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The packing chromatic number χ ρ (G) of a graph G is the smallest integer k such that its set of vertices V (G) can be partitioned into k disjoint subsets V 1 , . . . , V k , in such a way that every two distinct vertices in V i are at distance greater than i in G for every i, 1 ≤ i ≤ k. For a given integer p ≥ 1, the generalized corona G ⊙ pK 1 of a graph G is the graph obtained from G by adding p degree-one neighbors to every vertex of G. In this paper, we determine the packing chromatic number of generalized coronae of paths and cycles.

Moreover, by considering digraphs and the (weak) directed distance between vertices, we get a natural extension of the notion of packing coloring to digraphs. We then determine the packing chromatic number of orientations of generalized coronae of paths and cycles.

Packing coloring of some undirected and oriented coronae graphs 1 Introduction

All the graphs we considered are simple and loopless. For an undirected graph G, we denote by V (G) its set of vertices and by E(G) its set of edges. The distance d G (u, v), or simply d(u, v), between vertices u and v in G is the length (number of edges) of a shortest path joining u and v. The diameter of G is the maximum distance between two vertices of G. We denote by P n the path of order n and by C n , n ≥ 3, the cycle of order n.

A packing k-coloring of G is a mapping π : V (G) → {1, . . . , k} such that, for every two distinct vertices u and v, π(u) = π(v) = i implies d(u, v) > i. The packing chromatic number χ ρ (G) of G is then the smallest k such that G admits a packing k-coloring. In other words, χ ρ (G) is the smallest integer k such that V (G) can be partitioned into k disjoint subsets V 1 , . . . , V k , in such a way that every two vertices in V i are at distance greater than i in G for every i, 1 ≤ i ≤ k. A packing coloring of G is optimal if it uses exactly χ ρ (G) colors.

Packing coloring has been introduced by Goddard, Hedetniemi, Hedetniemi, Harris and Rall [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF][START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF] under the name broadcast coloring and has been studied by several authors in recent years. Several papers deal with the packing chromatic number of certain classes of graphs such as trees [START_REF] Argiroffo | The packing coloring problem for lobsters and partner limited graphs[END_REF][START_REF] Brešar | On the packing chromatic number of Cartesian products, hexagonal lattice, and trees[END_REF][START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF][START_REF] Rall | On the packing chromatic number of trees, Cartesian products and some infinite graphs[END_REF][START_REF] Sloper | An eccentric coloring of trees[END_REF], lattices [START_REF] Brešar | On the packing chromatic number of Cartesian products, hexagonal lattice, and trees[END_REF][START_REF] Ekstein | The packing chromatic number of the square lattice is at least 12[END_REF][START_REF] Fiala | The packing chromatic number of infinite product graphs[END_REF][START_REF] Finbow | On the packing chromatic number of some lattices[END_REF][START_REF] Korže | On the packing chromatic number of square and hexagonal lattice[END_REF][START_REF] Soukal | A note on the packing chromatic number of the square lattice[END_REF], Cartesian products [START_REF] Brešar | On the packing chromatic number of Cartesian products, hexagonal lattice, and trees[END_REF][START_REF] Fiala | The packing chromatic number of infinite product graphs[END_REF][START_REF] Rall | On the packing chromatic number of trees, Cartesian products and some infinite graphs[END_REF], distance graphs [START_REF] Ekstein | Packing chromatic number of distance graphs[END_REF][START_REF] Ekstein | The packing coloring of distance graphs D(k, t)[END_REF][START_REF] Togni | On packing colorings of distance graphs[END_REF] or hypercubes [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF][START_REF] Torres | The packing chromatic number of hypercubes[END_REF][START_REF] William | Packing chromatic number of enhanced hypercubes[END_REF]. Complexity issues of the packing coloring problem were adressed in [START_REF] Argiroffo | Polynomial instances of the packing coloring problem[END_REF][START_REF] Argiroffo | The packing coloring problem for (q, q -4)-graphs[END_REF][START_REF] Argiroffo | The packing coloring problem for lobsters and partner limited graphs[END_REF][START_REF] Fiala | Complexity of the packing coloring problem for trees[END_REF][START_REF] Gastineau | Dichotomies properties on computational complexity of Spacking coloring problems[END_REF][START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF].

The following proposition, which states that having packing chromatic number at most k is a hereditary property, will be useful in the sequel: Proposition 1 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF]) If H is a subgraph of G, then χ ρ (H) ≤ χ ρ (G).

Fiala and Golovach [START_REF] Fiala | Complexity of the packing coloring problem for trees[END_REF] proved that determining the packing chromatic number is an NP-hard problem for trees. Determining the packing chromatic number of special subclasses of trees is thus an interesting problem. The exact value of the packing chromatic number of trees with diameter at most 4 was given in [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF]. In the same paper, it was proved that χ ρ (T n ) ≤ (n + 7)/4 for every tree T n or order n = 4, 8, and this bound is tight, while χ ρ (T n ) ≤ 3 if n = 4 and χ ρ (T n ) ≤ 4 if n = 8, these two bounds being also tight.

The packing chromatic numbers of paths and cycles have been determined by Goddard et al.: Theorem 2 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [START_REF] Goddard | Broadcast chromatic numbers of graphs[END_REF])

• χ ρ (P n ) = 2 if n ∈ {2, 3}, • χ ρ (P n ) = 3 if n ≥ 4,
• χ ρ (C n ) = 3 if n = 3 or n ≡ 0 (mod 4),

• χ ρ (C n ) = 4 if n ≥ 5 and n ≡ 1, 2, 3 (mod 4).

The corona G ⊙ K 1 of a graph G is the graph obtained from G by adding a degree-one neighbor to every vertex of G. We call such a degree-one neighbor a pendant vertex or a pendant neighbor. More generally, for a given integer p ≥ 1, the generalized corona G ⊙ pK 1 of a graph G is the graph obtained from G by adding p pendant neighbors to every vertex of G.

A caterpillar of length ℓ ≥ 1 is a tree whose set of internal vertices (vertices with degree at least 2) induces a path of length ℓ -1, called the central path. Sloper proved the following result: Theorem 3 (Sloper [START_REF] Sloper | An eccentric coloring of trees[END_REF]) Let CT ℓ be a caterpillar of length ℓ. Then χ ρ (CT ℓ ) ≤ 6 if ℓ ≤ 34, and χ ρ (CT ℓ ) ≤ 7 otherwise. Moreover, these two bounds are tight.

Since every generalized corona of a path is a caterpillar, we get that for every integer p ≥ 1, χ ρ (P n ⊙ pK 1 ) ≤ 6 if n ≤ 34 and χ ρ (P n ⊙ pK 1 ) ≤ 7 otherwise.

