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Inverse scattering without phase information

R.G. Novikov

Abstract. We report on nonuniqueness, uniqueness and reconstruction results in
quantum mechanical and acoustic inverse scattering without phase information. We are
motivated by recent and very essential progress in this domain. This paper is an extended
version of the talk given at Séminaire Laurent Schwartz on March 31, 2015.

1. Introduction
We consider the equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1.1)

where ∆ is the Laplacian in x, v is a coefficient, e.g. such that

v ∈ L∞(Rd), supp v ⊂ D,

D is an open bounded domain in Rd.
(1.2)

Equation (1.1) can be considered as the quantum mechanical Schrödinger equation at
fixed energy E. In quantum mechanics such an equation arises for an elementary particle
interacting with a macroscopic object being in D. In this case v is the potential of this
interaction.

Equation (1.1) can also be considered as the time-harmonic acoustic equation for
pressure oscillations p = eiωtψ(x) at fixed frequency ω. In this setting

v(x) = (1− (n(x))2)
( ω
c0

)2
, E =

( ω
c0

)2
, (1.3)

where n(x) is a scalar index of refraction, (n(x) ≡ 1 on Rd\D), c0 is a reference sound
speed.

For equation (1.1) we consider the scattering solutions ψ+ = ψ+(·, k) continuous on
Rd and specified by the following asymptotics as |x| → ∞:

ψ+(x, k) = eikx + c(d, |k|) ei|k||x|

|x|(d−1)/2
f(k, |k| x

|x|
) +O

( 1

|x|(d+1)/2

)
,

x ∈ Rd, k ∈ Rd, k2 = E, c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2,

(1.4)

for some a priori unknown f . The function f = f(k, l), k ∈ Rd, l ∈ Rd, k2 = l2 = E, arising
in (1.4) is the scattering amplitude for equation (1.1). In connection with determining ψ+

and f from v, see, e.g. [BS], [F2], [N8], [N10] and references therein.
We recall that ψ+ describes scattering of the incident plane waves described by eikx

on the scatterer described by v. In addition, the second term on the right-hand side of
(1.4) describes the scattered spherical waves.

In addition, the modulus squared |f(k, l)|2 of the scattering amplitude is known as the
differential scattering cross section. In quantum mechanics this modulus squared describes
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the probability density of scattering of particle with initial impulse k into direction l/|l| ̸=
k/|k|; see, e.g. Section 6 of Chapter 1 of [FM].

Let

Sd−1
r = {k ∈ Rd : |k| = r}, r > 0. (1.5)

One can see that the scattering amplitude f for equation (1.1) at fixed E is defined
on

Ωf,E = Sd−1√
E

× Sd−1√
E
. (1.6)

We set

Ωf,Λ = ∪E∈ΛΩf,E , Λ ⊆ R+, (1.7)

where

R+ =]0,+∞[, R− =]−∞, 0[. (1.8)

We start with considerations of the following inverse scattering problems for equation
(1.1) under assumptions (1.2):

Problem 1.1. Reconstruct potential v on Rd from its scattering amplitude f on some
appropriate Ω′

f ⊆ Ωf,Λ, Λ = R+.

Problem 1.2. Reconstruct potential v on Rd from its phaseless scattering data |f |2
on some appropriate Ω′

f ⊆ Ωf,Λ, Λ = R+.
Actually, Problem 1.2 is Problem 1.1 without phase information on the scattering

amplitude f .
Note that in quantum mechanical scattering experiments (in the framework of model

described by equation (1.1)) the complete scattering amplitude f is not accessible for
direct measurements, whereas the phaseless scattering data |f |2 can be measured directly:
namely, |f |2 has direct probabilistic interpretation. Therefore, Problem 1.2 is of particular
interest in the framework of quantum mechanical inverse scattering.

As regards to acoustic scattering experiments (in the framework of the model described
by (1.1), (1.3)), the complete scattering amplitude f can be measured directly. Neverthe-
less, in some cases it may be more easy to measure the phaseless scattering data |f |2.
Therefore, Problem 1.2 is also of interest in the framework of acoustic inverse scattering.

