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An application of the KMT construction to the pathwise weak error

in the Euler approximation of one-dimensional diffusion process with

linear diffusion coefficient

Emmanuelle Clément∗ Arnaud Gloter†

June 16, 2016

Abstract

It is well known that the strong error approximation, in the space of continuous paths equipped

with the supremum norm, between a diffusion process, with smooth coefficients, and its Euler

approximation with step 1/n is O(n−1/2) and that the weak error estimation between the marginal

laws, at the terminal time T , is O(n−1). An analysis of the weak trajectorial error has been

developed by Alfonsi, Jourdain and Kohatsu-Higa [1], through the study of the p−Wasserstein

distance between the two processes. For a one-dimensional diffusion, they obtained an intermediate

rate for the pathwise Wasserstein distance of order n−2/3+ε. Using the Komlós, Major and Tusnády

construction, we improve this bound, assuming that the diffusion coefficient is linear, and we obtain

a rate of order log n/n.

MSC 2010. 65C30, 60H35.

Key words: Diffusion process, Euler scheme, Wasserstein couplings, Komlós-Major-Tusnády

construction.

1 Introduction

A classical problem in numerical probabilities is the computation of Ef(X), where X = (Xt)t∈[0,1] is

a stochastic process defined on the time interval [0, 1] and f a functional which may depend on the
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whole path of the process X. This problem appears for instance in finance where X represents the

dynamic of a stock price and f the payoff of an option. The usual way to solve this problem is to

approximate X by a numerical scheme and then to compute the expectation by using a Monte Carlo

method.

Due to its implementation easiness, the most popular discretization scheme, when X is a diffusion

process, is the Euler scheme. Denoting by X
n
, the Euler approximation of X with step 1/n, it is well

known that the pathwise strong order of convergence between X and X
n

is n−1/2, under regularity

assumptions on the coefficients of the diffusion X (see for example [8]). Moreover the weak order

of convergence at a fixed time t, evaluated by the difference |Ef(Xt) − Ef(X
n
t )|, is n−1 (see [16]).

However, for the pathwise weak approximation of X (when f depends on the whole trajectory of X),

the order of convergence is still unknown, excepted for specific functionals f such as f(X) =
∫ 1

0 Xsds

or f(X) = maxsXs. Recently Alfonsi, Jourdain and Kohatsu-Higa [1], [2] have proposed a general

approach to control the pathwise weak approximation of a diffusion by its Euler scheme by considering

the Wasserstein distance between the law of X and the law of X
n
.

For X and X, two random variables with values in a normed vector space (X , ‖.‖) and with finite

p-moment for 1 ≤ p < ∞, the Wasserstein distance Wp between the law of X and the law of X is

defined by :

Wp(L(X),L(X)) = inf
(Y,Y )∈Π(X,X)

E1/p
∥∥Y − Y ∥∥p. (1)

Π(X,X) is the set of random variables (Y, Y ) with values in X × X with marginal laws respectively

L(X) and L(X).

In our context, X = C([0, 1]), equipped with the supremum norm ‖x‖ = supt∈[0,1] |xt| or X = Rn,

equipped with the norm of the maximum of the coordinates ‖x‖ = maxi∈{1,...,n} |xi|.

From the representation of W1 in the Kantorovitch duality ( see for example [14] ) :

W1(L(X),L(X)) = sup
f∈L(1)

|Ef(X)− Ef(X)|

where L(1) is the set of Lipschitz functions f : C([0, 1]) 7→ R with Lipschitz constant less than 1,

and using the strong and weak orders of convergence of the Euler scheme, one can easily deduce the

following upper and lower bounds :

c

n
≤ W1(L(X),L(X

n
)) ≤ C√

n
,

for some positive constants c and C.
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For a one-dimensional uniformly elliptic diffusion, the main result of [1], is to construct a coupling

between X and X
n

which improves the preceding upper bound and leads to :

Wp(L(X),L(X
n
)) ≤ C

n
2
3
−ε
,

for all ε > 0. This result gives an intermediate rate, for the pathwise weak approximation, between the

strong order rate and the weak marginal rate and raises a natural question : is it possible to construct

a coupling between a diffusion and its Euler scheme in such a way that the Wasserstein distance is of

order 1/n ?

The aim of this paper is to give an answer to this question assuming that the diffusion coefficient

is linear. In that case, we prove (see Theorem 2) :

Wp(L(X),L(X
n
)) ≤ C log n

n
.

This result is obtained by the construction of a sharp discrete time coupling between (Xk/n)1≤k≤n

and (X
n
k/n)1≤k≤n, following the dyadic construction due to Komlós, Major and Tusnády ([10] [11]).

We mention that recently, the KMT construction has been used in a series of papers (Davie [3], [4],

Flint and Lyons [7]), to propose an approximation scheme, close to the Milstein scheme and with weak

pathwise order of convergence 1/n.

The KMT construction permits essentially to obtain an optimal coupling between a sequence of

i.i.d. standard gaussian variables (Yi)1≤i≤n and some other i.i.d. variables (Xi)1≤i≤n with finite

Laplace transform in a neighbourhood of zero and such that EX1 = 0, V X1 = 1, in such a way that

almost surely :

max
1≤k≤n

|
k∑
i=1

Yi −
k∑
i=1

Xi| ≤ C log n.

In Section 2, we improve the KMT result when the variables Xi are equal in law to Yi− 1
2
√
n

(Y 2
i − 1).

In this particular case, we obtain, as a consequence of Theorem 1 below, that almost surely :

max
1≤k≤n

|
k∑
i=1

Yi −
k∑
i=1

Xi| ≤ C log n/
√
n.

This is done through refined quantile coupling inequalities, which are established at the end of the

paper, in Section 4. These results are applied in Section 3 to construct a coupling between a diffusion

process with linear diffusion coefficient and its Euler approximation which achieves the pathwise weak

order log n/n.

In all the paper, C denotes a constant which value does not depend on n and may change from

one line to the other.

3



2 A KMT type result

Let (Yi)i≥1 be a sequence of i.i.d. standard gaussian variables and let us consider the triangular array:

Y
n
i = Yi −

1

2
√
n

(Y 2
i − 1), 1 ≤ i ≤ n. (2)

We set : Sk =
∑k

i=1 Yi and S
n
k =

∑k
i=1 Y

n
i .

In this framework, we can improve the classical KMT result.

Theorem 1 One can construct on the same probability space a sequence of i.i.d. standard gaussian

variables (Yi)1≤i≤n and a sequence of i.i.d. variables (Xn
i )1≤i≤n, with Xn

i equal in law to Y
n
i , such

that for positive constants C , K and λ, we have, for n large enough and for all x > 0 :

P (
√
n sup

1≤k≤n
|Sk − T

n
k | ≥ K log n+ x) ≤ Ce−λx, (3)

where T
n
k =

∑k
i=1X

n
i , and Sk =

∑k
i=1 Yi.

A straightforward consequence of this result is that almost surely :

max
1≤k≤n

|Sk − T
n
k | ≤ C log n/

√
n.

The coupling given in Theorem 1 improves the classical KMT result with a factor 1/
√
n and permits

to control the Wasserstein distance between the law of (Sk)k and the law of (S
n
k)k with the rate logn/n

(see Corollary 1 below).

Remark 1 1) If we consider directly the coupling between the random walks S and S
n

(based on the

same gaussian variables) , we have

max
1≤k≤n

∣∣Sk − Snk ∣∣ = max
1≤k≤n

∣∣∣∣∣ 1

2
√
n

k∑
i=1

(Y 2
i − 1)

∣∣∣∣∣
and consequently, from Donsker’s theorem we deduce that max1≤k≤n

∣∣Sk − Snk ∣∣ converges in law to

supt∈[0,1]
1√
2
|Bt|, where B is a standard Brownian motion. Observing moreover that (3) can be rewrit-

ten as

P ( sup
1≤k≤n

|Sk − T
n
k | ≥ x) ≤ Ce−λ

√
nx+K logn

we see that the result of Theorem 1 can not be obtain from the basic coupling between S and S
n

and

that the KMT coupling leads to a better result, and in turn to a sharper bound for the Wasserstein

distance.
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2) It is known that the classical KMT coupling result is optimal for random walks based on i.i.d

sequences (see Theorem 2 in [10]). In Theorem 1, we improve the rate of the KMT result in the

situation where (Y
n
i ) is a triangular array of random variables, whose law depends on n. It seems

crucial, here, that the law of Y
n
i becomes close to a Gaussian law as n growths.

The proof of Theorem 1 is postponed in Section 4. It is obtained by using the KMT method

developed in [10], [11]. The main tool for this construction is a gaussian coupling to the partial sums

S
n
k , which is based essentially on a large deviation expansion of pnk(x)/φ(x) where pnk is the density

function of 1√
k
S
n
k and φ the density function of the standard gaussian law. We state and prove this

large deviation expansion and the associated coupling inequalities at the end of Section 4.

As a consequence of this theorem, we deduce an upper bound for the Wasserstein distance

Wp(L((Sk)1≤k≤n),L((S
n
k)1≤k≤n)).

Corollary 1 For all p ≥ 1, there exists a positive constant C such that :

Wp(L((Sk)1≤k≤n),L((S
n
k)1≤k≤n)) ≤ C log n√

n
.

Proof Let (Sk)1≤k≤n and (T
n
k)1≤k≤n be constructed as in Theorem 1. From the definition of the

Wasserstein distance, one has :

Wp(L((Sk)1≤k≤n),L((S
n
k)1≤k≤n)) ≤ E1/p sup

1≤k≤n
|Sk − T

n
k |p,

and so we just have to prove that :

E(
√
n sup

1≤k≤n
|Sk − T

n
k |)p ≤ C(log n)p. (4)

Recalling that for any positive random variable Z, and any p ≥ 1 :

EZp =

∫ ∞
0

pzp−1P (Z > z)dz, (5)

we deduce that

E(
√
n sup

1≤k≤n
|Sk − T

n
k |)p ≤

∫ ∞
0

pzp−1P (
√
n sup

1≤k≤n
|Sk − T

n
k |) > z)dz,

≤
∫ K logn

0
pzp−1dz +

∫ ∞
K logn

pzp−1P (
√
n sup

1≤k≤n
|Sk − T

n
k |) > z)dz, (6)
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where K is the constant given in Theorem 1. The first integral in the righthandside of (6) is clearly

bounded by C(log n)p. For the second one, we have, using successively the change of variables z =

x+K log n and Theorem 1∫ ∞
K logn

pzp−1P (
√
n sup

1≤k≤n
|Sk − T

n
k |) > z)dz ≤ C

∫ ∞
0

p(x+K log n)p−1e−λxdx ≤ C(log n)p.

This gives (4) and Corollary 1 is proved.