By considering digraphs instead of undirected graphs, and using the (weak) directed distance between vertices -defined as the number of arcs in a shortest directed path linking these vertices, in either direction -we get a natural extension of packing colorings to digraphs. In this paper, we will consider orientations of some undirected graphs, obtained by giving to each edge of such a graph one of its two possible orientations. The so-obtained oriented graphs are thus digraphs having no pair of opposite arcs. 

P 2 ⊙ K 1 P 3 ⊙ K 1 P 4 ⊙ K 1 P 5 ⊙ K 1 P 6 ⊙ K 1 P 7 ⊙ K 1
P 9 ⊙ K 1 Figure 1: Optimal packing colorings of P n ⊙ K 1 , 2 ≤ n ≤ 9
In this paper, we determine the packing chromatic number of (simple) coronae of paths and cycles (Section 2) and of generalized coronae (for k ≥ 2) of paths and cycles (Section 3). In Section 4, we consider the oriented version of packing colorings and determine the packing chromatic number of oriented paths, oriented cycles and oriented generalized coronae of paths and cycles. Some of the presented results for undirected graphs were obtained by the first author in [START_REF] Laïche | Sur les nombres broadcast chromatiques[END_REF].

Coronae of undirected paths and cycles

We study in this section coronae of paths and cycles. We first determine the packing chromatic number of coronae of paths. Note that any corona P n ⊙ K 1 is also a caterpillar of length n.

Theorem 4

The packing chromatic number of the corona graph P n ⊙ K 1 is given by:

χ ρ (P n ⊙ K 1 ) =        2 if n = 1, 3 if n ∈ {2, 3}, 4 if 4 ≤ n ≤ 9, 5 if n ≥ 10.
Proof. We obviously have χ ρ (P 1 ⊙ K 1 ) = χ ρ (P 2 ) = 2. Optimal packing colorings of P n ⊙ K 1 are given in Figure 1 for every n, 2 ≤ n ≤ 9. Since P 2 ⊙ K 1 = P 4 , we have χ ρ (P 2 ⊙ K 1 ) = 3 by Theorem 2. It is easy to observe that the packing 3-coloring of P 3 ⊙ K 1 depicted in Figure 1 is unique. Hence, if P 4 ⊙ K 1 would be packing 3-colorable, this packing 3-coloring of P 3 ⊙ K 1 would appear on the left or right hand side of P 4 ⊙ K 1 . But in that case, the fourth vertex of the central path of P 4 ⊙ K 1 could not be colored. Hence χ ρ (P 4 ⊙ K 1 ) = 4. Finally, since P 2 ⊙ K 1 is a subgraph of P 3 ⊙ K 1 and P 4 ⊙ K 1 is a subgraph of P n ⊙ K 1 for every n, 5 ≤ n ≤ 9, all the packing colorings given in Figure 1 are optimal by Proposition 1.

Let us now consider P n ⊙ K 1 with n ≥ 10. Let x 1 x 2 . . . x n denote the central path of P n ⊙ K 1 and y i denote the pendant neighbor of x i for every i, 1 ≤ i ≤ n. 

C 3 ⊙ K 1 C 4 ⊙ K 1 Figure 3: Optimal packing colorings of C 3 ⊙ K 1 and C 4 ⊙ K 1
Let π be the 4-periodic 5-coloring of P n ⊙ K 1 defined as follows (see Figure 2):

π(x i ) =    1 if i ≡ 1 (mod 2), 2 if i ≡ 2 (mod 4), 3 if i ≡ 0 (mod 4), π(y i ) =    1 if i ≡ 0 (mod 2), 4 if i ≡ 1 (mod 4), 5 if i ≡ 3 (mod 4),
It is not difficult to check that π is indeed a packing 5-coloring of P n ⊙ K 1 and, therefore, χ ρ (P n ⊙ K 1 ) ≤ 5 for every n ≥ 10.

To finish the proof, it is enough to prove that χ ρ (P 10 ⊙ K 1 ) ≥ 5, thanks to Proposition 1. This could be done by a long and tedious case analysis. By computer search, we get that the largest packing 4-colorable corona of path is P 9 ⊙ K 1 , which admits two distinct packing 4-colorings: one is given in Figure 1, the other one is obtained by coloring the middle pendant vertex by 2 instead of 1.

In [START_REF] William | Packing chromatic number of cycle related graphs[END_REF], William, Roy and Rajasingh proved that χ ρ (C n ⊙ K 1 ) ≤ 5 for every even n ≥ 6. We complete their result as follows:

Theorem 5 The packing chromatic number of the corona graph C n ⊙ K 1 is given by:

χ ρ (C n ⊙ K 1 ) = 4 if n ∈ {3, 4}, 5 if n ≥ 5.
Proof. Optimal packing 4-colorings of C 3 ⊙ K 1 and C 4 ⊙ K 1 are given in Figure 3. We claim indeed that these two coronae graphs cannot be packing 3-colored. If there would exist such colorings then color 1 would necessarily be used for the cycle and its two neighbors on the cycle would get colors 2 and 3. But then, it would not be possible to color the pendant neighbor of the vertex with color 1.

Let us now consider C n ⊙ K 1 with n ≥ 5. Figure 4 describes 5-colorings of C 5 ⊙ K 1 , C 6 ⊙ K 1 and C 7 ⊙ K 1 . Figure 5 describes "almost 4-periodic" packing 5colorings of C n ⊙ K 1 , n ≥ 8, according to the value of n mod 4 (the leftmost pattern of length 4 can be repeated any number of times). It is not difficult to check that 

C 5 ⊙ K 1 C 6 ⊙ K 1 C 7 ⊙ K 1 Figure 4: Optimal packing colorings of C 5 ⊙ K 1 , C 6 ⊙ K 1 and C 7 ⊙ K 1
all these colorings are indeed packing 5-colorings and, therefore, χ ρ (C n ⊙ K 1 ) ≤ 5 for every n ≥ 5.

It remains to prove that χ ρ (C n ⊙ K 1 ) ≥ 5 for every n ≥ 5. Assume to the contrary that there exists a packing 4-coloring of C 5 ⊙ K 1 . By "unfolding" this coloring and considering it as a pattern of a 5-periodic coloring for coronae of paths we obtain a packing 4-coloring of every corona graph P n ⊙K 1 , n ≥ 5, in contradiction with Theorem 4. The same argument proves that there is no packing 4-coloring of C n ⊙ K 1 for every n ≥ 6. This completes the proof.

Generalized coronae of undirected paths and cycles

As observed in the introduction, we know, by Theorem 3, that for every integer p ≥ 1, χ ρ (P n ⊙ pK 1 ) ≤ 6 if n ≤ 34 and χ ρ (P n ⊙ pK 1 ) ≤ 7 otherwise.

