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MONOKINETIC SOLUTIONS TO A SINGULAR VLASOV EQUATION FROM

A SEMICLASSICAL PERSPECTIVE

RÉMI CARLES AND ANNE NOURI

ABSTRACT. Local in time mono-kinetic solutions to a singular one-dimensional Vlasov

equation are obtained as the semiclassical limit of the Wigner transform associated to a

logarithmic Schrödinger equation.

1. INTRODUCTION AND MAIN RESULT

This paper is concerned by the Cauchy problem for the Vlasov equation

(1.1) ∂tf + ξ∂xf − λ
(

∂x ln(ρ)
)

∂ξf = 0, f(0, x, ξ) = f0(x, ξ), t > 0, (x, ξ) ∈ R
2,

whereλ > 0 and ρ(t, x) =
∫

R
f(t, x, ξ)dξ. It arises in plasma physics, e.g. for quasineutral

plasmas in the core or tokamaks when one focuses on the direction of the magnetic lines.

There, f denotes the ionic distribution function and the electrons of the plasma are assumed

adiabatic.

Due to the derivative of the density ρ with respect to space in the force term ∂x ln(ρ), this

equation is highly singular. The Cauchy problem can be proven to be well-posed for very

specific initial data like mono-kinetic distribution functions of the form

f0(x, ξ) = ρ0(x)dx ⊗ δξ=Φ′
0
(x),

with time-dependent mono-kinetic solutions of the form

f(t, x, ξ) = ρ(t, x)dx ⊗ δξ=∂xΦ(t,x),

with (ρ, ∂xΦ) solution to a system of isothermal Euler equations, with initial datum (ρ0,Φ
′
0).

This paper addresses the existence of mono-kinetic solutions to (1.1), as limits of the

Wigner transform of the solution to a logarithmic Schrödinger equation.

We construct a solution to (1.1) such that ρf remains bounded away from zero. To do so,

we do not consider ρ ∈ Hs(R) the standard Sobolev space, or ρ ∈ ρ∗ +Hs(R) for some

ρ∗ > 0, but rather Zhidkov spaces, as introduced in [19, 18], and further analyzed in [8] in

the case of Schrödinger equations.

For s > 1, we set

Xs(R) =
{

f ∈ L∞(R), f ′ ∈ Hs−1(R)
}

.

Note that since we work in dimension one, we have, for all s > 1, Hs(R) ⊂ Xs(R), and

Xs(R) is an algebra.

The main result of the paper is the following theorem.

Theorem 1.1. Let λ > 0 and s > 2. Suppose that (ρ0,Φ0) ∈ Xs(R) × C(R) with

Φ′
0 ∈ Xs(R) and ρ0(x) > ρ0∗ for some positive constant ρ0∗.

RC was supported by the French ANR projects SchEq (ANR-12-JS01-0005-01) and BECASIM (ANR-12-

MONU-0007-04).
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There are T > 0, α > 0, ρ ∈ C([0, T ];Xs(R)), Φ ∈ C([0, T ]× R), with

∂xΦ ∈ C([0, T ];Xs(R)) and ρ(x) > α,

such that

µ = ρ(t, x)dx ⊗ δξ=∂xΦ(t,x) with (ρ,Φ)
∣

∣

∣

t=0
= (ρ0,Φ0),

is a measure solution to (1.1).

Remark 1.2. In (1.1), the term ∂x

(

ln
∫

µdξ
)

∂ξµ can be considered in a weak sense as

∂ξ

(

∂x
(

ln
∫

µdξ
)

µ
)

, since
∫

µdξ = ρ ∈ C([0, T ];C1(R)) and ρ > 0.

From a fluid dynamics perspective, it is well-known that µ = ρ(t, x)dx ⊗ δξ=∂xΦ(t,x)

is a distributional solution of (1.1) if and only if its moments

ρ(t, x) =

∫

f(x, ξ)dξ and ρ(t, x)u(t, x) =

∫

ξf(t, x, ξ)dξ

are solutions of the isothermal Euler system

(1.2)

{

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x
(

ρu2 + ρ
)

= 0.