�

3 Application to the Euler approximation of a diffusion

In this section, we apply the preceding results to bound the pathwise Wasserstein distance between

a diffusion with linear diffusion coefficient and its Euler approximation. Let X = (Xt)t∈[0,1] be the

solution of the stochastic differential equation :

X0 = x0, dXt = b(Xt)dt+XtdBt, (7)

where (Bt) is a standard Brownian motion, x0 ∈ R. We assume that b admits a derivative denoted by

b(1), and that b and b(1) are Lipschitz functions.

We consider the continuous time Euler approximation of X, with step 1/n, defined by :

X
n
0 = x0, dX

n
t = b(X

n
ϕn(t))dt+X

n
ϕn(t)dBt, (8)

where ϕn(t) = [nt]
n , t ∈ [0, 1].

Using X
n
t − X

n
ϕn(t) = b(X

n
ϕn(t))(t − ϕn(t)) + X

n
ϕn(t)(Bt − Bϕn(t)), we can write heuristically the

dynamic of X
n

as :

X
n
t = x0 +

∫ t

0
b(X

n
s )ds+

∫ t

0
X
n
s (1− (Bs −Bϕn(s)))dBs +O(

1

n
).

We can observe that this dynamic is mainly driven by the process (Lnt ) defined by :

Lnt = Bt −
∫ t

0
(Bs −Bϕn(s))dBs, t ∈ [0, 1]. (9)

From this observation, to study the Wasserstein distance between L(X) and L(X
n
), a natural way is

to introduce the process Yt = x0 +
∫ t

0 b(Ys)ds+
∫ t

0 YsdL
n
s .

Following this heuristic idea, we consider the auxiliary process X̃n, which approximates X
n

with

pathwise strong order 1/n (see Lemma 1) :

X̃n
0 = x0, dX̃n

t = b(X̃n
t )dt− 1

2
X̃n
t (1− (1− (Bt −Bϕn(t)))

2)dt+ X̃n
t dL

n
t . (10)
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The addition of the drift term 1
2X̃

n
t (1 − (1 − (Bt − Bϕn(t)))

2)dt in the dynamic of the process is not

essential but permits to obtain the representation formula (12) below.

Following Doss [5] and using Itô’s formula, we first remark that the processes X and X̃n admit

the representations :

Xt = eBt

(
x0 +

∫ t

0
e−Bs(b(Xs)−

1

2
Xs)ds

)
, t ∈ [0, 1], (11)

X̃n
t = eL

n
t

(
x0 +

∫ t

0
e−L

n
s (b(X̃n

s )− 1

2
X̃n
s )ds

)
, t ∈ [0, 1]. (12)

Based on these representations, a first step to control the Wasserstein distance between L(X) and

L(X̃n) is to bound Wp(L(B),L(Ln)). This can be done by using the results of Section 2.

More precisely, observing that from Itô’s formula
∫ t

0 BsdBs = 1
2(B2

t −t), we deduce that the discrete

process (Lnk
n

) satisfies :

Lnk
n

= B k
n
− 1

2

k∑
i=1

((B i
n
−B i−1

n
)2 − 1

n
) =

k∑
i=1

(
B i

n
−B i−1

n
− 1

2
((B i

n
−B i−1

n
)2 − 1

n
)

)
, 1 ≤ k ≤ n,

and consequently, (Lnk
n

)1≤k≤n is equal in law to 1√
n

(S
n
k)1≤k≤n, where using the notations of Section

2, S
n
k =

∑k
i=1 Y

n
i , with Y

n
i defined by (2). Similarly, we observe that (B k

n
)1≤k≤n is equal in law to

1√
n

(Sk)1≤k≤n. This permits to derive immediately from Corollary 1 the following result.

Corollary 2 For p ≥ 1, there exists a positive constant C, such that for n large enough :

Wp(L((B k
n

)1≤k≤n),L((Lnk
n

)1≤k≤n)) ≤ C log n

n
.

Next, we can extend this result to the continuous processes B = (Bt)t∈[0,1] and Ln = (Lnt )t∈[0,1]

using the strong approximation error on each interval with length 1/n.

Proposition 1 a) For p ≥ 1, there exists a positive constant C, such that for n large enough :

Wp(L(B),L(Ln)) ≤ C log n

n
.

b) Let F : C([0, 1]) 7→ C([0, 1]) satisfying :

∀f, g ∈ C([0, 1]), ‖F (f)− F (g)‖ ≤ C(f, g)‖f − g‖.

Assuming that ∀p ≥ 1, supnEC(B,Ln)p <∞, then for p ≥ 1, there exists a positive constant C, such

that for n large enough :

Wp(L(F (B)),L(F (Ln))) ≤ C log n

n
.

7



Proof a) We consider the process (Lnt ) defined by (9), driven by the Brownian motion (B̃t)t, and we

introduce the process Bn
t :

Bn
t = Lnk−1

n

+ B̃t − B̃ k−1
n
, for

k − 1

n
≤ t < k

n
. (13)

The process (Bn
t ) is discontinuous and coincide with (Lnt ) at the discretization times (k/n)0≤k≤n−1.

First, we prove the following strong approximation result :

E max
1≤k≤n

sup
t∈[ k−1

n
, k
n

]

|Bn
t − Lnt |p ≤ C

(log n)p

np
. (14)

To prove (14), we will use (5) with Z = nmax1≤k≤n supt∈[ k−1
n
, k
n

] |B
n
t − Lnt | and so we have to control

P (Z > z), for z > 0. We have :

P (Z > z) ≤ nmax
k

P (n sup
t∈[ k−1

n
, k
n

]

|Bn
t − Lnt | > z),

with n(Bn
t −Lnt ) = n

∫ t
k−1
n

(B̃s−B̃ϕn(s))dB̃s, for k−1
n ≤ t <

k
n . Observing that the processes (

∫ t
k−1
n

(B̃s−

B̃ϕn(s))dB̃s)t∈[ k−1
n
, k
n

] and (
∫ t

0 B̃sdB̃s)t∈[0, 1
n

] have the same law, we deduce :

P (Z > z) ≤ nP (n sup
t∈[0, 1

n
]

|
∫ t

0
B̃sdB̃s| > z).

But since
∫ t

0 B̃sdB̃s = 1
2(B̃2

t − t), we have :

P (Z > z) ≤ nP

(
n sup
t∈[0, 1

n
]

|B̃2
t | > 2(z − 1

2
)

)
,

and by time rescaling :

P (Z > z) ≤ nP

(
sup
t∈[0,1]

|B̃2
t | > 2(z − 1

2
)

)
.

Using the exponential inequality for the Brownian motion (see Proposition 1.8 in [15]), we have

P (supt∈[0,1] |B̃t| > a) ≤ 2e−a
2/2, and this finally leads to :

P (Z > z) ≤ Cne−(z− 1
2

). (15)

Turning back to (5), we have :

EZp ≤
∫ logn

0
pzp−1dz +

∫
z>logn

pzp−1P (Z > z)dz. (16)
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Reporting (15) in the second integral of (16) and using the change of variables x = z − log n, we

deduce :

EZp ≤ C(log n)p.

This proves the strong approximation result (14).

We end the proof as in [1] (Proof of Theorem 3.2.). The Wasserstein distance in the left hand side

of Corollary 2 is attained for a probability measure π on Rn × Rn with marginal laws respectively

the law of a Brownian motion at times (k/n)0≤k≤n and the law of (L k
n

)k. We fix (Lnk
n

)k to be the

discretization of the solution of (9) for a Brownian motion (B̃t)t and let (B k
n

)k be distributed according

to the first marginal of π given the second one equal to (Lnk
n

)k. The random variable ((B k
n

)k, L
n
k
n

)k)

in Rn ×Rn is distributed according to π and attains the Wasserstein distance between L((B k
n

)k) and

L((Lnk
n

)k).

By the triangle inequality, we have:

Wp(L(B),L(Ln)) ≤ Wp(L(B),L(Bn)) +Wp(L(Bn),L(Ln)), (17)

where Bn = (Bn
t )t∈[0,1] is defined by (13). Let us note that the process Bn is not continuous and so

the associated Wasserstein distance is defined in D([0, 1]), the space of c-à-d-l-à-g functions, equipped

with the supremum norm.

From the strong error approximation (14), the second right handside term in (17) is bound by

C log n/n and to end the proof it remains to estimate

Wp(L(B),L(Bn)).

For this we consider a Brownian motion (Wt)t∈[0,1] independent on ((B k
n

)k, (B̃t)t) and we construct

the two Brownian Bridges driven by (Wt) : (W
B k−1

n
,B k

n
t )t∈[ k−1

n
, k
n

] (starting from B k−1
n

and ending at

B k
n

), and (W
Bn

k−1
n

,Bn
k
n
−

t )t∈[ k−1
n
, k
n

] (starting from Bn
k−1
n

and ending at Bn
k
n

− , where Bn
k
n

− is the left hand

limit at time k
n of (Bn

t )). We set for t ∈ [k−1
n , kn) and 1 ≤ k ≤ n :

W 1
t = W

B k−1
n
,B k

n
t = B k−1

n
n(
k

n
− t) +B k

n
n(t− k − 1

n
) +Wt −W k−1

n
− n(t− k − 1

n
)(W k

n
−W k−1

n
),

W 2
t = W

Bn
k−1
n

,Bn
k
n
−

t = Bn
k−1
n

n(
k

n
− t) +Bn

k
n

−n(t− k − 1

n
) +Wt −W k−1

n
− n(t− k − 1

n
)(W k

n
−W k−1

n
).
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One can check that L((W 1
t )t) = L((Bt)t) and L((W 2

t )t) = L((Bn
t )t), consequently,

Wp(L(B),L(Bn)) ≤ E1/p supt∈[0,1] |W 1
t −W 2

t |p

≤ E1/p maxk(|B k−1
n
−Bn

k−1
n

|p ∨ |B k
n
−Bn

k
n

− |p)

≤ E1/p maxk |B k
n
− Lnk

n

|p + E1/p maxk |Lnk
n

−Bn
k
n

− |p.

We have

E1/p max
k
|Lnk

n

−Bn
k
n

− |p ≤ E1/p max
k

sup
t∈[ k−1

n
, k
n

]

|Bn
t − Lnt |p,

and by construction of the process (B k
n

)k ,

E1/p max
k
|B k

n
− Lnk

n

|p =Wp(L((B k
n

)k),L((Lnk
n

)k)),

Consequently, using Corollary 2 and (14), we finally obtain :

Wp(L(B),L(Bn)) ≤ C log n/n,

and a) is proved.

b) Let ((Bt)t∈[0,1], (L
n
t )t∈[0,1]) be a random variable in C([0, 1])×C([0, 1]) which attains the Wasser-

stein distance W2p in Proposition 1 :

W2p(L(B),L(L
n
)) = E

1
2p sup
t∈[0,1]

|Bt − L
n
t |2p ≤ C

log n

n
.