When considering generalized coronae of paths or cycles, the following proposition is useful: Proposition 6 Let P n = x 1 . . . x n , n ≥ 2, be a path and P n ⊙ pK 1 , p ≥ 1, be a generalized corona of P n . Any packing coloring π of P n ⊙ pK 1 with π(x i ) = 1 for some vertex

x i must use at least p + 3 colors if 2 ≤ i ≤ n -1, or at least p + 2 colors if i ∈ {1, n}. Similarly, if C n ⊙ pK 1 , p ≥ 3, is a generalized corona of C n = y 1 .
. . y n , then any packing coloring π ′ of C n ⊙ pK 1 with π ′ (y i ) = 1 for some vertex y i must use at least p + 3 colors.

Proof. To see that, simply note that if π(x i ) = 1 then no two neighbors of x i can receive the same color. Since the degree of

x i is p + 2 if 2 ≤ i ≤ n -1, or p + 1 if i ∈ {1, n}, the claim follows. The proof if similar for C n ⊙ pK 1 .
In order to describe packing colorings of generalized coronae of paths and cycles, we will use the following notation in the rest of this paper. Observe first that whenever a vertex of the path, or the cycle, in any such graph is colored with a color distinct from 1, all the pendant vertices attached to this vertex can be colored 1. Hence, it is necessary to give the colors of the pendant vertices only 

C n ⊙ K 1 , n ≥ 8, n ≡ 3 (mod 4) C n ⊙ K 1 , n ≥ 8, n ≡ 2 (mod 4) C n ⊙ K 1 , n ≥ 8, n ≡ 1 (mod 4) C n ⊙ K 1 , n ≥ 8, n ≡ 0 (mod 4) Figure 5: Optimal packing colorings of C n ⊙ K 1 , n ≥ 8
when the color of their neighbor is 1. In that case, these colors will be given within parenthesis, following the color 1. Such a sequence of colors, called a pattern, can thus unambigously describe a packing coloring of a (generalized) corona of a given path. For instance, the colorings of P 4 ⊙K 1 and P 5 ⊙K 1 given in the previous section (see Figure 1) will be denoted by 21(3)41(2) and 21(3)41(3)2, respectively. For packing colorings of (generalized) coronae of cycles, we will put the whole sequence of colors in brackets in order to emphasize the fact that the pattern is circular. For instance, the colorings of C 5 ⊙ K 1 and C 6 ⊙ K 1 given in the previous section (see Figure 4) will be denoted by [321(5)41 [START_REF] Argiroffo | The packing coloring problem for (q, q -4)-graphs[END_REF]] and [31(5)21(3)41(2)], respectively.

Let u and v be two words on the alphabet of colors, such that [u] is a circular pattern. We will say that the pattern v is compatible with

[u] if [uv] is a circular pattern.
The value of the packing chromatic number of generalized coronae of paths P n ⊙ pK 1 with p ≥ 4 is given by the following theorem:

Theorem 7 Let P n ⊙ pK 1 , p ≥ 4,
be a generalized corona of the path P n . Then we have:

χ ρ (P n ⊙ pK 1 ) =                2 if n = 1, 3 if n = 2, 4 if n ∈ {3, 4}, 5 if 5 ≤ n ≤ 8, 6 if 9 ≤ n ≤ 34, 7 otherwise.
Proof. If n ≤ 8, optimal packing colorings of P n ⊙ pK 1 are given by the patterns 2, 23, 234, 2342, 23425, 234253, 2342532 and 23425324, respectively.

Note that 23425324 is the longest pattern on five colors which do not use color 1 and, moreover, none of the patterns 123425324 or 234253241 can be used for coloring P 9 ⊙ 4K 1 (the pendant neighbors of vertices with color 1 cannot be colored). Therefore, χ ρ (P 9 ⊙ pK 1 ) ≥ 6. In [START_REF] Sloper | An eccentric coloring of trees[END_REF], Sloper exhibited the following pattern of length 34, which uses colors 2 to 6, and proved that no such pattern of greater length exists:

23425 62342 53264 23524 62352 43265 2342.

As before, this pattern cannot be extended by adding color 1 to the left or to the right, so that χ ρ (P 35 ⊙ pK 1 ) ≥ 7. Sloper also gave the circular pattern

[23425 62342 57],
of length 12, that uses colors 2 to 7, which can be used when n ≥ 35. By Proposition 6, all these colorings are optimal.

The value of the packing chromatic number of generalized coronae of paths P n ⊙ pK 1 , when p ∈ {2, 3}, is given by the next two results. We will see that the maximum value of the packing chromatic number of such graphs is 6, slightly better than the bound given in Theorem 7. This is due to the fact that the number of pendant vertices is now bounded by 3, which allows us to use color 1 for coloring the vertices of the path P n .

Theorem 8 Let P n ⊙ 2K 1 be a generalized corona of the path P n . Then we have:

χ ρ (P n ⊙ 2K 1 ) =            2 if n = 1, 3 if n = 2, 4 if n ∈ {3, 4}, 5 if 5 ≤ n ≤ 11, 6 otherwise.
Proof. To see that χ ρ (P n ⊙ 2K 1 ) ≤ 6 for every n, it is enough to use the following circular pattern of length 12:

[1(36)2432 56234 25].

Since P m ⊙ pK 1 is a subgraph of P n ⊙ pK 1 for all m ≤ n, every packing ℓ-coloring of P n ⊙ pK 1 induces a packing ℓ-coloring of P m ⊙ pK 1 . Therefore, it suffices to construct optimal packing colorings of P 1 ⊙ 2K 1 , P 2 ⊙ 2K 1 , P 4 ⊙ 2K 1 and P 11 ⊙ 2K 1 , to get that all the claimed values are upper bounds. This can be done by using the patterns 2, 23, 2342 and 1(35)243251( 23)4231(25), respectively.

To finish the proof, we need to show that all these bounds are tight. This is obvious for n = 1 and this is a direct consequence of Proposition 6, for 2 ≤ n ≤ 4, since it implies that we cannot use color 1 on the vertices of the path, so that no packing coloring using less colors than stated in the theorem can exist in those cases. For n = 5, Proposition 6 again implies that we cannot use color 1 for the vertices of P 5 in a packing 4-coloring and it is easily checked that no such pattern exists (the longest one is 2342). Finally, we have to check that there exists no packing 5-coloring of P 12 ⊙ 2K 1 . We did it by means of a computer program.