For (ρ, u) with values in ]0,+∞[×R, (1.2) is a strictly hyperbolic system. Consequently,

for (ρ0, u0) ∈ (X2(R))2 with ρ0 > α for some α > 0, there are T > 0 and

(ρ, u) ∈
(

C1([0, T ] × R)
)2

solution to the Cauchy problem associated to (1.2) and the

initial datum (ρ0, u0). Note that the assumption on the initial density ρ0 is more general

than merely ρ0 ∈ ρ0∗ +Hs(R) for some s > 2, since for instance, ρ0 may have different

limits as x → −∞ and x → +∞, or, even, no limit at all.

In this paper, we make an extra connection with a logarithmic Schrödinger equation, for

which the above system corresponds to a limit system in the semiclassical regime.

The plan of the paper is the following. Section 2 recalls the main steps of the derivation of

the model and related mathematical results. Section 3 studies the underlying Schrödinger

equation. In Section 4, the convergence of the Wigner transform is performed. A link is

made in Section 5 between the limiting system and the Cauchy problem (1.1).

2. DERIVATION OF THE MODEL AND RELATED RESULTS

In this section, we recall the main lines of the derivation of the model, used for study-

ing fusion plasmas ([10]). The evolution of the ions in the core of such plasmas is well

described by the Vlasov equation

∂tf + v · ∇xf +
Ze

mi
(−∇xΦ + v ∧B) · ∇vf = 0,

where f is the ionic distribution function depending on time, position (in the domain Ω
of the plasma) and velocity (in R3), Ze and mi are the ion charge and mass respectively.

The electric potential Φ and the magnetic field B should be governed by the Maxwell

equations. But a finite Larmor radius approximation is derived in the limit of a large
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and uniform external magnetic field. This leads to the following equation for the ionic

distribution function f in gyro coordinates,

(2.1) ∂tf + v‖∂x‖
f − J0

ρL
(∂x‖

Φ)∂v‖f −
(

J0
ρL
∇x⊥

Φ
)⊥ · ∇x⊥

f = 0.

Here, the index ‖ (resp. ⊥) refers to the direction parallel (resp. orthogonal) to the external

magnetic field. For any vector u = (ui) ∈ R3, u⊥ denotes the vector (u2,−u1, 0). The

operator J0
ρL

is a Bessel operator performing averages on circles of Larmor radius ρL in

planes orthogonal to the magnetic field. Since it is not used in this paper, we do not enter

into more details about it. The electrons move quite more quickly than the ions, so that

their density ne is given in terms of the electric potential Φ by the Maxwell-Boltzmann

equation

(2.2) ne = n0e
e
Te

(Φ−<Φ>).

Here, e (resp. Te) is the electronic charge (resp. temperature), and < Φ > is the average

of the potential on a magnetic field line. Due to the electroneutrality of the plasma, the

Poisson equation is replaced by the electroneutrality equation

ne = ρ,

where ρ is the ionic density. The operator J0
ρL

induces some regularity in the orthogonal

direction, but none in the parallel direction. The two-dimensional dynamics in the direction

perpendicular to the magnetic field is studied in [12]. In order to analyze the difficulty

coming from the highly singular term J0
ρL
(∂x‖

Φ)∂v‖f , we restrict to a one-dimensional

spatial setting, e.g. by considering ionic distribution functions written in the form

f(t, x, v) = f‖(t, x‖, v‖)f⊥(|v⊥|),
with

∫ +∞

0

f⊥(|v⊥|)2π|v⊥|d|v⊥| = 1.

Then the term f⊥ has no incidence in equation (2.1) and can be factorized. The equation

that f‖ should solve is

∂tf‖ + v‖∂x‖
f‖ − λ

(

∂x‖
ln(ρ‖)

)

∂v‖f‖ = 0, t > 0, (x‖, v‖) ∈ R
2,

i.e. the partial differential equation in (1.1) for f‖ (resp. ρ‖, x‖, v‖) denoted by f (resp. ρ,

x, ξ), and λ = Te

e .