Then we have :

Wp(L(F (B)),L((F (Ln))) ≤ E1/p
(
C(B,L

n
)
∥∥B − Ln∥∥)p ,

and b) follows from the Cauchy-Schwarz inequality.

This achieves the proof of Proposition 1.

�

From this proposition, we deduce a bound for the Wasserstein distance between L(X) and L(X̃n).

Proposition 2 For p ≥ 1, there exists a positive constant C, such that for n large enough :

Wp(L(X),L((X̃n)) ≤ C log n

n
.

Proof

The proof is based on the representation formulas (11) and (12), and Proposition 1 b).
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We introduce the notation :

Dt = x0 +

∫ t

0
e−Bs(b(Xs)−

1

2
Xs)ds, (18)

and

Dn
t = x0 +

∫ t

0
e−L

n
s (b(X̃n

s )− 1

2
X̃n
s )ds, (19)

so that Xt = eBtDt and X̃n
t = eL

n
t Dn

t . From the triangle inequality :

|Xt − X̃n
t | ≤ |eBt − eLn

t ||Dt|+ eL
n
t |Dt −Dn

t |.

Since b is Lipschitz :

|Dt −Dn
t | ≤ C

(∫ t
0 e
−Bs |Xs − X̃n

s |ds+
∫ t

0 |e
−Bs − e−Ln

s |(|X̃n
s |+ 1)ds

)
,

≤ C
(∫ t

0 |Ds −Dn
s |ds+

∫ t
0 e
−Bs |eBs − eLn

s ||Dn
s |ds+

∫ t
0 |e
−Bs − e−Ln

s |(|X̃n
s |+ 1)ds

)
,

and from Gronwall’s Lemma,

‖D −Dn‖ ≤ C(B,Ln, Dn, X̃n)‖B − Ln‖,

with

C(B,Ln, Dn, X̃n) = C[1 +
∥∥e−B.

∥∥‖Dn‖(
∥∥eB.

∥∥+
∥∥eLn

.
∥∥) + (

∥∥∥X̃n
∥∥∥+ 1)(

∥∥e−B.
∥∥+

∥∥e−Ln
.
∥∥],

where we have used :
∥∥eB. − eLn

.
∥∥ ≤ [∥∥eB.

∥∥+
∥∥eLn

.
∥∥] ‖B − Ln‖. This yields :∥∥∥X − X̃n

∥∥∥ ≤ [(∥∥eB.
∥∥+

∥∥eLn
.
∥∥)‖D‖+

∥∥eLn
.
∥∥C(B,Ln, Dn, X̃n)

]
‖B − Ln‖.

But, for all p ≥ 1, we have E
∥∥e|B.|

∥∥p <∞, E‖X‖p <∞ (see [9] p306) and consequently E‖D‖p <∞.

So from Proposition 1 b), to finish the proof of Proposition 2, we just have to verify

∀p ≥ 1, sup
n
E
∥∥∥X̃n

∥∥∥p <∞, (20)

∀p ≥ 1, sup
n
E
∥∥∥e|Ln

. |
∥∥∥p <∞. (21)

To prove (21), we just prove that ∀p ≥ 1, supnE
∥∥eLn

.
∥∥p <∞, since we obtain with similar arguments

that supnE
∥∥e−Ln

.
∥∥p <∞.

From (9), the martingale (Lnt )t∈[0,1] can be written as :

Lnt =

∫ t

0
(1− (Bs −Bϕn(s)))dBs.

11



We first bound Eea〈L
n,Ln〉1 = E(ea

∫ 1
0 (1−(Bs−Bϕn(s)))

2ds), for a > 0. We have

E(ea
∫ 1
0 (1−(Bs−Bϕn(s)))

2ds) ≤ e2aEe
2a
∑n−1

k=0

∫ k+1
n

k
n

(Bs−B k
n

)2ds
.

Since the random variables (
∫ k+1

n
k
n

(Bs −B k
n

)2ds)0≤k≤n−1 are independent and identically distributed,

we deduce

E(ea
∫ 1
0 (1−(Bs−Bϕn(s)))

2ds) ≤ e2a(Ee2a
∫ 1

n
0 B2

sds)n ≤ e2a(Ee
2a
n

sups≤1/nB
2
s )n.

By time rescaling, sup0≤s≤1/nB
2
s is equal in law to 1

n sup0≤s≤1B
2
s and consequently

E(ea
∫ 1
0 (1−(Bs−Bϕn(s)))

2ds) ≤ e2a(Ee
2a
n2 sups≤1B

2
s )n.

From Hölder’s inequality and Doob’s maximal inequality applied to the positive submartingale (e
2a
n2B

2
t )t,

we have for q > 1,

Ee
2a
n2 sups≤1B

2
s ≤ (E sup

s∈[0,1]
e

2aq

n2 B
2
s )1/q ≤ q

q − 1
(Ee

2aq

n2 B
2
1 )1/q.

Remarking that for α < 1/2, EeαB
2
1 = 1/

√
1− 2α, this gives, for n large enough and choosing q = n:

Ee
2a
n2 sups≤1 B

2
s ≤ n

n− 1
(1− 4a

n
)−

1
2n .

This permits to obtain

Eea〈L
n,Ln〉1 = E(ea

∫ 1
0 (1−(Bs−Bϕn(s)))

2ds) ≤ e2a

(
n

n− 1

)n
(1− 4a

n
)−

1
2 ≤ Ca, (22)

where Ca is a constant depending on a but not on n. From Novikov’s criterion, we deduce that for

any a > 0, (E(aLnt ))t∈[0,1] = (eaL
n
t −

a2

2
〈Ln,Ln〉t)t∈[0,1] is a martingale. Observing that

epL
n
t = E(2pLnt )1/2ep

2〈Ln,Ln〉t ,

is a positive submartingale, and applying Doob’s maximal inequality, we have :

E( sup
t∈[0,1]

epL
n
t ) ≤ C(Ee2pLn

1 )1/2 ≤ C(Ee8p2〈Ln,Ln〉1)1/4,

and so from (22), this gives :

E( sup
t∈[0,1]

epL
n
t ) ≤ Cp.

This achieves the proof of (21).

12



It remains to prove (20). We recall that X̃n
t = eL

n
t Dn

t , with Dn
t given by (19). Since b is Lipschitz,

we have :

|Dn
t | ≤ |x0|+ C

∥∥e−Ln
.
∥∥+ C

∫ t

0
|Dn

s |ds,

so from Gronwall’s Lemma : ‖Dn‖ ≤ C
∥∥e−Ln

.
∥∥ and then (20) is a straightforward consequence of (21).

�

From these intermediate results, we deduce a bound for the Wasserstein distance between the law

of the diffusion and the law of its Euler approximation. Our main result is the following.

Theorem 2 For p ≥ 1, there exists a positive constant C, such that for n large enough :

Wp(L(X),L(X
n
)) ≤ C log n

n
.

Proof

The result of Theorem 2 follows from Proposition 2 and Lemma 1 below , applying the triangle

inequality and observing that Wp(L((X
n
t )t∈[0,1]),L((X̃n

t )t∈[0,1])) ≤ E1/p supt∈[0,1] |X
n
t − X̃n

t |p.

�

For the statement of Lemma 1, we recall that (X
n
t ) and (X̃n

t ) are defined on the same probability

space by (8) and (10).

Lemma 1 For p ≥ 1, there exists a positive constant C, such that ∀n ≥ 1 :(
E sup
t∈[0,1]

|Xn
t − X̃n

t |p
)1/p

≤ C/n.

Proof To simplify the notation, we write ∆Bt = Bt − Bϕn(t) and ∆t = t − ϕn(t) and we denote by

(Unt )t∈[0,1] = (X̃n
t −X

n
t )t∈[0,1] the error process.

We first remark that for all p ≥ 1, E supt∈[0,1] |X
n
t |p ≤ C (see [9] p306) and E supt∈[0,1] |X̃n

t |p ≤ C

(see (20)) , so E supt∈[0,1] |Unt |p ≤ C, for some positive constant C. Moreover from these bounds, it is

easy to see that for p ≥ 1, there exists C > 0 such that

∀t ∈ [0, 1], E|Xn
t −X

n
ϕn(t)|p ≤ C/np/2, (23)

∀t ∈ [0, 1], E|X̃n
t − X̃n

ϕn(t)|
p ≤ C/np/2. (24)

13



From (8) and using the preceding notations, we have : X
n
t −X

n
ϕn(t) = b(X

n
ϕn(t))∆t +X

n
ϕn(t)∆Bt, and

we can write the dynamic of the Euler scheme as :

dX
n
t = b(X

n
t )dt+X

n
t dL

n
t − (b(X

n
t )− b(Xn

ϕn(t)))dt+ (X
n
t −X

n
ϕn(t))∆BtdBt − b(X

n
ϕn(t))∆tdBt.

Now, it is easy to verify from the expressions of X̃n and Ln (equations (10) and (9)) and the

preceding equation that (Unt ) satisfies the equation :

Unt =

∫ t

0
(b(X̃n

s )− b(Xn
s ))ds+

∫ t

0
Uns (1−∆Bs)dBs +Rnt , (25)

with

dRnt = −1

2
X̃n
t (2∆Bt − (∆Bt)

2)dt+ (b(X
n
t )− b(Xn

ϕn(t)))dt− (X
n
t −X

n
ϕn(t))∆BtdBt + b(X

n
ϕn(t))∆tdBt.

(26)

From Burkholder-Davis-Gundy inequality and using the Lipschitz assumption on b, we have

E sup
t∈[0,1]

|
∫ t

0
b(X

n
ϕn(s))∆sdBs|p ≤ C/np

and since
∫ t

0 X̃
n
ϕn(s)∆Bsds =

∫ t
0 X̃

n
ϕn(s)[(t ∧ (ϕn(s) + 1

n))− s]dBs, we obtain

E sup
t∈[0,1]

|
∫ t

0
X̃n
ϕn(s)∆Bsds|

p ≤ C/np,

and similarly

E sup
t∈[0,1]

|
∫ t

0
X
n
ϕn(s)∆Bsds|p ≤ C/np.

Moreover we have the expansion, for ηt ∈ [X
n
ϕn(t), X

n
t ] :

b(X
n
t )− b(Xn

ϕn(t)) = b(1)(ηt)(X
n
t −X

n
ϕn(t)) = [b(1)(X

n
ϕn(t)) + (b(1)(ηt)− b(1)(X

n
ϕn(t)))](X

n
t −X

n
ϕn(t)).