However, in the literature many more results are given on Problem 1.1 (see [ABR],
[AW], [Ber], [Buc], [BAR], [ChS], [DT], [E], [F1], [F2], [GS], [G], [HH], [HN], [I], [IN],
[L], [Mar], [Mel], [Mos], [New], [N1]-[N8], [NM], [R], [S] and references therein) than on
Problem 1.2 (see Chapter X of [ChS] and the works [AS], [K], [KS], [KR1], [KR2], [N9],
[N10], [N11] and references therein).

In particular, for the case of the Schrödinger equation the following results are known.
It is well-known that for this case the following formula holds:

v̂(k − l) = f(k, l) +O(E−1/2) as E → +∞, (k, l) ∈ Ωf,E , (1.9)

where

v̂(p) = (2π)−d
∫
Rd

eipxv(x)dx, p ∈ Rd; (1.10)
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see, for example, [N8]. Actually, formula (1.9) is known as a Born formula at high energies.
As a mathematical theorem formula (1.9) goes back to [F1].

Using (1.9), (1.10) one can see that for the Schrödinger equation in dimension d ≥ 2
the scattering amplitude f at high energies uniquely determines v. More precisely, using
(1.9) for d ≥ 2 with

k = kE(p) =
p

2
+
(
E − p2

4

)1/2
γ(p),

l = lE(p) = −p
2
+

(
E − p2

4

)1/2
γ(p),

(1.11)

|γ(p)| = 1, γ(p)p = 0, (1.12)

one can reconstruct v̂(p) from f at high energies for any p ∈ Rd.
It is also known that, under assumptions (1.2), in dimension d ≥ 2, potential v is

uniquely determined by its scattering amplitude f at fixed energy; see [N1] for d ≥ 3 and
[Buc] for d = 2.

In addition, for the Schrödinger equation, under assumptions (1.2), in dimension d = 1,
the scattering amplitude f on appropriate Ω′

f uniquely determines v due to results of [NM]
based on the Gel’fand-Levitan-Marchenko theory presented in [DT], [F2], [L], [Mar]; see
comments to Problem 4.1 in Section 4 for more information.

On the other hand, it is known that the phaseless scattering data |f |2 on Ωf,Λ, Λ = R+,
do not determine v uniquely, in general. In particular, the following formulas hold:

fy(k, l) = ei(k−l)yf(k, l),

|fy(k, l)|2 = |f(k, l)|2, (k, l) ∈ Ωf,Λ, Λ = R+, y ∈ Rd,
(1.13)

where f is the scattering amplitude for v and fy is the scattering amplitude for vy, where

vy(x) = v(x− y), x ∈ Rd, y ∈ Rd; (1.14)

see, for example, [N7], [N9].
In view of the aforementioned nonuniqueness for Problem 1.2, in our recent works

[N9], [N10], [N11] we have considered some modifications of this initial phaseless inverse
scattering problem; see Problems 2.1, 3.1, 3.2 and 4.2, 4.3 (of the present paper). Our
results in this connection are presented in Sections 2, 3 and 4. Note that in considering
appropriate modifications of Problem 1.2 we were stimulated by uniqueness results of [K]
on the aforementioned Problem 3.2.

Actually, we consider Problems 2.1, 3.1, 3.2, 4.2, 4.3 of Sections 2, 3 and 4 as the most
appropriate modifications of Problem 1.2. The point is that in Problems 2.1, 3.1, 3.2,
4.2, 4.3 the phaseless scattering data can be measured directly and there is no principle
nonuniqueness of Problem 1.2. In addition, in connection with the most recent results on
Problem 3.2 we refer to [KR2].
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2. Results of [N9]
Let v satisfy (1.2) for some fixed D and w1, . . . , wn be additional a priori known

background scatterers such that

wj ∈ L∞(Rd), suppwj ⊂ Ωj ,

Ωj is an open bounded domain in Rd, Ωj ∩D = ∅,
wj ̸= 0, wj1 ̸= wj2 for j1 ̸= j2 in L∞(Rd),

(2.1)

where j, j1, j2 ∈ {1, . . . , n}.
Let

S = {|f |2, |fj |2, j = 1, . . . , n}, (2.2)

where f is the initial scattering amplitude for v, fj is the scattering amplitude for

vj = v + wj , j = 1, . . . , n. (2.3)

In other words, S consists of the phaseless scattering data |f |2, |f1|2, . . . , |fn|2 (differential
scattering cross sections) measured sequentially for the unknown scatterer v and then
for the unknown scatterer v in the presence of known scatterer wj nonintersecting v for
j = 1, . . . , n.