Mathematical results related to (1.1) have been obtained for a system close to equilibrium,

i.e. in the case where the departure of the electric potential Φ from its average along the

magnetic lines < Φ > is small. Equation (2.2) simplifies into

ne = n0

(

1 +
e

Te
(Φ− < Φ >)

)

,

so that (1.1) is replaced by

(2.3) ∂tf + ξ∂xf − λ
(

∂xρ
)

∂ξf = 0, t > 0, (x, ξ) ∈ R
2.

The Cauchy problem for (2.3) is locally well-posed for initial analytic data [13] but is ill-

posed in the sense of Hadamard for regular initial data in Sobolev spaces and arbitrarily

small time [2].
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3. AN UNDERLYING LOGARITHMIC SCHRÖDINGER EQUATION

For ε > 0, consider the Cauchy problem for the Schrödinger equation

(3.1) iε∂tu
ε +

ε2

2
∂2
xxu

ε = λ ln(|uε|2)uε, uε(0, x) =
√

ρ0(x)e
iΦ0(x)/ε.

Following the idea from [11], any function uε = aεeiΦ
ε/ε, with (t, x) 7→ aε(t, x) ∈ C and

(t, x) 7→ Φε(t, x) ∈ R solutions to the quasilinear problem

(3.2) ∂tΦ
ε +

(∂xΦ
ε)2

2
+ λ ln

(

|aε|2
)

= 0, Φε(0, x) = Φ0(x),

(3.3) ∂ta
ε + ∂xΦ

ε∂xa
ε +

aε

2
∂2
xxΦ

ε = i
ε

2
∂2
xxa

ε, aε(0, x) =
√

ρ0(x) =: a0(x),

is a solution to (3.1). An important remark is that by allowing aε to be complex-valued

(even though its initial datum is real-valued), one gains a degree of freedom to dispatch

terms from (3.1) into (3.2)-(3.3), and the choice introduced by Grenier is much more robust

than the Madelung transform when semiclassical limit is considered (see [3]).

3.1. Constructing the solution. Determining Φε solution to (3.2) turns out to be equiva-

lent to determining vε = ∂xΦ
ε and aε solution to

(3.4)







∂tv
ε + vε∂xv

ε + λ∂x ln
(

|aε|2
)

= 0, vε(0, x) = Φ′
0(x),

∂ta
ε + vε∂xa

ε +
aε

2
∂xv

ε = i
ε

2
∂2
xxa

ε, aε(0, x) = a0(x).

Indeed, given (vε, aε) solution to (3.4), we can define Φε by

(3.5) Φε(t, x) = Φ0(x) −
∫ t

0

(

1

2
|vε(τ, x)|2 + λ ln

(

|aε(τ, x)|2
)

)

dτ.

We check that

∂t (∂xΦ
ε − vε) = ∂x∂tΦ

ε − ∂tv
ε = 0,

so that vε = ∂xΦ
ε and Φε solves (3.2), and aε solves (3.3).

Note that for fixed ε > 0, the Cauchy problem for (3.1) has been considered in [5] (see

also [4, Section 9.1]), for initial data in the class

W =

{

f ∈ H1(R),

∫

R

|f(x)|2
∣

∣ln |f(x)|2
∣

∣ dx < ∞
}

.

This class is not compatible with the assumption ρ(x) > ρ0∗ > 0 from Theorem 1.1,

which is equivalent to |uε(0, x)|2 = |a0(x)|2 > ρ0∗ > 0 in the approach that we follow.

Therefore, we choose to rather work in Zhidkov spaces Xs(R). The system (3.4) has a

unique smooth solution as stated in the following proposition, which includes the case

ε = 0.

Proposition 3.1. Let s > 5/2 and λ > 0. Suppose that ρ0,Φ
′
0 ∈ Xs(R), with

ρ0(x) > ρ0∗ > 0.