This permits to conclude, after a few computation involving the estimations (23)–(24) and the Lipschitz

assumption on b and b(1), that :

E sup
t∈[0,1]

|Rnt |p ≤ Cp/np. (27)

Turning back to (25), we deduce, using once again the Lipschitz assumption on b together with

convexity and Burkholder-Davis-Gundy inequalities and the bound (27), for p ≥ 2 :

E sup
v≤t
|Unv |p ≤ C

(∫ t

0
E

(
(1 + |∆Bs|)p sup

v≤s
|Unv |p

)
ds+

1

np

)
. (28)
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Moreover, introducing the truncation 1|∆Bs|≤C1
, we have for any q ≥ 1 :

P (|∆Bs| > C1) ≤ C/nq,

and so from Cauchy Schwarz inequality

E

(
(1 + |∆Bs|)p sup

v≤s
|Unv |p1|∆Bs|>C1

)
≤ C/np,

this gives :

E

(
(1 + |∆Bs|)p sup

v≤s
|Unv |p

)
≤ C(E sup

v≤s
|Unv |p +

1

np
),

Reporting this in (28), we deduce :

E sup
v≤t
|Unv |p ≤ C

(∫ t

0
E sup

v≤s
|Unv |pds+

1

np

)
,

and the result of Lemma 1 follows from Gronwall’s Lemma.

�

4 Quantile coupling inequalities and proof of Theorem 1

This section is devoted to the proof of Theorem 1 and is organized as follows. In Section 4.1 we

construct a coupling between a sequence of i.i.d. standard Gaussian variables (Yk)1≤k≤n and a sequence

of i.i.d. variables (Xn
k )1≤k≤n such that Xn

k has the same distribution as Y
n
k given in (2). Then, in

Section 4.2 we prove that (3) of Theorem 1 holds true for this specific coupling. In Sections 4.3–4.4.

we provide the proof of technical lemmas which are used in Sections 4.1–4.2.

For technical reasons, essentially the non integrability of the characteristic function of the ran-

dom variables Y
n
k , we regularize them by adding independent normally distributed random variables.

For that, we consider a sequence of independent identically distributed standard Gaussian variables

(ξk)k≥1, independent of the sequence (Yk)k≥1, and we set :

Y
?,n
k = Y

n
k +

1

n
ξk, (29)

S
?,n
k =

k∑
i=1

Y
?,n
i . (30)

We need to introduce some notations for the law of the variables we will consider in the construction

of the coupling. We denote by φ the density of a standard Gaussian law, and by Φ its cumulative

distribution function.
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We let p?,nk be the density function of 1√
k
S
?,n
k and denote by Fk its cumulative distribution function.

To simplify the notations, we have omitted the dependence upon n for Fk.

For k = 2p an even integer in {2, . . . , n}, we define

S̃?,nk = 2S
?,n
k/2 − S

?,n
k =

k/2∑
i=1

Y
?,n
i −

k∑
i=k/2+1

Y
?,n
i .

We denote by p̃?,nk (· | y) the conditional density of 1√
k
S̃?,nk given 1√

k
S
?,n
k = y. The associated conditional

cumulative distribution function is denoted by F̃k(· | y) =
∫ ·
−∞ p̃

?,n
k (x | y)dx, where again we have

suppressed the dependence upon n in the notation.

In the sequel we denote by F−1
k the generalized inverse of the function Fk, and F̃−1

k (· | y) the

generalized inverse of the function x 7→ F̃k(x | y).

4.1 The dyadic KMT construction

The construction of the coupling follows the dyadic construction scheme introduced by [10] p.116–118

(see also [6] p. 51–53) and we give it for the sake of completeness. We adopt the notation of [10]. In

the sequel, it will be convenient to assume that n is a dyadic number, n = 2N . Remark that if n is

not a dyadic number, the construction below gives a coupling between the random variables (Yk) and

(Xn
k ) for k ∈ {1, . . . , 2N} where 2N−1 < n ≤ 2N , and the deviation bound (3) in Theorem 1 holds true

for
√
n sup1≤k≤2N

∣∣Sk − Snk ∣∣. Consequently we can assume that n = 2N without loss of generality.

Assume we are given a sequence of independent standard Gaussian variables (Yk)k≥1 on some

probability space.

For k equal 1 to 2N , we set :

Sk :=
k∑
i=1

Yi, S0 = 0,

and

Vm,k := S(k+1)2m − Sk2m , , 0 ≤ k < 2N−m, 0 ≤ m ≤ N,

Ṽm,k := Vm−1,2k − Vm−1,2k+1, , 0 ≤ k < 2N−m, 1 ≤ m ≤ N.

Remark that we have Vm,0 = S2m . Moreover, for 1 ≤ m ≤ N , 0 ≤ k < 2N−m, the Gaussian variables

Vm,k and Ṽm,k are independent and (Ṽm,k)0≤k<2N−m is an i.i.d. sequence for all m.

We now construct a sequence of independent identically distributed variables (Xn
k )1≤k≤2N with

distribution defined by (2). We first construct some independent variables (X?,n
k )1≤k≤2N equal in law

to (Y
?,n
k )1≤k≤2N , defined by (29). The procedure consists in constructing by induction the sums of size
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2m, (
∑(k+1)2m

i=k2m+1X
?,n
i )k∈{0,...,2N−m−1}, starting the construction with the level m = N and eventually

obtaining the variable X?,n
i at level m = 0.

First, for m = N , we set :

UN,0 := 2N/2F−1
2N

(
Φ

(
VN,0

2N/2

))
, ŨN,0 := 2N/2F̃−1

2N

(
Φ

(
ṼN,0

2N/2

)
| 1

2N/2
UN,0

)
. (31)

We define then UN−1,0 and UN−1,1, by the relations :

UN−1,0 :=
1

2
(UN,0 + ŨN,0), UN−1,1 :=

1

2
(UN,0 − ŨN,0).

By construction, UN,0 is distributed as S
?,n
2N and using that ṼN,0 is independent of UN,0, it is easy to

verify that (UN,0, ŨN,0) is distributed as (S
?,n
2N , S̃

?,n
2N

). Hence, the random variables UN−1,0 and UN−1,1

are independent and both distributed according to S
?,n
2N−1 .

We next continue the construction by induction on m. Assuming that Um,k is constructed, for

0 ≤ k < 2N−m, we set :

Ũm,k := 2m/2F̃−1
2m

(
Φ

(
Ṽm,k

2m/2

)
| 1

2m/2
Um,k

)
, (32)

and we define

Um−1,2k :=
1

2
(Um,k + Ũm,k), Um−1,2k+1 :=

1

2
(Um,k − Ũm,k). (33)

We can observe that the joint distribution of the pair (Um,k, Ũm,k) is the one of (S
?,n
2m , S̃

?,n
2m ). In turn,

Um−1,2k and Um−1,2k+1 are independent and distributed according to S
?,n
2m−1 .

Moreover, it can be verified that, for any fixed 0 ≤ m ≤ N , the constructed random variables

Um,k, for 0 ≤ k < 2N−m, are independent.

At the final step, m = 0, this permits to construct a sequence of independent random variables

(X?,n
k )1≤k≤2N , equal in law to (Y

?,n
k )1≤k≤2N by setting

X?,n
k := U0,k−1, 1 ≤ k ≤ 2N . (34)

We end the construction with the variables (Xn
k )1≤k≤2N , distributed according to the law of (Y

n
k)1≤k≤2N .

Let F ?(.|y) be the cumulative density function of Y
n
k given Y

?,n
k = y. It is clear by (2) and (29) that

F ? does not depend on k. We set :

Xn
k := (F ?)−1(ηk|X?,n

k ), 1 ≤ k ≤ 2N ,

where (ηk)k≥1 is a sequence of independent random variables, uniformly distributed on [0, 1], and

independent of (Yk)k≥1. The pair (Xn
k , X

?,n
k ) has the distribution of (Y

n
k , Y

?,n
k ) and the difference

Xn
k −X

?,n
k has the distribution of a centered Gaussian variable with variance 1/n2.
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In that follows, we set

T
?,n
k :=

k∑
i=1

X?,n
i , T

n
k :=

k∑
i=1

Xn
i , 1 ≤ k ≤ 2N , T

?,n
0 := 0, T

n
0 := 0,

where X?,n
i and Xn

i are constructed above.

From (33) and (34), we easily deduce that,

Um,k =

(k+1)2m−1∑
i=k2m

U0,i =

(k+1)2m∑
i=k2m+1

X?,n
i = T

?,n
(k+1)2m − T

?,n
k2m , , 0 ≤ k < 2N−m, 0 ≤ m ≤ N, (35)

Ũm,k = Um−1,2k − Um−1,2k+1, , 0 ≤ k < 2N−m, 1 ≤ m ≤ N. (36)

Moreover, from the dyadic construction, we have the following representation (see Lemma 5 in

[6]), for 1 ≤ k ≤ 2N :

T
?,n
k =

k

2N
UN,0 +

N∑
m=1

cmŨm,l(m,k), Sk =
k

2N
VN,0 +

N∑
m=1

cmṼm,l(m,k), (37)

where cm ∈ [0, 1] and l(m, k) is defined by

l(m, k)2m < k ≤ (l(m, k) + 1)2m.

Remark that (37) can be obtained as a consequence of the following decomposition on the Haar basis

of `2({1, . . . , 2N}),

1{1,...,k}(u) =
k

2N
1{1,...,2N}(u) +

N∑
m=1

cmψm,l(m,k)(u), ∀u ∈ {1 . . . , 2N},

where ψm,l = 1{l2m+1,...,l2m+2m−1} − 1{l2m+2m−1+1,...,(l+1)2m}.

In the next section, we will assess the probability of deviation between the random walks (Sk)k

and (T
n
k)k. This crucially relies on the two following lemmas, which assess the difference between the

random variables UN,0, VN,0 and Ũm,k, Ṽm,k related by (31)-(32).

Lemma 2 There exist ε > 0 and C > 0 such that for n large enough, we have :

|UN,0 − VN,0| ≤
C√
n

(
|UN,0|2

2N
+ 1

)
, if |UN,0| ≤ ε2N

√
n.

Lemma 3 There exist ε > 0 and C > 0 such that, for all m ∈ {1, . . . , N}, k ∈ {0, . . . , 2N−m−1} and

n large enough :∣∣∣Ũm,k − Ṽm,k∣∣∣ ≤ C√
n

(
|Um,k|2 + |Ũm,k|2

2m
+ 1

)
, if max(|Um,k|, |Ũm,k|) ≤ ε2m

√
n.

The proof of these two lemmas are postponed to Sections 4.3–4.4.
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4.2 Proof of Theorem 1

In this section, we prove that the control (3) holds true for the variables constructed in Section 4.1.