Theorem 9 Let P n ⊙ 3K 1 be a generalized corona of the path P n . Then we have:

χ ρ (P n ⊙ 3K 1 ) =            2 if n = 1, 3 if n = 2, 4 if n ∈ {3, 4}, 5 if 5 ≤ n ≤ 8, 6 otherwise.
Proof. To see that χ ρ (P n ⊙ 3K 1 ) ≤ 6 for every n, it is enough to consider the following circular pattern of length 14: As before, it suffices to construct optimal packing colorings of P 1 ⊙ 3K 1 , P 2 ⊙ 3K 1 , P 4 ⊙ 3K 1 and P 8 ⊙ 3K 1 , to get that all the claimed values are upper bounds. This can be done by using the patterns 2, 23, 2342 and 23425324, respectively.

To finish the proof, we need to show that all these bounds are tight. This is obvious for n = 1 and this is a direct consequence of Proposition 6, for n ∈ {2, 3, 5, 9}, since it implies that we cannot use color 1 on the vertices of the path. It is then not difficult to check that the longest such patterns are the ones given above, and the result follows.

We now turn to generalized coronae of cycles C n ⊙ pK 1 . When p ≥ 4, we have the following (note the particular case when n = 11):

Theorem 10 Let C n ⊙ pK 1 , p ≥ 4, be a generalized corona of the cycle C n . Then we have:

χ ρ (C n ⊙ pK 1 ) =            4 if n = 3, 5 if n = 4, 6 if n ∈ {5, 6}, 8 if n = 11, 7 otherwise.
Proof. Note first that by Proposition 6, since p ≥ 4, color 1 cannot be used on the vertices of C n in any packing coloring of C n ⊙ pK 1 using at most 6 colors.

Packing colorings of C n ⊙ pK 1 , for 3 ≤ n ≤ 6, are given by the following circular patterns:

[ Moreover, all the above circular patterns for n ≥ 9 are compatible with the circular pattern [23425367] of length 8. Hence, if n ≥ 16, n = 8q + r with 0 ≤ r ≤ 7, r = 3, a packing 7-coloring of C n ⊙ pK 1 can be obtained by combining q -1 patterns of length 8 followed by a pattern of length q + r (if r = 0, we thus have q occurrences of the pattern of length 8).

Finally, for n = 8q + 3, q ≥ 2, a packing 7-coloring of C n ⊙ pK 1 can be obtained by combining q -2 patterns of length 8 followed by the circular pattern [2342532462352432657] of length 19, which is also compatible with [23425367]. This concludes the proof.

We now consider the remaining cases, that is p ∈ {2, 3}. For p = 2, we have the following (note the particular case when n = 9): Theorem 11 Let C n ⊙ 2K 1 be a generalized corona of the cycle C n . Then we have: It is not difficult to check that these colorings are optimal for n ≤ 6. For n ≥ 7, any packing 5-coloring of C n ⊙ 2K 1 would induce a packing 5-coloring of P 12 ⊙ 2K 1 , in contradiction with Theorem 8.

χ ρ (C n ⊙ 2K 1 ) =        4 if n = 3, 5 if n = 4, 7 if n = 9, 6 otherwise.
We now consider the case n ≥ 14. Similarly, no packing 5-coloring of C n ⊙ 2K 1 can exist in this case. All the patterns given above for n ≥ 8 are compatible with the circular pattern [1(23)423526] of length 7. Moreover, the pattern 423524326 of length 9 is also compatible with the same pattern [1(23)423526]. This allows us to construct a packing 6-coloring of any generalized corona C n ⊙ 2K 1 with n ≥ 14. If n = 7q + r, with q ≥ 2 and 0 ≤ r < 7, the coloring is obtained by repeating q -1 times the pattern u of length 7 and adding the compatible pattern of length 7 + r (note that since the pattern u is a circular pattern, it is compatible with itself).

The last case to consider is the case n = 9. A packing 7-coloring of C 9 ⊙ 2K 1 is given by the circular pattern [1(24)3251(24)3267].

It is then tedious but not difficult to check that C 9 ⊙2K 1 does not admit any packing 6-coloring. (The main idea is that in such a case, each of the colors 4, 5 and 6 can be used only once on the vertices of C 9 while the color 3 can be used at most twice and the color 2 at most three times, so that color 1 has to be used on some vertex of C 9 ; but in that case, the colors assigned to the pendant neighbors of this vertex forces the color 1 to be used again on the cycle, leading eventually to a contradiction.) Finally, for p = 3, we have the following: Theorem 12 Let C n ⊙ 3K 1 be a generalized corona of the cycle C n . Then we have: 3 and4). Since all these patterns begin with 152342 . . . and end with . . . 524326, they are all pairwise compatible. Therefore, by repeating the pattern of length 14 a certain number of times, and adding one of the patterns of Table 1, we can produce a packing 6-coloring of C n ⊙ 3K 1 in all the following cases, according to the value of n mod 14:

χ ρ (C n ⊙3K 1 ) =            4 if n = 3, 5 if n = 4, 7 if n ∈ {7, . . . ,
• n = 14q, n ≥ 14,

• n = 14q + 1, n ≥ 29 (by repeating q -2 times the pattern of length 14 and adding the pattern of length 29),

• n = 14q + 2, n ≥ 44 (by repeating q -3 times the pattern of length 14 and adding the pattern of length 44),

• n = 14q + 3, n ≥ 73 (by repeating q -5 times the pattern of length 14 and adding the pattern of length 73),

• n = 14q + 4, n ≥ 46 (by repeating q -3 times the pattern of length 14 and adding the pattern of length 46),

• n = 14q + 5, n ≥ 61 (by repeating q -4 times the pattern of length 14 and adding the pattern of length 61),

• n = 14q + 6, n ≥ 76 (by repeating q -5 times the pattern of length 14 and adding the pattern of length 76),

• n = 14q + 7, n ≥ 105 (by repeating q -7 times the pattern of length 14 and adding the patterns of length 44 and 61),

• n = 14q + 8, n ≥ 92 (by repeating q -6 times the pattern of length 14 and adding the pattern of length 92),

• n = 14q + 9, n ≥ 23 (by repeating q -1 times the pattern of length 14 and adding the pattern of length 23),

• n = 14q + 10, n ≥ 38 (by repeating q -2 times the pattern of length 14 and adding the pattern of length 38),

• n = 14q + 11, n ≥ 67 (by repeating q -4 times the pattern of length 14 and adding the pattern of length 67),

• n = 14q + 12, n ≥ 82 (by repeating q -5 times the pattern of length 14 and adding the pattern of length 82),

• n = 14q + 13, n ≥ 69 (by repeating q -4 times the pattern of length 14 and adding the pattern of length 69).