Then there exists T independent of s > 5/2 and ε ∈ [0, 1], and a unique solution

(aε, vε) ∈ C([0, T ];Xs ×Xs) to (3.4).
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Proof. This result is a rather direct consequence of [1, Proposition 2.1], whose proof we

recall the main idea. Separate real and imaginary parts of aε, aε = aε1+ iaε2, and introduce

u
ε =





aε1
aε2
vε



 , u0 =





√
ρ0
0
Φ′

0



 , L =





0 −∂2
xx 0

∂2
xx 0 0
0 0 0





and A(u) =





v 0 a1

2
0 v a2

2
2λa1

a2

1
+a2

2

2λa2

a2

1
+a2

2

v



 .

We now have the system:

(3.6) ∂tu
ε +A(uε)∂xu

ε =
ε

2
Luε ; u

ε
|t=0 = u0.

Since ρ0 is bounded away from zero, its square root is also in Xs, so that u0 ∈ Xs(R)3.

The matrix A is symmetrized by the matrix

S =

(

I2 0

0
a2

1
+a2

2

4λ

)

,

which is symmetric positive if and only if a21 + a22 > 0, that is, so long as no vacuum

appears. By assumption,

(aε1)
2 + (aε2)

2
∣

∣

∣

t=0
> ρ0∗ > 0.

Then the main idea is that the operator L is skew-symmetric, and so does not appear in

L2-based energy estimates. Standard tame estimates (see e.g. [16, 17]) do not involve the

L2 norm of uε, and so the only aspect remaining is that L∞-estimates can be obtained

rather directly. So long as, say,

(3.7) (aε1(t, x))
2 + (aε2(t, x))

2 >
ρ0∗
2

, ∀x ∈ R,

we have:

‖uε(t)‖L∞ 6 ‖u0‖L∞ +

∫ t

0

‖A(uε(τ))∂xu
ε(τ)‖L∞dτ +

∫ t

0

‖∂2
xxa

ε(τ)‖L∞dτ

6 ‖u0‖L∞ + C

∫ t

0

‖uε(τ)‖L∞‖∂xuε(τ)‖L∞dτ +

∫ t

0

‖∂2
xxa

ε(τ)‖L∞dτ

6 ‖u0‖L∞ + C

∫ t

0

‖uε(τ)‖2Xsdτ +

∫ t

0

‖uε(τ)‖Xsdτ,

where we have used Sobolev embedding under the assumption s > 5/2. Indeed, by def-

inition, Xs ⊂ L∞, and for uε ∈ Xs, ∂xu
ε ∈ Hs−1 ⊂ L∞, provided that s > 3/2, and

similarly, ∂2
xxu

ε ∈ L∞ for s > 5/2.

Now we set P = (I − ∂2
xx)

(s−1)/2∂x, so that ‖f‖Xs ≈ ‖f‖L∞ + ‖Pf‖L2 , and denote by

〈f, g〉 =
∫ ∞

−∞

f(x)g(x)dx,
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the scalar product in L2. Since L is skew-symmetric and S is real-valued,

d

dt
〈SPu

ε(t), Pu
ε(t)〉

= 〈(∂tS)Pu
ε(t), Pu

ε(t)〉 + 2Re 〈S∂tPu
ε(t), Pu

ε(t)〉
= 〈(∂tS)Pu

ε(t), Pu
ε(t)〉 + εRe 〈SLPu

ε(t), Pu
ε(t)〉

− 2Re
〈

SP
(

A(uε(t))∂xu
ε(t)
)

, Pu
ε(t)
〉

.