We first prove that for any positive constant K and λ, we have for n large enough and x > 0 :

P (
√
n sup

1≤k≤n
|T ?,nk − T

n
k | ≥ K log n+ x) ≤ Ce−λx. (38)

By construction
√
n sup1≤k≤n |T

?,n
k −T

n
k | is equal in law to 1√

n
sup1≤k≤n |

∑k
i=1 ξi|, where (ξi)i are i.i.d.

standard gaussian variables. So we deduce, using the exponential inequality for the Brownian motion

(see Proposition 1.8 in [15]),

P (
√
n sup

1≤k≤n
|T ?,nk − T

n
k | ≥ K log n+ x) ≤ 2e−

1
2

(K logn+x)2
,

and (38) is proved. Consequently to prove Theorem 1, it is sufficient to prove that for some positive

constant C, K and λ (independent of n and x), we have, for n large enough and for all x > 0 :

P (
√
n sup

1≤k≤n
|T ?,nk − Sk| ≥ K log n+ x) ≤ Ce−λx,

or equivalently, there exist positive constants C, α and λ, such that for all x and N :

P ( sup
1≤k≤n

|T ?,nk − Sk| ≥ x) ≤ CeαN−λ2N/2x. (39)

To prove (39), we distinguish between the cases x < 8ε2N/2 and x ≥ 8ε2N/2 where ε is deduced from

Lemmas 2–3.

In that follows, we note

∆ = sup
1≤k≤n

|T ?,nk − Sk|. (40)

First case : x < 8ε2N/2

We define the event

A =

2N−1⋂
k=0

{|U0,k| ≤ ε2N/2}, (41)

which will be useful for the application of Lemmas 2 and 3.

To prove (39), we use the decomposition :

P (∆ ≥ x) ≤ P ({∆ ≥ x} ∩A) + P (Ac).

We first control P (Ac). By (41), we have for t0 > 0 :

P (Ac) ≤ 2NP (|X?,n
1 | > ε2N/2) ≤ 2N (P (X

?,n
1 > ε2N/2) + P (−X?,n

1 > ε2N/2))

≤ 2N ((Et0X
?,n
1 + E−t0X

?,n
1 )e−t0ε2

N/2
).
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Since X
?,n
1 is equal in law to Y

?,n
1 , we have E[etX

?,n
1 ] = eΨ(t) with Ψ given by (54), and we deduce for

t > −2N/2/2 :

EtX
?,n
1 ≤ e

3
2
t2+ t

22N/2
1√

1 + t/2N/2
,

so by choosing t0 = ε2N/2/2, we obtain :

P (Ac) ≤ C2Ne−ε
22N/8,

where C is a positive constant depending on ε. Since x < 8ε2N/2, we deduce the bound :

P (Ac) ≤ C2Ne−εx2N/2/64. (42)

Turning to the control of P ({∆ ≥ x} ∩A), we first have :

P ({∆ ≥ x} ∩A) ≤ 2N sup
1≤k≤2N

P ({|T ?,nk − Sk| > x} ∩A).

Now from (37), we deduce :

|T ?,nk − Sk| ≤ |UN,0 − VN,0|+
N∑
m=1

|Ũm,l(m,k) − Ṽm,l(m,k)|, (43)

where l(m, k) satisfies l(m, k)2m < k ≤ (l(m, k) + 1)2m.

But on A, we have for all m and for all k (this is immediate from the definition of A and (35)–(36)):

|Um,k| ≤ ε2m2N/2, |Ũm,k| ≤ ε2m2N/2,

consequently, using the results of Lemmas 2 and 3, we obtain on A :

|UN,0 − VN,0| ≤
C

2N/2
(
|UN,0|2

2N
+ 1),

|Ũm,l(m,k) − Ṽm,l(m,k)| ≤
C

2N/2
(
|Um,l(m,k)|2 + |Ũm,l(m,k)|2

2m
+ 1).

Plugging these bounds in (43) , this gives on A :

|T ?,nk − Sk| ≤
C

2N/2

(
|UN,0|2

2N
+N + 1 + δk

)
. (44)

where

δk =
N∑
m=1

|Um,l(m,k)|2 + |Ũm,l(m,k)|2

2m
.
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From Lemma 4 below, we observe that on A we have the equality in law :

δk =L δ1 =
N∑
m=1

|Um,0|2 + |Ũm,0|2

2m
,

and we can write :

P ({∆ ≥ x} ∩A) ≤ 2NP

(
{ C

2N/2
(
|UN,0|2

2N
+N + 1 + δ1) ≥ x} ∩A

)
.

Since Um,0 = Um−1,0 + Um−1,1 and Ũm,0 = Um−1,0 − Um−1,1, we remark that :

δ1 = 2
N∑
m=1

|Um−1,0|2 + |Um−1,1|2

2m
=

N−1∑
m=0

|Um,0|2 + |Um,1|2

2m

and we obtain

P ({∆ ≥ x} ∩A) ≤ 2NP

(
{ C

2N/2
(
|UN,0|2

2N
+N + 1 +

N−1∑
m=0

|Um,0|2 + |Um,1|2

2m
) ≥ x} ∩A

)
.

Now, we get to bound
∑N

m=0
|Um,0|2

2m by
∑N−1

m=0
|Um,1|2

2m . First we have, using (35),

|Um,0|2 =

∣∣∣∣∣∣U0,0 +

m−1∑
j=0

2j+1−1∑
i=2j

U0,i

∣∣∣∣∣∣
2

= (U0,0 +

m−1∑
j=0

Uj,1)2,

so by Cauchy-Schwarz inequality with q = 1/
√

2, we obtain :

|Um,0|2 ≤ (
∑
j≥0

qj)(
1

qm
U2

0,0 +
m−1∑
j=0

1

qm−j−1
U2
j,1) ≤ C(

1

qm
U2

0,0 +
m−1∑
j=0

1

qm−j−1
U2
j,1).

It yields after some calculus :

N∑
m=0

|Um,0|2

2m
≤ C(U2

0,0 +

N−1∑
m=0

U2
m,1

2m
),

and finally :

P ({∆ ≥ x} ∩A) ≤ 2NP

(
{ C

2N/2
(U2

0,0 +N + 1 +

N−1∑
m=0

U2
m,1

2m
) ≥ x} ∩A

)
. (45)

To end the proof, we introduce the notation, for 0 ≤ m ≤ N − 1,

τm =
U2
m,1

2m
1{|Um,1|≤ε2m2N/2}, (46)

and

τ0 = U2
0,01{|U0,0|≤ε2N/2}. (47)
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The random variables (τ0, τ0, τ1, . . . , τN−1) are independent and this permits to deduce

P ({∆ ≥ x} ∩A) ≤ 2NP
(

C
2N/2 (τ0 +N + 1 +

∑N−1
m=0 τm) ≥ x

)
≤ 2NeCt(N+1)EeCtτ0

∏N−1
m=0 Ee

Ctτme−t2
N/2x,

where the last inequality hods for any t > 0. Consequently to obtain the bound

P ({∆ ≥ x} ∩A) ≤ CeαN−λ2N/2x,

for some positive constants C, α and λ independent of N and x, it is sufficient to prove that

∃t0 > 0, ∃C > 0, such that ∀0 ≤ m ≤ N − 1 Eet0τm ≤ C. (48)

Integrating by parts, we first remark that :

Eet0τm = 1 +

∫ ε22m2N

0
t0e

t0yP (τm > y)dy,

so to prove (48) we just have to prove that for 0 ≤ y ≤ ε22m2N :

P (τm > y) ≤ Ce−ηy, (49)

for positive constant C and η ( independent of m, y, N). We have

P (τm > y) ≤ P (U2
m,1 > 2my)

≤ P (Um,1 > 2m/2
√
y) + P (−Um,1 > 2m/2

√
y),

≤ EetUm,1e−t2
m/2√y + Ee−tUm,1e−t2

m/2√y,

where the last inequality holds for any t > 0. We recall that Um,1 is equal in law to
∑2m

i=1 Y
?,n
i , this

gives EetUm,1 = e2mΨ(t), where Ψ is defined by (54). Moreover, using the notation

Λ∗(u) = inf
t

(Ψ(t)− tu), (50)

one has ( since Ψ(1)(0) = 0) : for u ≥ 0, Λ∗(u) = inft≥0(Ψ(t) − tu) and Λ∗(−u) = inft≤0(Ψ(t) + tu).

This gives :

P (τm > y) ≤ e2mΛ∗(2−m/2√y) + e2mΛ∗(−2−m/2√y).

From the estimation (61) (where t is defined by (59) with k = 2m and x =
√
y ), we deduce, since

√
y ≤ ε2m/22N/2, that ( choosing ε small enough and N large enough),

2mΛ∗(2−m/2
√
y) ≤ −ηy and 2mΛ∗(2−m/2

√
y) ≤ −ηy,
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for some η > 0 and (49) is proved. This achieves the proof of (39) in the first case.

Second case : x ≥ 8ε2N/2

Following [10] and [6], we first choose an integer M such that

x

8ε
< 2M2N/2 ≤ x

4ε
.

Such an integer exists since x ≥ 8ε2N/2. Without loss of generality, we may assume that M ≤ N (if

it is not the case the proof reduces to consider ∆1 and ∆2 below with M = N). We set

B =

2N−M−1⋂
k=0

{|UM,k| ≤ ε2M2N/2}. (51)

We remark that on B, we have for all m ≥M + 1 and for all k :

|Um,k| ≤ ε2m2N/2, |Ũm,k| ≤ ε2m2N/2.

Moreover we define :

∆1 = max
0≤k≤2N−M

max
1≤l≤2M

|T ?,nk2M+l − T
?,n
k2M |,

∆2 = max
0≤k≤2N−M

max
1≤l≤2M

|Sk2M+l − Sk2M |,

∆3 = max
0≤k≤2N−M

|T ?,nk2M − Sk2M |.

We immediately see that

∆ ≤ ∆1 + ∆2 + ∆3,

where ∆ is defined by (40). Moreover, observing that Bc ⊂ {∆1 ≥ ε2M2N/2}, we have :

{∆ ≥ x} ⊂ {∆1 ≥ ε2M2N/2} ∪ {∆2 ≥ ε2M2N/2} ∪ ({∆3 ≥ x/2} ∩B),

and so

P (∆ ≥ x) ≤ P (∆1 ≥ ε2M2N/2) + P (∆2 ≥ ε2M2N/2) + P (∆3 ≥ x/2} ∩B). (52)

We first bound P (∆3 ≥ x/2} ∩B). Starting with the decomposition (similar to (37))

T
?,n
k2M =

k

2N
UN,0 +

N∑
m=M+1

cmŨm,l(m,k2M ),

and proceeding as in the proof of the first case, one can show that

P (∆3 ≥ x/2} ∩B) ≤ 2NP (
C

2N
(N + 1 +

N−1∑
m=M

τm) ≥ x),
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where the variables τm are defined by (46). This permits to conclude, using the same arguments as

previously, that

P (∆3 ≥ x/2} ∩B) ≤ CeαN−λ2N/2x.