In addition, we consider the following modification of Problem 1.2:

Problem 2.1. Reconstruct potential v on Rd from the phaseless scattering data S
on some appropriate Ω′

f ⊆ Ωf,Λ, Λ = R+, and for some appropriate background scatterers
w1, . . . , wn.

Problem 2.1 in dimension d = 1 for n = 1 was, actually, considered in [AS]. However,
to our knowledge, Problem 2.1 in dimension d ≥ 2 has not yet been considered in the
literature before the recent work [N9].

We represent the Fourier transforms v̂ and ŵj as follows:

v̂(p) = |v̂(p)|eiα(p), ŵj(p) = |ŵj(p)|eiβj(p), (2.4)

where p ∈ Rd, j = 1, . . . , n.
In the next theorem we give explicit formulas for finding the Fourier transform v̂ from

the phaseless quantum mechanical scattering data S of (2.2) at high energies for d ≥ 2,
n = 2, for appropriate background scatterers w1, w2.

Theorem 2.1 ([N9]). Suppose that complex-valued v and w1, w2 satisfy (1.2) and
(2.1), where d ≥ 2. Then the following formulas hold:

|v̂j(p)|2 = |fj(k, l)|2 +O(E−1/2) as E → +∞,

p ∈ Rd, (k, l) ∈ Ωf,E , k − l = p, j = 0, 1, 2,
(2.5)

where v0 = v, f0 = f , vj is defined by (2.3), j = 1, 2. In addition,

|v̂|
(
cosα
sinα

)
= (2 sin(β2 − β1))

−1×(
sin β2 − sin β1

− cos β2 cos β1

)(
|ŵ1|−1(|v̂1|2 − |v̂|2 − |ŵ1|2)
|ŵ2|−1(|v̂2|2 − |v̂|2 − |ŵ3|2)

)
,

(2.6)
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where

|v̂| = |v̂(p)|, α = α(p), βj = βj(p), |ŵj | = |ŵj(p)|, |v̂j | = |v̂j(p)|, j = 1, 2,

sin(β2(p)− β1(p)) ̸= 0, |ŵ1(p)| ̸= 0, |ŵ2(p)| ̸= 0, p ∈ Rd. (2.7)

Formulas (2.5), (2.6) are explicit formulas for finding v̂ from S = {|f |2, |f1|2, |f2|2} at
high energies E in dimension d ≥ 2 for appropriate w1, w2. For simplicity, in connection
with (2.6), (2.7) we can assume also that

w2(x) = w1(x− y), y ∈ Rd\{0}. (2.8)

In this case we have

|ŵ2(p)| = |ŵ1(p)|, β2(p) = β1(p) + py (mod 2π), p ∈ Rd. (2.9)

As a corollary of (2.8), (2.9),

conditions (2.7) are fulfilled if and only if p ∈ Rd\(Ay ∪ Z),
Ay = {p ∈ Rd : e2ipy = 1}, Z = {p ∈ Rd : |ŵj(p)| = 0}, j = 1, 2.

(2.10)

Here, the definition of Z does not depend on j.
We have, in particular, that

Ay is closed and MeasAy = 0 in Rd, y ̸= 0, (2.11)

Z is closed and MeasZ = 0 in Rd, (2.12)

where properties (2.12) follow from (2.1).
Using (2.5)-(2.7) and assuming, for example, (2.8) one can see that the phaseless

quantum mechanical scattering data S = {|f |2, |f1|2, |f2|2} at high energies in dimension
d ≥ 2 and the background scatterers w1, w2 uniquely determine v. More precisely, using
(2.5) with k, l as in (1.11) and then using (2.6), one can reconstruct v̂(p) from S at high
energies and from ŵ1, ŵ2 for any p ∈ Rd\(Ay ∪ Z), where Ay, Z are defined in (2.10) and
have, in particular, properties (2.11), (2.12).

Actually, Theorem 2.1 is an analog for the phaseless case of inverse scattering results
based on (1.9), (1.10).

In [N9], as a corollary of explicit formulas for solving Problem 2.1 at high energies,
we give also a global uniqueness result for this problem with appropriate data on a fixed
energy neighborhood.