So long as (3.7) holds, we have the following set of estimates. First,

〈(∂tS)Pu
ε(t), Pu

ε(t)〉 6 ‖∂tS‖L∞‖Pu
ε(t)‖2L2

6 C (‖uε(t)‖L∞) ‖∂tuε(t)‖L∞‖uε(t)‖2Xs .

Directly from (3.6), we have:

‖∂tuε(t)‖L∞ 6 C (‖uε(t)‖L∞) ‖∂xuε(t)‖L∞ + ‖∂2
xxa

ε(t)‖L∞

6 C (‖uε(t)‖Xs) ‖uε(t)‖Xs .

Since SL is skew-symmetric, we have

Re 〈SLPu
ε(t), Pu

ε(t)〉 = 0,

which prevents any loss of regularity in the estimates. For the quasi-linear term involving

the matrix A, we note that since SA is symmetric, commutator estimates (see [14]) yield:

〈SP (A(uε)∂xu
ε) , Pu

ε(t)〉 6 C (‖uε(t)‖L∞) ‖Pu
ε(t)‖2L2‖∂xuε(t)‖L∞

6 C (‖uε(t)‖Xs) ‖Pu
ε(t)‖2L2 .

Finally, we have:

d

dt
〈SPu

ε(t), Pu
ε(t)〉 6 C (‖uε(t)‖Xs) ‖uε(t)‖2Xs .

This estimate, along with the L∞-estimate, shows that on a sufficiently small time interval

[0, T ], with T > 0 independent of ε ∈ [0, 1], (3.7) holds, hence the existence of a unique

solution. The fact that the local existence time does not depend on s > 5/2 follows from

the continuation principle based on Moser’s calculus and tame estimates (see e.g. [16,

Section 2.2] or [17, Section 16.1]). �

Corollary 3.2. Under the assumptions of Proposition 3.1, if we suppose in addition that

Φ′
0 ∈ L2(R), then (3.1) has a unique solution uε ∈ C([0, T ];Xs(R)), where T is given by

Proposition 3.1.

Proof. From Proposition 3.1, (3.4) has a solution (vε, aε) ∈ C([0, T ];Xs×Xs). Plugging

this information into (3.4), we infer

‖vε(t)‖L2 6 ‖Φ′
0‖L2 +

∫ t

0

‖vε(τ)‖L∞‖∂xvε(τ)‖L2dτ

+ C

∫ t

0

∥

∥

∥

∥

1

aε(τ)

∥

∥

∥

∥

L∞

‖∂xaε(τ)‖L2dτ.

Therefore, vε ∈ C([0, T ];L2), and Φε, stemming from vε via the formula (3.5), satisfies

Φε ∈ C([0, T ];Xs+1). The existence part follows readily, since Xs(R) is an algebra, by

setting uε = aεeiΦ
ε/ε.
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For the uniqueness property, consider two such solutions uε, ũε ∈ C([0, T ];Xs), and

set wε = uε − ũε. It satisfies

(3.8) iε∂tw
ε +

ε2

2
∂2
xxw

ε = λ
(

ln(|uε|2)uε − ln(|ũε|2)ũε
)

, wε
|t=0 = 0.

Recall the pointwise estimate from [5] (see also [4, Lemma 9.3.5]),
∣

∣Im
(

ln(|uε|2)uε − ln(|ũε|2)ũε
)

(uε − ũε)
∣

∣ 6 4|uε − ũε|2.

Multiply (3.8) by wε, integrate on an interval I = [M−,M+], and take the imaginary part.

This yields, along with the above estimate,

ε

2

d

dt

∫

I

|wε(t, x)|2dx+
ε2

2
Im

∫

I

wε∂2
xxw

ε
6 4λ

∫

I

|wε(t, x)|2dx.

We have, by integration by parts,

Im

∫

I

wε∂2
xxw

ε = Imwε(t,M+)∂xw
ε(t,M+)− Imwε(t,M−)∂xw

ε(t,M−).

Since wε ∈ C([0, T ];X1), we can choose sequences Mn
± → ±∞ along which the above

term goes to zero, and the Gronwall lemma implies ‖wε(t)‖L2 ≡ 0. �

3.2. Asymptotic expansion. Proposition 3.1 with ε = 0 yields the existence of a unique

solution (v, a) ∈ C([0, T ]; (Xs(R))2) to

(3.9)







∂tv + v∂xv + λ∂x ln(|a|2) = 0, v|t=0 = Φ′
0,

∂ta+ v∂xa+
a

2
∂xv = 0, a|t=0 =

√
ρ0.