Turning to P (∆1 ≥ ε2M2N/2), we have :

P (∆1 ≥ ε2M2N/2) ≤ 2NP ( max
1≤k≤2M

|T ?,nk | ≥ ε2M2N/2)

Applying Doob’s maximal inequality to the positive submartingales (etT
?,n
k ) and (e−tT

?,n
k ), where t > 0,

and optimizing on t, we deduce using the notation (50):

P (∆1 ≥ ε2M2N/2) ≤ 2N (e2MΛ∗(ε2N/2) + e2MΛ∗(−ε2N/2))

and from (61)

P (∆1 ≥ ε2M2N/2) ≤ 2N+1e−ηε
22N2M ≤ 2N+1e−ηεx2N/2/8,

for some η > 0. Similarly for the standard gaussian variables, we have :

P ( max
1≤k≤2M

|Sk| ≥ ε2M2N/2) ≤ 2e−ε
22M2N/2,

and so

P (∆2 ≥ ε2M2N/2) ≤ 2N+1e−εx2N/2/16.

This achieves the proof of (3) and hence of Theorem 1. �

Lemma 4 We have the equality in law, for all k ∈ {1, . . . , 2N},(
1A, (|Um,l(m,k)|)m=0,...,N , (|Ũm,l(m,k)|)m=1,...,N

)
=L

(
1A, (|Um,0|)m=0,...,N , (|Ũm,0|)m=1,...,N

)
. (53)

Proof The proof is based on the fact that the law of the vector (U0,i)i is invariant by permutation,

and that one can find permutations that transform the left hand side of (53) into the right hand side.

Let us sketch how to construct these permutations.

If k = 1, then l(m, k) = 0 for all m, and the result (53) is immediate. Otherwise, we write

k − 1 =
∑N−1

m=0 dm2m, where dm ∈ {0, 1}. Let us remark that we have l(m, k) =
∑N−1

j=m dj2
j−m for all

m ∈ {0, . . . , N − 1}. Let us denote m0 = sup{m | dm = 1, 0 ≤ m ≤ N − 1} which is well defined since
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k − 1 6= 0. We define (U ′0,i)i a permutation of the random vector (U0,i)i as follows :

U ′0,i :=


U0,i+2m0 if 0 ≤ i < 2m0 ,

U0,i−2m0 if 2m0 ≤ i < 2m0+1,

U0,i if 2m0+1 ≤ i < 2N − 1,

and set U ′m,l =
∑l2m+2m−1

i=l2m U ′0,i, Ũ
′
m,l = U ′m−1,2l−U ′m−1,2l+1 for 1 ≤ m ≤ N and 0 ≤ l ≤ 2N−m−1. We

set k′ = k−2m0 . Then, one can check that, l(m, k′) = l(m, k) = 0 for m > m0 and l(m, k′) = l(m, k)−

2m0−m for 0 ≤ m ≤ m0. Moreover, we easily get U ′m,l = Um,l and Ũ ′m,l = Ũm,l for all m > m0 + 1,

0 ≤ l ≤ 2N−m − 1. By construction, we have U ′m0+1,l(m0+1,k′) = U ′m0+1,0 = Um0+1,0 = Um0+1,l(m0+1,k)

and Ũ ′m0+1,l(m+1,k′) = Ũ ′m0+1,0 = −Ũm0+1,0 = −Ũm0+1,l(m0+1,k). For 1 ≤ m ≤ m0, we can write

U ′m,l(m,k′) =

l(m,k′)2m+2m−1∑
i=l(m,k′)2m

U ′0,i =

l(m,k)2m−2m0+2m−1∑
i=l(m,k)2m−2m0

U ′0,i =

l(m,k)2m+2m−1∑
i=l(m,k)2m

U ′0,i−2m0

=

l(m,k)2m+2m−1∑
i=l(m,k)2m

U0,i = Um,l(m,k), since l(m, k)2m ∈ {2m0 , . . . , 2m0+1 − 1} .

Using that the set A is invariant by permutation of the U0,i (see (41)), we deduce from the discussion

above that(
1A, (|Um,l(m,k)|)m=0,...,N , (|Ũm,l(m,k)|)m=1,...,N

)
=L

(
1A, (|Um,l(m,k′)|)m=0,...,N , (|Ũm,l(m,k′)|)m=1,...,N

)
,

where k′ < k. Hence, for k 6= 1, this shows that we can replace k by k′ < k in the left hand side of

(53) without changing its law. By a finite number of iterations of the procedure we deduce (53). �

4.3 Quantile coupling inequalities

In this section, we prove Lemma 2. We first establish a sharp expansion for the law of 1√
k
S
?,n
k .

Lemma 5 Let p?,nk be the density function of 1√
k
S
?,n
k , φ and Φ be respectively the density and the

cumulative distribution function of the standard gaussian law. There exist some constants ε > 0 and

C > 0 such that for all k ≥ 1 and n large enough, we have :

i) for |x| ≤ ε
√
kn :

p?,nk (x) = φ(x)e
1√
n
T 1
k (x)

,

ii) for 0 ≤ x ≤ ε
√
kn :

P (
1√
k
S
?,n
k > x) = (1− Φ(x))e

1√
n
T 2
k (x)

,
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P (
1√
k
S
?,n
k ≤ −x) = Φ(−x)e

1√
n
T 3
k (x)

,

where |T jk (x)| ≤ C (1+|x|3)√
k

, for 1 ≤ j ≤ 3.

Remark 2 For k = n, the approximation of p?,nk (x) by φ(x) is of order 1/n, for |x| ≤ εn. In the

classical KMT result, the order of approximation is 1/
√
n for |x| ≤ ε

√
n. It is important to have a

better approximation result which holds for larger values of x to improve the final bound in the KMT

construction (compare for example to the refined quantile inequalities given in [13]).

An inspection of the proof below shows that without the regularization technique (i.e. without

adding the small Gaussian variables ξk in (29)), the result of Lemma 5 still holds but with k ≥ 3 only.

Proof of Lemma 5

We can prove i) and ii) by the technique of conjugated random variables (see [6],[11], [12]) . We

only give the proof of i) in details, the proof of ii) being very similar (see for example [12]). We

first compute the Laplace transform of the variables Y
?,n
k . For t > −

√
n, let R(t) = EetY

?,n
k and

Ψ(t) = logR(t). A simple computation gives :

Ψ(t) =
t

2
√
n

+
t2

2(1 + t/
√
n)
− 1

2
log(1 + t/

√
n) +

t2

2n2
. (54)

In particular, we have Ψ(0) = 0, Ψ(1)(0) = 0, Ψ(2)(0) = 1 + 1
2n + 1

n2 and it is easy to verify from the

computation of Ψ(2) and Ψ(3), that, for 0 ≤ |t| ≤ c
√
n, 0 < 1/C ≤ Ψ(2)(t) ≤ C and |Ψ(3)(t)| ≤ C/

√
n,

for some positive constants c and C. Fixing t such that |t| ≤ c
√
n, we consider the sequence of

independent random variables (Znk )k≥1 such that, Znk admits the density function etx

R(t)fY ?,n
k

(x), where

fY ?,n
k

denotes the density function of Y
?,n
k . One can easily verify that E(Znk ) = Ψ(1)(t) and V (Znk ) =

Ψ(2)(t). We denote by qnk the density function of the normalized sum 1√
kΨ(2)(t)

∑k
i=1(Zni − Ψ(1)(t)).

The following relation holds between p?,nk and qnk :

p?,nk (x) =
ekΨ(t)−tx

√
k√

Ψ(2)(t)
qnk

(
x
√
k − kΨ(1)(t)√
kΨ(2)(t)

)
. (55)

The next step to obtain the result of Lemma 5 is to prove that that for |t| ≤ c
√
n

sup
x
|qnk (x)− φ(x)| ≤ C 1√

kn
. (56)
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Let q̂nk (u) be the Fourier transform of qnk , we have q̂nk (u) =

(
Ee

iu√
kΨ(2)(t)

(Zn
1 −Ψ(1)(t))

)k
and consequently

q̂nk (u) =

R
(
t+ iu√

kΨ(2)(t)

)
R(t)


k

e
− iuΨ(1)(t)√

Ψ(2)(t)

√
k

. (57)

Now, by the Fourier inversion formula,

sup
x
|qnk (x)− φ(x)| ≤ 1

2π

∫
|q̂nk (u)− e−

u2

2 |du ≤ In,0k + In,1k + In,2k ,

where

In,0k = C

∫
|u|≤α

√
kn
|q̂nk (u)− e−

u2

2 |du,

In,1k = C

∫
|u|>α

√
kn
|q̂nk (u)|du,

In,2k = C

∫
|u|>α

√
kn
e−

u2

2 du,

and α is a positive constant which will be precised below.

Since for x > 0,
∫∞
x e−

u2

2 du ≤ 1
xe
−x2

2 , one can easily see that

In,2k ≤ C√
kn
.

Turning back to In,1k , a tedious computation using (54) and (57) gives

|q̂nk (u)| = e
− u2

2n2Ψ(2)(t)(
1 + u2

knΨ(2)(t)(1+t/
√
n)2

)k/4 × e

kt2(1+t/
√
n)

2((1+t/
√
n)2+ u2

knΨ(2)(t)
)

e
kt2

2(1+t/
√
n)

g(u),

where

log g(u) =
−u2(1− t/

√
n)

2Ψ(2)(t)
(

(1 + t/
√
n)2 + u2

knΨ(2)(t)

) .
We deduce then the bound

|q̂nk (u)| ≤ e
− u2

2n2Ψ(2)(t)(
1 + u2

knΨ(2)(t)(1+t/
√
n)2

)k/4 g(u). (58)

We remark that the contribution of the regularization variables (ξk) in the numerator of equation (58)

(the term e
− u2

2n2Ψ(2)(t) ) ensures the integrability of |q̂nk (u)| for the small values of k (k = 1 and k = 2).
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Recalling that if |t| ≤ c
√
n, we have 0 < 1/C ≤ Ψ(2)(t) ≤ C, we deduce that for |u| > α

√
kn,

0 ≤ g(u) ≤ e−Ckn. This finally yields :

In,1k ≤ Ce−Ckn
∫
e−C

u2

2n2 du ≤ Cne−Ckn ≤ C√
kn
.

It remains to bound the main term In,0k . With the previous notations, we rewrite (57) as :

q̂nk (u) = e
kΨ

(
t+ iu√

kΨ(2)(t)

)
−kΨ(t)− iuΨ(1)(t)√

Ψ(2)(t)

√
k

.

