENCES

[1] Z. Wang and J. Crowcroft, “Quality-of-service routing for
supporting multimedia applications,” Selected Areas in Com-
munications, IEEE Journal on, 1996.

[2] A. Lodhi, A. Dhamdhere, and C. Dovrolis, “Open peering by
internet transit providers: Peer preference or peer pressure?” in
IEEE INFOCOM, 2014.

[3] D. Barth, T. Mautor, and D. V. Monteiro, “Impact of alliances
on end-to-end QoS satisfaction in an interdomain network,” in
ICC, 2009.

[4] N. Le Sauze, A. Chiosi, R. Douville, H. Pouyllau, H. Lonsetha-
gen, P. Fantini, C. Palasciano, A. Cimmino, M. C. Rodriguez,
and O. Dugeon, “ETICS: QoS-enabled interconnection for
future internet services,” Future network and mobile summit,
2010.

[5] N. Kumar and G. Saraph, “End-to-end QoS in interdomain
routing,” in ICNS, 2006.

[6] H. Pouyllau and R. Douville, “End-to-end QoS negotiation in
network federations,” in NOMS Wksps, 2010 IEEE/IFIP, 2010.

[7] H. Pouyllau and G. Carofiglio, “Inter-carrier SLA negotiation
using q-learning,” Telecommunication Systems, Jun. 2011.

[8] R. Jacquet, G. Texier, and A. Blanc, “SANP: an algorithm for
selecting end-to-end paths with QoS guarantees,” in FutureNet-
workSummit, 2013.

[9] D. A. Van Veldhuizen, “Multiobjective evolutionary algorithms
classifications, analyses, and new inovations,” 1999.

[10] E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto
approach,” IEEE Transactions, 1999.

[11] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. Van
Der Merwe, “The case for separating routing from routers,” in
ACM SIGCOMM, 2004.

[12] J. Famaey, S. Latr, T. Wauters, and F. De Turck, “End-to-end
resource management for federated delivery of multimedia
services,” Journal of Network and Systems Management,
Sep. 2013. [Online]. Available: http://link.springer.com/10.
1007/s10922-013-9288-y

[13] J. Winick and S. Jamin, “Inet-3.0: Internet topology generator,”
Technical Report CSE-TR-456-02, Tech. Rep., 2002.

[14] Stijn Van Dongen, “A cluster algorithm for graphs,” 2000.