3. Results of [N10]
Let Sd−1

r be defined by (1.5) and

Br = {x ∈ Rd : |x| < r}, r > 0. (3.1)

5
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We suppose that
D ⊆ Br, (3.2)

where D is the domain of assumptions (1.2).
As scattering data for equation (1.1), under assumptions(1.2), (3.2), we consider also

ψ+(x, k), where (x, k) ∈ Ω′
ψ,E ⊆ Ωψ,E ,

Ωψ,E = (Rd\Br)× Sd−1√
E
, (3.3)

where ψ+ are the scattering solutions of the introduction. In addition, in a similar way
with (1.7) we set

Ωψ,Λ = ∪E∈ΛΩψ,E , Λ ⊆ R+. (3.4)

Actually, the function ψ+ can be also considered as scattering amplitude for scattering
of spherical waves.

We recall that the function R+ describing scattering of spherical waves generated by
point sources can be defined as the Schwartz kernel of the standard resolvent
(−∆+v−E− i0)−1. Thus, R+ = R+(x, x′, E), x ∈ Rd, x′ ∈ Rd. Note that R+(x, x′, E) =
R+

0 (|x− x′|, E) for v ≡ 0, where

R+
0 (|x|, E) = (2π)−d

∫
Rd

eiξxdξ

ξ2 − E − i0
, (3.5)

where the right-hand side of (3.5) is spherically symmetric in x ∈ Rd.
The function R+(x, x′, E) at fixed x′ ∈ Rd describes scattering of the spherical wave

R+
0 (|x− x′|, E) generated by a point source at x′. In addition,

R+(x, x′, E) = −c(d,
√
E)

(2π)d
ei

√
E|x|

|x|(d−1)/2
ψ+

(
x′,−

√
E
x

|x|
)
+

O
( 1

|x|(d+1)/2

)
as |x| → ∞ at fixed x′,

(3.6)

R+(x, x′, E) = R+(x′, x, E), (3.7)

where ψ+ is the function of the introduction, c is the constant in (1.4); see [N10] and
Section 1 of Chapter IV of [FM].

In particular, in view of (1.4), (3.6), the function ψ+ can be considered as scattering
amplitude for scattering of spherical waves.

We recall that, under assumptions (1.2), (3.2), the plane wave scattering amplitude
f on Ωf,E uniquely and constructively determine ψ+ on ∂Br × Sd−1√

E
and vice versa; see

[Ber].
In addition, we consider the following modification of Problem 1.2:

Problem 3.1. Reconstruct potential v on Rd from its phaseless scattering data |ψ+|2
on some appropriate Ω′

ψ ⊆ Ωψ,Λ, Λ = R+.

6
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To our knowledge, Problem 3.1 has not yet been considered in the literature before
the recent works [N10], [N11].

We represent f and c of (1.4) as follows:

f(k, l) = |f(k, l)|eiα(k,l), c(d, |k|) = |c(d, |k|)|eiβ(d,|k|). (3.8)

We define

a(x, k) = |x|(d−1)/2(|ψ+(x, k)|2 − 1), x ∈ Rd\{0}, k ∈ Rd\{0}. (3.9)

In the next theorem we give explicit formulas for finding the complex plane wave
scattering amplitude f from the phaseless scattering data |ψ+|2 for equation (1.1) at fixed
E for d ≥ 2.

Theorem 3.1 (variation of Theorem 2.1 of [N10]). Let real-valued v satisfy (1.2),
d ≥ 2, and f , a be the functions of (1.4), (3.9). Then:

|f |
(
cosα
sinα

)
= (2|c| sin(τ(|k| − kx

|x|
)))−1×((

sin(|k||x| − kx+ β + τ(|k| − kx/|x|)) − sin(|k||x| − kx+ β)
cos(|k||x| − kx+ β + τ(|k| − kx/|x|)) − cos(|k||x| − kx+ β)

)
×(

a(x, k)
a(x+ τx/|x|, k)

)
+O(|x|−σ)

)
, |x| → ∞,

(3.10)

σ = 1/2 for d = 2, σ = 1 for d ≥ 3, (3.11)

at fixed E > 0, where

|f | = |f(k, |k| x
|x|

)|, α = α(k, |k| x
|x|

), |c| = |c(d, |k|)|, β = β(d, |k|),

sin
(
τ
(
|k| − kx

|x|
))

̸= 0, (3.12)

k ∈ Rd, k2 = E, x ∈ Rd, τ > 0.
Formulas (3.9)-(3.12) are explicit asymptotic formulas for finding complex f(k, l) at

fixed (k, l) ∈ Ωf,E , k ̸= l, from |ψ+(x, k)|2 for x = sl/|l|, s ∈ [r1,+∞[ for arbitrary large
r1 ≥ r (assuming, e.g. (3.2)). These formulas give a method for reducing the phaseless
inverse scattering Problem 3.1 to the well-studied inverse scattering Problem 1.1.