It is now easy to check that the remaining values of n, for which a packing 6coloring cannot be produced in this way, are exactly those given in the statement of the theorem. The fact that, for each of these values, χ ρ (C n ⊙ 3K 

( -→ D ). A directed path of length k in -→ D is a sequence u 0 . . . u k of vertices of V ( -→ D) such that for every i, 0 ≤ i ≤ k -1, u i u i+1 is
(u) = π(v) = i implies d-→ D (u, v) > i. The packing chromatic number χ ρ ( -→ D) of -→ D is then the smallest k such that -→ D admits a packing k-coloring. A digraph -→ O with no pair of opposite arcs, that is uv ∈ E( -→ O ) implies vu ∈ E( -→ O )
, is called an oriented graph. If G is an undirected graph, an orientation of G is any oriented graph -→ G obtained by giving to each edge of G one of its two possible orientations.

By definition, if -→ G is any orientation of an undirected graph G then, for any two vertices u and v in G, d-→ G (u, v) ≤ d G (u, v). Therefore, every packing coloring of G is a packing coloring of -→ G . Hence, we have the following:

Proposition 13 For every orientation -→ G of an undirected graph G, χ ρ ( -→ G ) ≤ χ ρ (G).
Note also that Proposition 1 is still valid for oriented graphs:

Proposition 14 If -→ H is a subgraph of -→ G , then χ ρ ( -→ H ) ≤ χ ρ ( -→ G ).
The characterization of oriented graphs with packing chromatic number 2 is given by the following result:

Proposition 15 For every orientation -→ G of an undirected graph G, χ ρ ( -→ G ) = 2

if and only if (i) G is bipartite and (ii) one part of the bipartition of G contains only sources or sinks in

-→ G .

Proof. Clearly, χ ρ ( -→ G ) > 2 whenever G is not bipartite. Assume thus that G is bipartite. Since color 1 cannot be used for the central vertex of any directed path of length 2, we get that χ ρ ( -→ G ) = 2 if and only if all the vertices from one of the two parts are sources or sinks in -→ G .

We now determine the packing chromatic number of orientations of paths, cycles, and coronae of paths and cycles.

For oriented paths, we have the following:

Theorem 16 Let -→ P n be any orientation of the path For oriented cycles, we have the following:

P n = x 1 . . . x n . Then, for every n ≥ 2, 2 ≤ χ ρ ( -→ P n ) ≤ 3. Moreover, χ ρ ( -→ P n ) = 2 if
Theorem 17 Let -→ C n be any orientation of the cycle C n = x 0 . . . x n-1 x 0 . Then, for every n ≥ 3, 2 ≤ χ ρ ( -→ C n ) ≤ 4. Moreover, (1) χ ρ ( -→ C n ) = 2 if

and only if C n is bipartite (that is, n is even) and one part of the bipartition contains only sources or sinks in

-→ C n .

(

) χ ρ ( -→ C n ) = 4 if and only if -→ 2 
C n is a directed cycle (all arcs have the same direction), n ≥ 5 and n ≡ 0 (mod 4).

Proof. Since adjacent vertices cannot receive the same color, we clearly have χ ρ ( -→ C n ) ≥ 2 for all n ≥ 3. By Theorem 2, we know that χ ρ (C n ) ≤ 4 for every n ≥ 3 and thus, by Proposition 13, we get that χ ρ ( -→ C n ) ≤ 4 for every n ≥ 3. Claim (1) directly follows from Proposition 15. Let us now consider Claim [START_REF] Argiroffo | The packing coloring problem for (q, q -4)-graphs[END_REF]. By Theorem 2, we know that χ ρ (C n ) = 4 if and only if n ≥ 5 and n ≡ 0 (mod 4). By Proposition 13, we get that χ ρ ( -→ C n ) ≤ 3 in all other cases. Thus suppose that n ≥ 5 and n ≡ 0 (mod 4). If -→ C n is a directed cycle, with all arcs having the same direction, then

d-→ Cn (x i , x j ) = d Cn (x i x j ) for every 0 ≤ i, j ≤ n -1 and thus χ ρ ( -→ C n ) = 4. If -→
C n is not a directed cycle, it contains a source vertex, say x 0 without loss of generality. We will prove that, in this case, -→ C n admits a packing 3-coloring.

We consider three cases:

• If n ≡ 1 (mod 4), a packing 3-coloring of -→
C n is given by the following pattern:

1231 | 2131 | . . . | 2131 | 2.
• If n ≡ 2 (mod 4), a packing 3-coloring of -→ C n is given by the following pattern: This completes the proof.

1 | 2131 | . . . | 2131 | 2.
For orientations of generalized coronae of paths, we have the following:

Theorem 18 Let -→ G be any orientation of a generalized corona P n ⊙ pK 1 , with p ≥ 1 and

P n = x 1 . . . x n . Then, for every n ≥ 1, 2 ≤ χ ρ ( -→ G ) ≤ 3. Moreover, χ ρ ( -→ G ) = 2 if

and only if one part of the bipartition of P n ⊙ pK 1 contains only sources or sinks in

-→ G .

Proof. Since a packing coloring is a proper coloring, we clearly have

χ ρ ( -→ G ) ≥ 2 for every orientation -→ G of P n ⊙ pK 1 , n, p ≥ 1.
We first consider the case p = 1. For any orientation -→ G of P 1 ⊙ K 1 , the coloring given by the pattern 1(2), is clearly a packing 2-coloring of -→ G . Assume now that n ≥ 2 and let -→ G be any orientation of P n ⊙ K 1 . Let z 1 , . . . , z n denote the pendant vertices associated with x 1 , . . . , x n , respectively. We will construct inductively a packing 3-coloring π of -→ G . We first set π(x 1 ) := 1 and π(z 1 ) := 2. Assume now that all the vertices x 1 , z 1 , . . . , x i , z i , 1 ≤ i ≤ n -1 have been colored in such a way that π(x i ) = 1 if and only if i is odd and π(z i ) = 1 if and only if i is even. Then, use the following rule:

• If π(x i ) = 1 then set π(x i+1 ) := 5-π(z i ) if z i x i x i+1
is a directed path (in either direction) and π(x i+1 ) := π(z i ) otherwise. In both cases, set π(z i+1 ) := 1.

• If π(x i ) = 1 then set π(z i+1 ) := 5 -π(x i ) if x i x i+1 z i+1 is a directed path (in either direction) and π(z i+1 ) := π(x i ) otherwise. In both cases, set π(x i+1 ) := 1.
The coloring π thus obtained (see Figure 6(a) for an example) has the following property:

(P) every vertex with color 1 is such that all its in-neighbors have the same color α ∈ {2, 3} and all its out-neighbors have the same color 5α ∈ {2, 3}.