As a direct consequence of Proposition 3.1 and [1, Proposition 3.1], we have:

Proposition 3.3. Under the assumptions of Proposition 3.1, there exists C independent of

ε ∈ [0, 1] such that

‖∂x (Φε − Φ) ‖L∞([0,T ];Xs−2) + ‖aε − a‖L∞([0,T ];Xs−2) 6 Cε.

4. WIGNER TRANSFORM

The Wigner transform of uε, solution to (3.1), is defined by (see e.g. [9, 15])

(4.1) W ε(t, x, ξ) =

∫

R

eiyξuε
(

t, x− ε

2
y
)

uε
(

t, x+
ε

2
y
)

dy, (t, x, ξ) ∈ [0, T ]×R
2.

For uε = aεeiΦ
ε/ε, with (Φε, aε) solution to (3.2)-(3.3), or equivalently (∂xΦ

ε, aε) solu-

tion to (3.4), we have

(4.2) W ε(t, x, ξ) =

∫

eiξvaε
(

t, x− ε

2
y
)

aε
(

t, x+
ε

2
y
)

eiϕ
ε(t,x,y)/εdy,

where

ϕε(t, x, y) = Φε
(

t, x− ε

2
y
)

− Φε
(

t, x+
ε

2
y
)

.
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Theorem 4.1. When ε → 0, the Wigner transform W ε of uε weakly converges to the

bounded measure

(4.3) µ(t, dx, dξ) = |a(t, x)|2dx⊗ δξ=∂xΦ(t,x),

where (∂xΦ, a) is a solution of (3.9). Moreover, µ is a solution to (1.1).

Proof. In view of Proposition 3.3, aε = a+ rεa and ∂xΦ
ε = ∂xΦ + rεv , with

‖rεa‖L∞([0,T ];Xs−2) + ‖rεv‖L∞([0,T ];Xs−2) 6 Cε.

Therefore,

W ε(t, x, ξ) =

∫

eiy(ξ−∂xΦ(t,x))a
(

t, x− ε

2
y
)

ā
(

t, x+
ε

2
y
)

dy +Rε
1 +Rε

2 +Rε
3,

where

Rε
j(t, x, ξ) =

∫

eiy(ξ−∂xΦ(t,x))rεj (t, x, y)dy, 1 6 j 6 3,

rε1(t, x, y) = aε
(

t, x− ε

2
y
)

aε
(

t, x+
ε

2
y
)(

ei(ϕ
ε(t,x,y)+ε∂xΦ(t,x))/ε − 1

)

,

rε2(t, x, y) = ā
(

t, x+
ε

2
y
)

rεa

(

t, x− ε

2
y
)

+ a
(

t, x− ε

2
y
)

rεa

(

t, x+
ε

2
y
)

,

rε3(t, x, y) = rεa

(

t, x− ε

2
y
)

rεa

(

t, x+
ε

2
y
)

.

Propositions 3.1 and 3.3 yield, along with Taylor’s formula for the term rε1,

‖rεj‖L∞([0,T ]×R2) 6 Cε, 1 6 j 6 3.

Consequently, W ε tends to |a|2dx⊗ δξ=∂xΦ in Mb([0, T ]× R2) when ε tends to zero.