Actually, formulas (3.10), (3.11) follow from formulas (2.5)-(2.7), (3.11) of [N10], where
(3.11) of [N10] is used for l/|l| = x/|x|, s = |x| and for l/|l| = x/|x|, s = |x|+ τ .

In particular, in [N10] using a version of formulas (3.10), (3.11) of the present paper we
give also a global uniqueness result for Problem 3.1 at fixed energy E (i.e. for Ω′

ψ ⊆ Ωψ,E)
in dimension d ≥ 2.

In addition, in [N10] using also formulas (3.6), (3.7) we give a global uniqueness result
for Problem 3.2 at fixed energy E in dimension d ≥ 2, where Problem 3.2 is formulated as
follows.

7
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As scattering data for equation (1.1), under assumptions (1.2), (3.2) we consider also
R+(x, y, E), where (x, y) ∈ Ω′

R ⊆ ΩR,

ΩR = (Rd\Br)× (Rd\Br), (3.13)

where R+ is the aforementioned function describing scattering of spherical waves. In a
similar way with (1.7), (3.4) we set

ΩR,Λ = ΩR × Λ, Λ ⊆ R+. (3.14)

In addition, we consider the following phaseless inverse scattering problem:

Problem 3.2. Reconstruct potential v on Rd from its phaseless scattering data |R+|2
on some appropriate Ω′

R ⊆ ΩR,Λ, Λ = R+.
To our knowledge, Problem 3.2 was considered, first, in [K] at an energy interval for

d = 3.
Note that in [N10] it was assumed that d ≥ 2. In dimension d = 1 studies of [N10]

were continued in [N11].

4. Results of [N11]
We consider equation (1.1) in dimension d = 1, where

v is real− valued, v ∈ L1
1(R),

v(x) ≡ 0 for x < 0,
(4.1)

where

L1
1(R) = {u ∈ L1(R) :

∫
R

(1 + |x|)|u(x)|dx <∞}. (4.2)

For this one-dimensional equation (1.1) we consider the scattering solutions ψ+ = ψ+(·, k)
of the introduction for k =

√
E > 0. In this case, (1.4) takes the form

ψ+(x, k) =

{
eikx + s21(k)e

−ikx as x→ −∞,
s22(k)e

ikx + o(1) as x→ +∞,
(4.3)

where

s21(k) = −πi
k
f(k,−k), s22(k) = 1− πi

k
f(k, k), k =

√
E > 0. (4.4)

In addition, the coefficients s21 and s22 arising in (4.3) are known as the reflection coefficient
to the left and transmission coefficient to the right, respectively, for equation (1.1), d = 1.

We consider the following two types of scattering data measured on the left for the
one-dimensional equation (1.1), under assumptions (4.1): (a) s21(k) and (b) ψ+(x, k),
x ∈ X− ⊆ R−, where k =

√
E > 0.

In addition, we consider the following inverse scattering problems:

Problem 4.1. Reconstruct potential v on R from its reflection coefficient s21 on R+.

8
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Problem 4.2. Reconstruct potential v on R from its phaseless scattering data |ψ+|2
on X− × R+ for some appropriate X−.

Problem 4.3. Reconstruct potential v on R from its phaseless scattering data |s21|2
on R+ and |ψ+|2 on X− × R+ for some appropriate X−.

One can see that Problem 4.1 is a particular case of the well-studied Problem 1.1 for
d = 1 of the introduction and Problem 4.2 is a particular case of Problem 3.1 for d = 1 of
Section 3.

For Problem 4.1 global uniqueness and reconstruction results were given in [NM] on
the basis of the Gelfand-Levitan-Marchenko theory; see also [AW], [GS] and references
given in [AW].

To our knowledge, Problems 4.2 and 4.3 have not yet been considered in the literature
before the recent work [N11].