A Taylor expansion up to order three of v 7→ Ψ

(
t+ iv√

kΨ(2)(t)

)
on [0, u] gives :

q̂nk (u) = e
−u2

2
− iu3

6Ψ(2)(t)

√
kΨ(2)(t)

ηu

,

where |ηu| ≤ sup|y|≤|u| |Ψ(3)(t+ iy√
kΨ(2)(t)

)|. We deduce then that :

|q̂nk (u)− e−
u2

2 | = e−
u2

2 |1− e
− iu3

6Ψ(2)(t)

√
kΨ(2)(t)

ηu

|.

Using the inequality |1 − ez| ≤ |z|e|z| for any complex number z, we obtain by choosing α such that

| u

Ψ(2)(t)
√
kΨ(2)(t)

ηu| ≤ 1, for |u| ≤ α
√
kn,

|q̂nk (u)− e−
u2

2 | ≤ C |u|
3

√
kn
e−

u2

2 e
u2

6 = C
|u|3√
kn
e−

u2

3 .

This gives

In,0k ≤ C√
kn
.

This achieves the proof of (56).

We turn back to (55). We first recall that for |t| ≤ c
√
n, 0 ≤ 1/C ≤ Ψ(2)(t) ≤ C. As a consequence,

Ψ(1) is increasing, for |t| ≤ c
√
n, with values in [−C

√
n,C
√
n], for some constant C. It follows that

for |x| ≤ ε
√
kn, the equation x = Ψ(1)(t)

√
k admits a unique solution. In the sequel, we fix t to be

the unique solution of :

x = Ψ(1)(t)
√
k. (59)

We have |t| ≤ c
√
n and so combining (55) with (56), we obtain :

p?,nk (x) =
ekΨ(t)−tx

√
k√

Ψ(2)(t)

1√
2π

(
1 +

O(1)√
kn

)
. (60)
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where O(1) is a bounded function. Next considering (59), by a Taylor expansion of [Ψ(1)]−1 on

[0, x/
√
k] up to order two, we obtain :

t =
x√

kΨ(2)(0)
+

x2

k
√
n
O(1),

where we have used [Ψ(1)]−1(0) = 0, ([Ψ(1)]−1)(1)(0) = 1/Ψ(2)(0), ([Ψ(1)]−1)(2)(u) = ψ(3)([Ψ(1)]−1(u))

[Ψ(2)([Ψ(1)]−1(u))]2

and recalling that for |u| ≤ c
√
n, we have 0 ≤ 1/C ≤ Ψ(2)(u) ≤ C and |Ψ(3)(u)| ≤ C/

√
n.

Now, since Ψ(t) = t2

2 Ψ(2)(0) + t3

6 ηt, with |ηt| ≤ sup|u|≤|t| |Ψ(3)(u)|, we deduce the expansion :

kΨ(t) =
x2

2Ψ(2)(0)
+

x3

√
kn
O(1),

where O(1) is a function which is bounded uniformly in k and n, for |x| ≤ ε
√
kn. Using Ψ(2)(0) =

1 + 1
2n + 1

n2 , this finally leads to :

kΨ(t)− t
√
kx = −x

2

2
+
x2

n
O(1) +

x3

√
kn
O(1). (61)

Reporting (61) in (60), it yields :

p?,nk (x) = φ(x)
e

x2

n
O(1)+ x3

√
kn
O(1)√

Ψ(2)(t)

(
1 +

O(1)√
kn

)
.

We conclude, observing that Ψ(2)(t) = Ψ(2)(0) + x√
kn
O(1),

p?,nk (x) = φ(x)e
O(1)

(1+x3)√
kn ,

and i) is proved. �

Based on the refined quantile inequalities for the law of 1√
k
S
?,n

stated in Lemma 5 ii), we deduce

the result of Lemma 2.

Proof of Lemma 2

The result of Lemma 2 is a consequence of the more general following result, applied to the

particular case m = N .

There exist ε > 0 and C > 0 such that, for all m ∈ {0, . . . , N} and n = 2N large enough, we have:∣∣∣∣2m/2F−1
2m

(
Φ

(
Vm,0

2m/2

))
− Vm,0

∣∣∣∣ ≤ C√
n

(∣∣∣∣F−1
2m

(
Φ

(
Vm,0

2m/2

))∣∣∣∣2 + 1

)
,

if
∣∣∣2m/2F−1

2m

(
Φ
(
Vm,0

2m/2

))∣∣∣ ≤ ε2m√n.
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To get this result, we have to prove that for 0 ≤ |x| ≤ ε
√
kn,

Φ(x− u(x)) ≤ Fk(x) ≤ Φ(x+ u(x)), (62)

where u(x) = C√
n

(
x2
√
k

+ 1√
k

)
. Indeed, observing that (62) is equivalent to x − u(x) ≤ Φ−1(Fk(x)) ≤

x+ u(x), we obtain the above result for x = F−1
k (Φ( 1√

k
Vm,0)) and k = 2m.

From Lemma 5, part ii), we have for 0 ≤ x ≤ ε
√
kn :

(1− Φ(x))e
−C (1+x3)√

kn ≤ 1− Fk(x) ≤ (1− Φ(x))e
C

(1+x3)√
kn , (63)

Φ(−x)e
−C (1+x3)√

kn ≤ Fk(−x) ≤ Φ(−x)e
C

(1+x3)√
kn . (64)

Now from Mason and Zhou [13], Lemma 3, we have for all A > 0, k ≥ 64A2 and 0 ≤ x ≤
√
k/(8A) :

log

(
Φ(−x+ u)

Φ(−x)

)
= log

(
1− Φ(x− u)

1− Φ(x)

)
≥ A(

1 + x3

√
k

), (65)

log

(
Φ(−x− u)

Φ(−x)

)
= log

(
1− Φ(x+ u)

1− Φ(x)

)
≤ −A(

1 + x3

√
k

), (66)

where u = 2A1+x2
√
k

. Combining (65) and (66) with A = C/
√
n and n large enough, with (63) and

(64), we deduce that ∀k ≥ 1 and 0 ≤ |x| ≤ ε
√
kn, (62) holds. �

4.4 Conditional quantile inequalities

In this section we prove Lemma 3. Recall that, for k even, p̃?,nk (· | y) is the conditional density of

1√
k
S̃?,nk given 1√

k
S
?,n
k = y, where the joint law of (S̃?,nk , S

?,n
k ) = (2S

?,n
k/2 − S

?,n
k , S

?,n
k ) is defined via

(29)–(30). In the following three lemmas, we establish some expansions for the conditional density

p̃?,nk (· | y) and the associated conditional quantile inequalities. Then, we will deduce Lemma 3.

Lemma 6 There exist some constants ε > 0 and C > 0 such that for all k ≥ 1 and n large enough,

we have, for |x| ≤ ε
√
kn, |y| ≤ ε

√
kn :

p̃?,nk (x | y) = φ(x)e
1√
n
T̃ 1
k (x,y)

,

where
∣∣∣T̃ 1
k (x, y)

∣∣∣ ≤ C 1+|x|3+|y|x2+|y|√
k

.

Proof First we show the following expansion for the density of 1√
k
S
?,n
k ,

∃ε > 0, ∀ |x| ≤ ε
√
nk, p?,nk (x) = φ(x) exp

(
x3

√
nk
rn(

x√
nk

) + cnx
2 +

1 + |x|√
nk

Bn,k(x)

)
, (67)
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where rn is a sequence of smooth functions defined on some neighbourhood [−ε, ε] of 0 and whose

derivatives up to order two are bounded independently of n; cn is a sequence such that cn = O(1/n);

and Bn,k(·) is some measurable function bounded independently of k and n.

Recalling the representation (60), where t is the unique solution of (59), Ψ(2)(t) = Ψ(2)(0) +

|x|√
kn
O(1), and Ψ(2)(0) = 1 + 1

2n + 1
n2 yields to the representation

p?,nk (x) =
1√
2π

exp

(
kΨ(t)− tx

√
k +

1 + |x|√
nk

O(1)

)
Let us denote Φn(s) = 1

nΨ(
√
ns) and by hn the inverse of the function s 7→ 1√

n
Ψ(1)(

√
ns). Due to

the expression (54), it is simple to check that both functions are well defined on some neighborhoods

of 0 independent of n, and we can assume that hn is well defined on the interval [−ε, ε], up to

reducing the value of ε. Using these notations, we get t =
√
nhn( x√

nk
), and in turn, p?,nk (x) =

1√
2π

exp
(
nkΦn(hn( x√

nk
))−
√
nkhn( x√

nk
)x+ 1+|x|√

nk
O(1)

)
. Now, since Φn(0) = Φ

(1)
n (0) = 0, Φ

(2)
n (0) =

1 + 1
2n + 1

n2 , we can write Φn(s) = Φ
(2)
n (0) s

2

2 + s3γn(s) = (1/2 +O(1/n))s2 + s3γn(s), where γn is some

function. Using that Φn, and all its derivatives, are bounded independently of n on [−ε, ε], we deduce

that the same property holds true for γn. Analogously, we can show that

hn(s) = h(1)
n (0)s+ s2βn(s) = (1 +O(1/n))s+ s2βn(s) (68)

where the function βn, and its derivatives of any order, are bounded independently of n on [−ε, ε].

With simple computation, we deduce that

nkΦn(hn(
x√
nk

))−
√
nkhn(

x√
nk

)x = nkΦn

(
(1 +O(1/n))

x√
nk

+
x2

nk
βn(

x√
nk

)

)
−
√
nkx

(
(1 +O(1/n))

x√
nk

+
x2

nk
βn(

x√
nk

)

)
= −1

2
x2 + x2O(1/n) +

x3

√
nk
rn(

x√
nk

)

where rn is some bounded function, with bounded derivatives. This gives (67).

Now, using the independence of the random variables S
?,n
k + S̃?,nk and S

?,n
k − S̃

?,n
k , we easily deduce

∀x, y, p̃?,nk (x | y) =
p?,nk/2(x+y√

2
)p?,nk/2(−x+y√

2
)

p?,nk (y)
. (69)

From (67), we readily get

p̃?,nk (x | y) =
φ(x+y√

2
)φ(−x+y√

2
)

φ(y)
exp

(
δn(x, y) +

1 + |x|+ |y|√
nk

O(1) + cnx
2

)
,

= φ(x) exp

(
δn(x, y) +

1 + |x|+ |y|√
nk

O(1) + cnx
2

)
, (70)
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where δn(x, y) = nk
2

[
( x+y√

nk
)3rn( x+y√

nk
) + (−x+y√

nk
)3rn(−x+y√

nk
)− 2( y√

nk
)3rn( y√

nk
)
]
. From a second order

Taylor expansion of z 7→ z3rn(z) around y√
nk

it can be shown that |δn(x, y)| = x2O(
∑3

i=1(
∣∣∣ x√

nk

∣∣∣i +∣∣∣ y√
nk

∣∣∣i)). Using |x| ≤ ε
√
nk and |y| ≤ ε

√
nk, this yields to |δn(x, y)| = 1√

nk
O(|x|3 + x2 |y|). Using the

expansion (70) we deduce the lemma. �

Lemma 7 Let ε > 0, then there exist 0 < ε′′ < ε′ < ε, and C > 0, such that for n large enough, and

all k,

∀ |y| ≤ ε′′
√
nk,∀ |x| ≥ ε′

√
nk, we have, p̃?,nk (x | y) ≤ C exp

(
−
√
nk

C
[|x| − ε′

√
nk

2
]

)
. (71)

Proof We just consider the case x > 0, since the proof for x < 0 is similar.