The coloring π is thus a packing 3-coloring of -→ G . Consider now the case p ≥ 2. We first color the vertices x 1 , . . . , x n and one of their pendant neighbors using the procedure described above, and then color the remaining pendant vertices in such a way that property (P) is satisfied. Hence, all pendant neighbors of a vertex with color 2 or 3 will be colored 1, and all pendant neighbors of a vertex with color 1 will be colored 2 or 3, depending on the orientation of the corresponding arc (see Figure 6(b) for an example). The last claim directly follows from Proposition 15.

Finally, for orientations of generalized coronae of cycles, we have the following:

Theorem 19 Let -→ G be any orientation of a generalized corona C n ⊙ pK 1 , with p ≥ 1 and C n = x 0 . . . x n-1 . Then, for every n ≥ 3, 2 ≤ χ ρ ( -→ G ) ≤ 4. Moreover, (1) χ ρ ( -→ G ) = 2 if and only if C n ⊙ pK 1 is bipartite (that is, n is even)

and one part of the bipartition contains only sources or sinks in

-→ G .

( 7 as a subgraph, or (2.3) n ≡ 0 (mod 4) and there exists a vertex x i , 0 ≤ i ≤ n -1, such that the paths x i x i+1 x i+2 x i+3 and x i+4 . . . x i-1 (indices are taken modulo n) are both directed paths, but in opposite direction.

) χ ρ ( -→ G ) = 4 if 2 
Before proving this theorem, we introduce a useful coloring procedure, called standard coloring procedure (SCP for short), that produces a coloring π of an orientation of the path P n = x 1 . . . x n :

1. Assume (c, c ′ ) ∈ {1, 2, 3} 2 , with |{c, c ′ } ∩ {1}| = 1, and S ⊆ V (P n ) are given. 3. For j = 3, . . . , n, set π(x j ) := 1 if π(x j-1 ) = 1, π(x j ) := π(x j-2 ) if π(x j-1 ) = 1 and x j-1 ∈ S, and π(x j ) := 5π(x j-2 ) otherwise.

Figure 8 shows colorings of two orientations of P 8 = x 1 . . . x 8 produced by SCP, with (c, c ′ ) = (1, 2) and S = {x 3 }, and with (c, c ′ ) = (3, 1) and S = {x 4 , x 8 }, respectively. Note that SCP always produces a packing 3-coloring of the path x 1 . . . x n , but not necessarily a packing 3-coloring of -→ C n , and that the only possible conflicts lie on the path x n-2 x n-1 x n x 1 x 2 x 3 (such conflicts may appear when a directed path of length 2 or 3 contains x 1 as an internal vertex). For instance, the second example depicted in Figure 8 is a packing 3-coloring of -→ C 8 , while the first one is not. Observe that if c = 1 (resp. c ′ = 1) SCP assigns color 1 to every vertex x j such that j is odd (resp. even), and colors 2 and 3 alternate on other vertices whenever S is empty. If S is not empty, we have |S|, or |S| -1 if x 1 ∈ S and c = 1 (resp.

x 2 ∈ S and c ′ = 1), places where the color 2 or 3 is duplicated. Hence, we have the following:

Proposition 20 Let

-→ P n be any orientation of the path P n = x 1 . . . x n of odd length n -1 and S be a set of sources or sinks in -→ P n with odd indices not containing x 1 . Consider the coloring π of -→ P n produced by SCP with (c, c ′ ) = (1, α) for some α ∈ {2, 3} and S. Then we have:

(i) π(x n ) = α if |S| is even (resp. odd) and n ≡ 2 (mod 4) (resp. n ≡ 0 (mod 4)), (ii) π(x n ) = 5 -α otherwise. 1 -→ 2 -→ 1 ←-2 ←-1 ←-3 -→ 1 -→ 2 -→ (1) 3 -→ 1 -→ 2 -→ 1 ←-2 ←-1 ←-3 ←-1 -→ (3)
Figure 8: Sample colorings produced by SCP Proof. This directly follows from the above discussion.

Proof. [of Theorem 19] Since a packing coloring is a proper coloring, we clearly have

χ ρ ( -→ G ) ≥ 2 for every orientation -→ G of C n ⊙ pK 1 , n ≥ 3, p ≥ 1. Let -→ G be any orientation of C n ⊙ pK 1 and -→ C n be the orientation of the cycle C n induced by -→ G . Denote by z j i , 1 ≤ j ≤ p, the pendant neighbors of x i , 0 ≤ i ≤ n -1. We consider two cases. If -→
C n contains a source vertex, say x 0 without loss of generality, then, by Theorem 18, there exists a packing 3-coloring of -→ G \{x 0 , z 1 0 , . . . , z p 0 }. Since x 0 is a source, this packing coloring can be extended to a packing 4-coloring of -→ G by coloring x 0 with color 4 and all vertices z j 0 , 1 ≤ j ≤ p, with color 1.

If

-→ C n does not contain any source vertex then -→ C n is a directed cycle. By Theorem 17, we know that there exists a packing 4-coloring π of -→ C n . This packing coloring can be extended to a packing 4-coloring of -→ G by coloring every pendant vertex

z j i , 0 ≤ i ≤ n -1, 1 ≤ j ≤ p, by π(x i-1 ) if z j i x i is an arc in -→ G and by π(x i+1 ) otherwise (indices are taken modulo n). Hence, χ ρ ( -→ G ) ≤ 4 for every orientation -→ G of C n ⊙ pK 1 , n ≥ 3, p ≥ 1.
Claim (1) directly follows from Proposition 15.

We now consider Claim [START_REF] Argiroffo | The packing coloring problem for (q, q -4)-graphs[END_REF]. If χ ρ ( -→ C n ) = 4 (which happens, by Theorem 17, if and only if -→ C n is a directed cycle, n ≥ 5 and n ≡ 0 (mod 4)) then, by Proposition 14,

χ ρ ( -→ G ) = 4 (condition 2.1 of the theorem). If χ ρ ( -→ C n ) = 2 (
which happens, by Theorem 17, if and only if n is even and the orientation -→ C n of C n is alternating) then we clearly have χ ρ ( -→ G ) ≤ 3 since both colors 2 and 3 are available for pendant neighbors of vertices colored 1.