We use the following notations:

S1(x1, x2, k) = {|s21(k)|2, |ψ+(·, k)|2 on X−},
where X− = {x1, x2 ∈ R− : x1 ̸= x2}, k ∈ R+;

(4.5)

S2(x1, x2, x3, k) = |ψ+(·, k)|2 on X−,

where X− = {x1, x2, x3 ∈ R− : xi ̸= xj if i ̸= j}, k ∈ R+;
(4.6)

S3(x, k) = {|ψ+(x, k)|2, d|ψ
+(x, k)|2

dx
}, x ∈ R−, k ∈ R+. (4.7)

We represent s21 of (4.3) as follows

s21(k) = |s21(k)|eiα(k), k ∈ R+. (4.8)

We consider
a(x, k) = |ψ+(x, k)|2 − 1, x ∈ R−, k ∈ R+. (4.9)

In the next theorem we give explicit formulas for finding complex reflection coefficient
s21(k) from the phaseless scattering data S1(x1, x2, k) for fixed x1, x2 and k, where
x1 ̸= x2mod(π(2k)

−1).

Theorem 4.1 ([N11]). Let v satisfy (4.1) and s21, a be the function of (4.3), (4.9).
Let x1, x2 ∈ R−, k ∈ R+, x1 ̸= x2mod(π(2k)

−1). Then:

|s21(k)|
(
cosα(k)
sinα(k)

)
= (2 sin(2k(x2 − x1)))

−1×(
sin (2kx2) − sin (2kx1)

− cos (2kx2) cos (2kx1)

)(
a(x1, k)− |s21(k)|2
a(x2, k)− |s21(k)|2

)
.

(4.10)

Actually, Theorem 4.1 is an one-dimensional analog of Theorem 3.1.
Formulas (4.9), (4.10) give a reduction of Problem 4.3 to the well-studied Problem

4.1.
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In the next theorem we give explicit formulas for finding complex reflection coefficient
s21(k) from the phaseless scattering data S2(x1, x2, x3, k) for fixed x1, x2, x3 and k, where
xi ̸= xjmod(πk

−1) if i ̸= j.

Theorem 4.2 ([N11]). Let v satisfy (4.1) and ψ+, s21 be the functions of (4.3). Let
x1, x2, x3 ∈ R−, k ∈ R+, xi ̸= xjmod(πk

−1) if i ̸= j. Then:

|s21(k)|
(
cosα(k)
sinα(k)

)
= (8 sin(k(x2 − x3)) sin(k(x2 − x1)) sin(k(x1 − x3)))

−1×(
sin (2kx3)− sin (2kx1) − sin (2kx2) + sin (2kx1)

− cos (2kx3) + cos (2kx1) cos (2kx2)− cos (2kx1)

)
×(

|ψ+(x2, k)|2 − |ψ+(x1, k)|2
|ψ+(x3, k)|2 − |ψ+(x1, k)|2

)
.

(4.11)

In the next theorem we give explicit formulas for finding complex reflection coefficient
s21(k) from the phaseless scattering data S3(x, k) for fixed x and k.

Theorem 4.3 ([N11]). Let v satisfy (4.1) and ψ+, s21 be the functions of (4.3). Then:

Re (s21(k)e
−ikx) = −1 + (|ψ+(x, k)|2 − |Im (s21(k)e

−ikx)|2)1/2,

Im (s21(k)e
−ikx) =

1

4k

d|ψ+(x, k)|2

dx
,

(4.12)

where x ∈ R−, k ∈ R+, and (·)1/2 > 0.
One can see that formulas (4.11), (4.12) give reductions of Problem 4.2 to the well-

studied Problem 4.1.
In [N11], under assumptions (4.1), as corollaires of Theorems 4.1, 4.2, 4.3 and the

aforementioned results of [NM], we give, in particular, global uniqueness and reconstruction
results (1) for finding v on R from S1(x1, x2, ·) on R+ for fixed x1, x2, (2) for finding v on
R from S2(x1, x2, x3, ·) on R+ for fixed x1, x2, x3, and (3) for finding v on R from S3(x, ·)
on R+ at fixed x.
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CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique,

91128 Palaiseau, France;

IEPT RAS, 117997 Moscow, Russia;

e-mail: novikov@cmap.polytechnique.fr

13