Moreover, denote by (·, ·) the duality between bounded measures on [0, T ]×R
2 and contin-

uous functions with compact support in [0, T ]× R2. For any test function α(t, x, ξ) ∈ C1

with compact support in [0, T ]× R2, it holds
(

µ, ∂tα+ ξ∂xα− λ
(

∂x ln|a|2
)

∂ξα
)

=

∫

|a(t, x)|2 (∂tα(t, x, ∂xΦ(t, x)) + ∂xΦ(t, x)∂xα(t, x, ∂xΦ(t, x))) dxdt

− λ

∫

|a(t, x)|2
((

∂x ln|a|2
)

∂ξα(t, x, ∂xΦ(t, x))
)

dxdt

=

∫

|a|2 (∂t (α(t, x, v(t, x))) − ∂T v∂ξα(t, x, v(t, x))) dxdt

+

∫

|a|2 (∂x (v α(t, x, v(t, x))) − ∂xv α(t, x, v) − v∂xv ∂ξα(t, x, v)) dxdt

− λ

∫

|a|2
((

∂x ln|a|2
)

∂ξα(t, x, v(t, x))
)

dxdt

= −
∫

α(t, x, v)
(

∂t|a|2 + v∂x|a|2 + |a|2∂xv
)

dxdt

−
∫

|a|2∂ξα(t, x, v)
(

∂tv + v∂xv + λ∂x ln|a|2
)

dxdt.

This is zero, in view of (3.9), since

∂t|a|2 + ∂xΦ∂x|a|2 + |a|2∂2
xxΦ = 2Rea

(

∂ta+ ∂xΦ∂xa+
a

2
∂2
xxΦ

)

= 0.

Therefore, any solution to (3.9) yields a solution to (1.1). �
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5. THE LIMITING SYSTEM AND GLOBAL CAUCHY PROBLEM

As observed above, to get a solution to (1.1), it suffices to have a solution to (3.9). With

data bounded away from vacuum as in Proposition 3.1, [3, Theorem 2.3] remains valid:

Proposition 5.1 (From Theorem 2.3 in [3]). Let ρ0,Φ0 as in Proposition 3.1, with s > 3/2.

There exists a unique maximal solution (v, a) ∈ C([0, Tmax);X
s) to (3.9). In addition,

Tmax is independent of s > 3/2 and

Tmax < ∞ =⇒
∫ Tmax

0

‖(v, a)(t)‖W 1,∞dt = ∞.

The assumption s > 5/2 has been changed to the weaker one s > 3/2, since for

ε = 0, it is no longer necessary to control ∂2
xxa

ε in L∞ as in the first step of the proof of

Proposition 3.1.

We infer that on [0, Tmax), vacuum does not appear, that is the density ρ remains posi-

tive:

Lemma 5.2. Under the assumptions of Proposition 3.1, we have

ρ(t, x) > 0, ∀(t, x) ∈ [0, Tmax)× R.

Proof. Define the characteristics x(t, y) by

d

dt
x(t, y) = v (t, x(t, y)) , x(0, y) = y,

where v stems from Proposition 3.1 (case ε = 0). For 0 6 t < Tmax, this is a global

diffeomorphism of R, in view of Proposition 5.1,

d

dt
∂yx(t, y) = ∂xv (t, x(t, y)) ∂yx(t, y), ∂yx(0, y) = 1,

and the Gronwall lemma. Denote by x 7→ y(t, x) its inverse mapping. We check that in

(3.9), a is given by the formula

a(t, z) =
1

√

∂yx (t, y(t, z))
a0 (y(t, z)) ,

that is,

ρ(t, z) =
1

∂yx (t, y(t, z))
ρ0 (y(t, z)) ,

so vacuum cannot appear for t ∈ [0, Tmax). �

Remark 5.3. Although the Cauchy problem for the isothermal Euler (1.2) has a global in

time entropy weak solution (ρ, u) ∈ L∞(R+ × R)2 (see [6, 7]), we cannot use it for our

purpose. Indeed, the momentum equation in (1.2) is obtained from the kinetic equation

(1.1) by multiplying (1.1) by ξ and integrating the resulting equation with respect to ξ.

This leads to the product

ρ ∂x ln(ρ).

Since it is not under a conservative form, it is well known that there is no rigorous way to

give a sense to this product for ρ ∈ L∞. It is why we have had recourse to regular solutions

to the isothermal Euler system, thus restricting to local in time solutions far from vacuum.
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