We first need to prove the following upper bound on the density of S
?,n
k ,

∃ε′ > 0, ∀0 ≤ y ≤ ε′
√
nk, ∀z ≥ 0, p?,nk (y + z) ≤ 1√

2π
e
− y2

2
− yz

2
+O(

1+|y|3√
nk

)
. (72)

From (55) with x = y + z and for t given by t =
√
nhn( y√

kn
) where hn is defined in the proof of

Lemma 6 we have

p?,nk (y + z) =
ekΨ(t)−ty

√
k√

Ψ(2)(t)
qnk

(
(y + z)

√
k − kΨ(1)(t)√
kΨ(2)(t)

)
e−tz

√
k.

Remark that t is well defined for y√
nk

in a neighbourhood [−ε′, ε′] of 0 and is solution to Ψ(1)(t) = y/
√
k.

Then, proceeding exactly as in the proof of Lemma 5 we can deduce that

p?,nk (y + z) =
1√
2π
e
− y2

2
+O(

1+|y|3√
nk

)
e−tz

√
k. (73)

Now, from (68), we deduce −tz
√
k = −yz

[
1 +O( 1

n)
]

+O( |z|y
2

√
kn

). Using that |y|√
kn
≤ ε′ < 1/4, as soon

as we choose the value of ε′ small enough, we get −tz
√
k ≤ −yz/2, for n large. Finally, (72) follows

from (73).

We now prove (71). Up to a modification of the value of ε′, we can assume that the result of

Lemma 5 i) holds true for x ≤ ε′
√
nk. Thus, from (69), we get for x ∈ R, |y| ≤ ε′

√
nk

p̃?,nk (x | y) ≤
√

2πe
y2

2
+C

1+|y|3√
nk p?,nk/2(

x+ y√
2

)p?,nk/2(
−x+ y√

2
),

where C > 0 is some constant. From (55)–(56), it is easily seen that p?,n is a bounded function.

Hence, we deduce,

p̃?,nk (x | y) ≤ Ce
y2

2
+C

1+|y|3√
nk p?,nk/2(

x+ y√
2

), (74)
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where C > 0 is some constant.

We assume, for the sequel, that x ≥ ε′
√
nk and |y| ≤ ε′′

√
nk with ε′′ = ε′/8. We write p?,nk/2(x+y√

2
)

as p?,nk/2(( ε
′√nk

2 + y) 1√
2

+ (x − ε′
√
nk

2 ) 1√
2
) and use (72). Since ε′

√
nk

2 + y ∈ [3
8ε
′√nk, 5

8ε
′√nk] ⊂

[1
4ε
′√nk, 3

4ε
′√nk], we deduce

p?,nk/2(
x+ y√

2
) ≤ C exp

(
− 1

43
ε′2nk +

C√
nk

+ Cε′3nk − ε′
√
nk

16
(x− ε′

√
nk

2
)

)
,

for some constant C > 0. From (74) and |y| ≤ ε′
√
nk/8, we deduce,

p̃?,nk (x | y) ≤ C exp

(
− 1

2.43
ε′2nk(1− ε′C) +

C√
nk
− ε′
√
nk

16
(x− ε′

√
nk

2
)

)
,

where C is some positive constant. Up to a modification of ε′, we can assume that ε′C ≤ 1 and the

latter equation gives (71). �

We recall that F̃k(x | y) =
∫ x
−∞ p̃

?,n
k (u | y)du, is the conditional cumulative distribution function

of 1√
k
S̃?,nk given 1√

k
S
?,n
k = y.

Lemma 8 There exist ε > 0 and C > 0, such that for all 0 < x ≤ ε
√
nk and |y| ≤ ε

√
nk,

1− F̃k(x | y) = (1− Φ(x))e
1√
n
T̃ 2
k (x,y)

, (75)

F̃k(−x | y) = Φ(−x)e
1√
n
T̃ 3
k (x,y)

, (76)

where
∣∣∣T̃ jk (x, y)

∣∣∣ ≤ C 1+|x|3+|y|x2+|y|√
k

, for j = 2, 3.

Proof We only prove (75), since the proof of (76) is similar.

Using Lemma 6, let us consider ε1 > 0, such that for all |x| ≤ ε1

√
nk, |y| ≤ ε1

√
nk, we have

p̃?,nk (x | y) ≤ 1√
2π
e−

x2

2 e
C1

1+|x|3+|y|x2+|y|√
nk ,

for some constant C1 > 0. Hence, for 0 ≤ x < A ≤ ε1

√
nk and |y| ≤ ε1

√
nk, we can write

F̃k(A | y)− F̃k(x | y) ≤ eC1
1+|y|√

nk

∫ A

x
e
−u2

2
(1−2C1

u+|y|√
nk

) du√
2π
. (77)

Assume now on that ε1 <
1

8C1
, up to a modification of the value of ε1. Then, the change of variable

v = u
(

1− 2C1
u+|y|√
nk

)1/2
is one to one as the variable u ranges in [x,A] and it is easy to see that
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∣∣ dv
du

∣∣ ≤ 1 + C2
v+|y|√
nk

, with some constant C2 > 0. As a result, after a change of variable, we get∫ A

x
e
−u2

2
(1−2C1

u+|y|√
nk

) du√
2π
≤
∫ ∞
x̂(y,n,k)

e−
v2

2 (1 + C2
v + |y|√
nk

)
dv√
2π

= [1− Φ(x̂(y, n, k))](1 +
C2 |y|√
nk

) +
C2√
nk
φ(x̂(y, n, k)) (78)

where we have noted x̂(y, n, k) = x
(

1− 2C1
x+|y|√
nk

)1/2
.

From the mean value theorem,

log

(
1− Φ(x̂(y, n, k))

1− Φ(x)

)
= (x− x̂(y, n, k))

φ(ξ)

1− Φ(ξ)
≤ C3(x2 + x |y|) φ(ξ)

1− Φ(ξ)
,

where ξ ∈ [x̂(y, n, k), x] and C3 > 0 is some constant. From Lemma 2 in [13] we know that z 7→ φ(z)
1−Φ(z)

is increasing and Lemma 1 in [13] easily implies

φ(z)

1− Φ(z)
≤ C4(1 + z) (79)

for any z ≥ 0 and C4 > 0 some constant. We deduce

log

(
1− Φ(x̂(y, n, k))

1− Φ(x)

)
≤ C5(x2 + x |y|)(1 + x), (80)

where C5 is some constant. Putting together (77), (78) and (80) we deduce,

F̃k(A | y)− F̃k(x | y) ≤ [1− Φ(x)]e
C5

1+|x|3+|y|x2+|y|√
nk (1 + C2

1 + |y|√
nk

) +
C2√
nk
ϕ(x̂(y, n, k)).

Using (79) and (80), we have φ(x̂(y, n, k)) ≤ C4(1 + |x|)(1−Φ(x))eC5(x2+x|y|)(1+x). As a consequence,

we easily deduce

F̃k(A | y)− F̃k(x | y) ≤ [1− Φ(x)]e
C6

1+|x|3+|y|x2+|y|√
nk , ∀0 ≤ x < A ≤ ε1

√
nk, |y| ≤ ε1

√
nk, (81)

and where C6 > 0 is some constant.

In order to prove (75), it remains to control 1 − F̃k(A | y) =
∫∞
A p̃?,nk (u | y)du. From Lemma

7, there exists 0 < ε′′1 < ε′1 < ε1 and C7 > 0 such that for all |y| ≤ ε′′1
√
nk, u ≥ ε′1

√
nk, p̃?,nk (u |

y) ≤ C7 exp
(
−
√
nk
C7

[|x| − ε′1
√
nk

2 ]
)

. We choose A = ε′1
√
nk ≤ ε1

√
nk, and with easy computations

deduce that
∫∞
A p̃?,nk (u | y)du ≤ C2

7√
nk
e
− ε′1

4C7
nk

. If we let ε2 =
√

ε′1
4C7
∧ ε′1, and if x ≤ ε2

√
nk, we have,

1− Φ(x) ≥ φ(x)
C4+C4x

≥ e
−

ε′1nk
8C7√

2π(C4+C4ε2
√
nk)

. This implies,

∀0 ≤ x ≤ ε2

√
nk,

∫ ∞
A

p̃?,nk (u | y)du ≤ C8[1− Φ(x)] exp
− nk

C8 , (82)
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for some constant C8 > 0. Joining (81) with (82) yields to the result (75). �

Proof of Lemma 3.

Recalling (32) and repeating the same reasoning as in the proof of Lemma 2, it is sufficient to

prove that for 0 ≤ |x| ≤ ε
√
kn, and 0 ≤ |y| ≤ ε

√
kn

1− Φ(x+ u(x, y)) ≤ 1− F̃k(x | y) ≤ 1− Φ(x− u(x, y)), (83)

where u(x, y) = C(1+x2+y2)√
nk

. We focus on the case x ≥ 0, as the proof is similar for x ≤ 0. Using

Lemma 8, there exist ε1 and C1 such that for 0 ≤ x ≤ ε1

√
nk, |y| ≤ ε1

√
nk,

(1− Φ(x))e
−C1

1+|x|3+|y|x2+|y|√
nk ≤ 1− F̃k(x | y) ≤ (1− Φ(x))e

C1
1+|x|3+|y|x2+|y|√

nk .

We set A = C1√
n

1+|x|3+x2|y|+|y|
1+|x|3 . Then it is simple to check that if ε1 is small enough and n sufficiently

large, we have A2 ≤ 2C2
1
n +

4C2
1y

2

n ≤ k
64 , for all k ≥ 1. In the same way, we easily check that if ε1 is

small enough, we have 8Ax ≤
√
k. As a consequence, we can apply (65)–(66) to get

1− Φ(x+ u) ≤ [1− Φ(x)]e
−A 1+x3

√
k ≤ [1− Φ(x)]e

A 1+x3
√
k ≤ 1− Φ(x− u), (84)

where u = 2A1+x2
√
k
≤ C (1+x2+y2)√

nk
= u(x, y), for some constant C. Since A1+x3

√
k

= C1
1+|x|3+|y|x2+|y|√

nk
,

the equation (84) gives (83). �
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