Suppose therefore that χ ρ (

-→ C n ) = 3. If -→
C n is a directed cycle, which implies n ≡ 0 (mod 4), then the packing 3-coloring given by the circular pattern [1213] can be extended to a packing 3-coloring of -→ G , as in the proof of Theorem 18. Assume now that -→ C n is not a directed cycle and let π be a packing 3-coloring of -→ C n . This coloring can be extended to a packing 3-coloring of -→ G except if there exists three consecutive vertices x i-1 x i x i+1 (indices are taken modulo n) such that (i) x i is a source (resp. a sink) in -→ C n but not in -→ G , and (ii) π(x i ) = 1 and {π(x i-1 ), π(x i+1 )} = {2, 3}. Indeed, if such a case occurs, none of the colors from the set {1, 2, 3} can be assigned to a pendant out-neighbor (resp. in-neighbor) of x i . Otherwise, the packing 3-coloring of -→ C n can be extended to a packing 3-coloring of -→ G by (i) assigning color 1 to all pendant neighbors of vertices colored 2 or 3, (ii) assigning the color π(x i-1 ) to every pendant out-neighbor (resp. in-neighbor) of a source (resp. a sink) vertex x i of -→ G and the color 5π(x i-1 ) to its in-neighbors (resp. out-neighbors), and (iii) assigning the color π(x i-1 ) to every pendant inneighbor (resp. out-neighbor) of a vertex x i which is neither a source nor a sink in -→ G , and the color π(x i+1 ) to its out-neighbors (resp. in-neighbors), whenever x i-1 x i x i+1 (resp. x i+1 x i x i-1 ) is a directed path.

We thus need to determine in which cases the orientation -→ C n of C n can be colored in such a way that such a situation does not occur. Such colorings will be called good packing colorings.

For any subset X of V (C n ), we denote by S(X) the subset of X containing all the vertices that are either a source or a sink in -→ C n , and by S * (X) the subset of S(X) containing all the vertices that are neither a source nor a sink in -→ G . Hence, S * (V (C n )) is precisely the set of vertices we must care about. Obviously, if S * (V (C n )) is empty, every packing 3-coloring of -→ C n is good. We thus assume in the rest of the proof that S * (V (C n )) is not empty. Note also that |S(V (C n ))| is even for every orientation -→ C n of C n . In the following, we will construct good packing 3-colorings, when this is possible, using SCP with an adequate set S either on the whole cycle -→ C n or on part of it.

We consider four cases, according to the value of n mod 4:

• C n is neither a source nor a sink in -→ G . We consider two cases:

-|S * (A)| = |S * (B)| = 1.
Without loss of generality, we may assume that x 0 is a source and x i , for some odd i, 1 ≤ i ≤ n -1, is a sink. Hence, x 0 . . . x i and x n-1 . . . x i are both directed paths of odd length in -→ C n . Suppose first that i = 1, that is, x 0 is a source and x 1 is a sink. A good packing 3-coloring of -→ C n is then given by the following pattern (the colors of x 0 and x i = x 1 are dotted): [ It is then not difficult to check that none of these colorings can be extended to a good packing 3-coloring of -→ C n , as shown by the following diagrams (the colors of x 0 and x 3 are dotted):

2 ←-1 -→ ? -→ ? -→ 2 ←-1 2 ←-1 -→ ? -→ ? -→ 1 ←-2 2 ←-1 -→ ? -→ ? -→ 1 ←-2 1 ←-2 -→ ? -→ ? -→ 1 ←-2 1 ←-3 -→ ? -→ ? -→ 1 ←-3 1 ←-3 -→ ? -→ ? -→ 2 ←-3 -|S * (A)| ≥ 3 or |S * (B)| ≥ 3.
Suppose |S * (A)| ≥ 3, without loss of generality. Since n ≡ 0 (mod 4) and both |S * (A)| and |S * (B)| are odd, by Proposition 20, applying SCP starting at x 0 leads in all cases to a "bad" coloring, that assigns to x n-1 x 0 x 1 either the pattern 213 or 312 if x 0 ∈ S * (A), or the pattern 212 or 313 otherwise (in that case, x n-1 x 0 x 1 is a directed path, in either direction). We thus need to "correct" this bad coloring, which can be done by replacing a sequence 1α . . . β1 of the coloring produced by SCP by 1α . . . β ′ 1 with β ′ = 5β.

We consider three subcases.

1. There exist a ∈ S * (A) and b ∈ S * (B) with d-→ Cn (a, b) = 1. We may assume without loss of generality that a = x i is a source and b = x i+1 is a sink. Hence, we have the following configuration (stands for an arc in either direction):

-←a -→ b ←---Consider the following coloring of this configuration (the colors of a and b are dotted):

1 -3 ←-2 -→ 1 ←-2 -3 -1
If the vertex to the right of b is not a source, the remaining part of the cycle is not empty (since n ≡ 0 (mod 4)) and this coloring can be extended to a good packing 3-coloring of -→ C n by means of SCP. To see that, observe that SCP would have produced the following bad coloring on the same configuration (the bad color which implies our claim, since our coloring has modified this color, appears in bold):

1 -3 ←-1 -→ 3 ←-1 ←-2 -1
We finally claim that we can always find some i such that

x i ∈ S * (A) (resp. x i ∈ S * (B)), x i+1 ∈ S * (B) (resp. x i+1 ∈ S * (A)) and x i+2 / ∈ S * (A) (resp. x i+2 / ∈ S * (B)
). This simply follows from the fact that if no such i exists, then the orientation Cn (a, b) ≥ 5, and Subcase 1 does not occur. Again, we assume without loss of generality that a = x i is a source and b = x j is a sink. Since subcase 1 does not occur, we necessarily have the following configuration:

-→ C n of C n is alternating, which implies χ ρ ( -→ C n ) = 2,
←-←-a -→ -→ . . . -→ -→ -→ b ←-←-
We then color this configuration as follows (the pattern 2131 is repeated as many times as necessary):

1 -3 ←-2 ←-1 -→ (2131) * -→ 2 ←-3 ←-1
As in the previous subcase, the remaining part of the cycle is not empty. Hence, this coloring can be extended to a good packing 3coloring of -→ C n by means of SCP, since SCP would have produced the following bad coloring on the same configuration: If none of the previous cases occurs, then the vertices of S * (A) and S * (B) necessarily alternate on -→ C n and the weak directed distance between any two consecutive such vertices equals 3. Hence, -→ C n is a sequence of directed paths of length 3 in opposite directions. Since |S * (A)| = |S(A)| is odd, the length of C n equals 6k for some odd k, which contradicts the assumption n ≡ 0 (mod 4). Therefore, this last subcase cannot occur.

1 -3 ←-1 ←-2 -→ (1312) * -→ 1 ←-2 ←-
• Case 2: n ≡ 2 (mod 4).

In this case C n is again bipartite and, using the same procedure as in Case 1, a good packing 3-coloring of -→ C n can be produced whenever C n and this coloring can be "corrected" in exactly the same way as in Case 1 since, for doing that, we only need n to be even.

• Case 3: n is odd.

Consider the set S = S(V (C n )), that is the set of vertices that are either a source or a sink in -→ C n . Without loss of generality, suppose that x 0 is a source and consider the coloring π produced by SCP on the path x 0 x 1 . . . x n-1 , starting at x 0 , with (c, c ′ ) = (2, 1) and S. If π(x n-1 ) = 3, π is a packing 3coloring of -→ G , of the form 21 . . . 13, and we are done.

If π(x n-1 ) = 2 (π is not a packing coloring of -→ G ), consider the coloring π ′ produced by SCP on the path x 1 x 2 . . . x n-1 x 0 , starting at x 1 , with (c, c ′ ) = (3, 1) and S. Let now X denote the set of sources or sinks which are assigned color 1 by π, and X ′ the set of sources or sinks which are assigned color 1 by π ′ . We clearly have X ∩ X ′ = ∅ and X ∪ X ′ = S \ {x 0 } (since x 0 is a source, π(x 0 ) = 1 and π ′ (x 0 ) = 1). Therefore, since |S| is even, we get that |X[ and |X ′ | do not have the same parity. Hence, since π(x 0 ) = 2 and π(x n-1 ) = 2, starting with π ′ (x 1 ) = 3 necessarily gives π ′ (x 0 ) = 2. This proves that π ′ is a good packing 3-coloring of -→ G , of the form 231 . . . 1.

This concludes the proof.

Discussion

In this paper, we have determined the packing chromatic number of coronae and generalized coronae of paths and cycles. We also extended to digraphs the notion of packing coloring and determined the packing chromatic number of orientations of such graphs.

In particular, we have proved that every orientation of a generalized corona of a path admits a packing 3-coloring. Using a similar proof, it is not difficult to extend this result to the more general case of oriented trees (we can inductively construct a packing coloring satisfying the property (P) such that vertices with color 1 correspond to one part of the bipartition of the tree). Hence, we also have:

Theorem 21 Let T be a tree. For any orientation -→ T of T , χ ρ ( -→ T ) ≤ 3.

Since every caterpillar is a tree, we get that every oriented caterpillar has packing chromatic number at most 3. However, we leave as an open question the characterization of undirected caterpillars with packing chromatic number at most 4, 5 and 6 (by Theorem 3 we know that every caterpillar has packing chromatic number at most 7 and characterizing caterpillars with packing chromatic number at most 2 or 3 is easy).
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 2 Figure 2: Periodic packing coloring of P n ⊙ K 1 , n ≥ 8
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  Proof. The packing colorings of C n ⊙ 2K 1 , for n ≤ 13, n = 9 are given by the following circular patterns: n = 3 : [234]; n = 4 : [2345]; n = 5 : [23456]; n = 6 : [234256]; n = 7 : [1(23)423526]; n = 8 : [1(24)3251(24)326]; n = 10 : [1(23)41(23)523421(35)6]; n = 11 : [1(23)4231(25)624325]; n = 12 : [1(23)41(23)521(26)423526]; n = 13 : [1(23)41(23)5231(26)423526].

  an arc in E( -→ D ). The weak directed distance between two vertices u and v in -→ D, denoted d-→ D (u, v), is the shortest length (number of arcs) of a directed path in -→ D going either from u to v or from v to u. A packing k-coloring of a digraph -→ D is a mapping π : V ( -→ D ) → {1, . . . , k} such that, for every two distinct vertices u and v, π

Figure 6 :•

 6 Figure 6: Packing colorings for the proof of Theorem 18

Figure 7 :

 7 Figure 7: Configuration for the proof of Theorem 19

2 .

 2 Set π(x 1 ) := c and π(x 2 ) := c ′ .

  Case 1: n ≡ 0 (mod 4). Consider first the case n = 4. The only possible packing 3-coloring of any orientation-→ C 4 of C n with χ ρ ( -→ C 4 ) = 3 is 1213.It is then easy to check that the only orientation -→ C 4 of C 4 for which we cannot produce a good packing 3-coloring is the one given in Figure7. In the following, we can thus assumen ≥ 8. Since n is even, C n is bipartite. Let (A, B) denote the bipartition of V (C n ). If |S * (A)| is even or |S * (B)| iseven, a good coloring can be obtained by means of SCP. Suppose without loss of generality that A = {x 0 , x 2 , . . . , x n-2 } and |S * (A)| is even. Consider the coloring π produced by SCP, starting at x 0 , with (c, c ′ ) = (1, 2) and S = S * (A). Since n ≡ 0 (mod 4) and |S * (A)| is even, by Proposition 20, π is a good packing 3-coloring of -→ C n . If both |S * (A)| and |S * (B)| are odd, but S(A)\S * (A) = ∅ or S(B)\S * (B) = ∅, we can proceed in a similar way by using, without loss of generality, the set S ′ (A) = S * (A) ∪ {x 2j }, for some vertex x 2j ∈ S(A) \ S * (A), instead of the set S * (A) in SCP since |S ′ (A)| is even. Finally, suppose that both |S * (A)| and |S * (B)| are odd, S(A) = S * (A) and S(B) = S * (B), that is, every source or sink in -→

  contrary to our assumption. 2. There exist a ∈ S * (A) and b ∈ S * (B) with d-→ Cn (a, b) ≡ 1 (mod 4), d-→

1 3. 4 .

 14 There exist a ∈ S * (A) and b ∈ S * (B) with d-→ Cn (a, b) ≡ 3 (mod 4), d-→Cn (a, b) ≥ 7, and Subcases 1 and 2 do not occur. This subcase can be solved similarly as the previous one. We have the following configuration:←a -→ -→ -→ . . . -→ -→ -→ -→ b ←-for which we use the following coloring:1 ←-2 -→ 3 -→ (1213) * -→ 2 -→ 1 ←-2Again, the remaining part of the cycle is not empty and this coloring can be extended to a good packing 3-coloring of -→ C n by means of SCP, since SCP would have produced the following bad coloring on the configuration:1 ←-2 -→ 1 -→ (3121) * -→ 3 -→ 1 ←-3 None of the previous cases occurs.

  (i) |S * (A)| or |S * (B)| is odd, or (ii) both |S * (A)| and |S * (B)| are even, but S(A) \ S * (A) = ∅ or S(B) \ S * (B) = ∅, where (A, B) denotes the bipartition of V (C n ). Suppose now that both |S * (A)| and |S * (B)| are even (they cannot be both equal to 0), S(A) = S * (A) and S(B) = S * (B). In that case, SCP produces a bad coloring of -→

  Let us show that no packing 7-coloring of C 11 ⊙ pK 1 can exist. If color 1 is not used then, due to the length of the cycle, color 2 can be used at most three times, colors 3 and 4 at most twice each, and colors 5, 6 and 7 at most once each. Hence, at most 10 vertices of the cycle can be colored. Now, if color 1 is used on the cycle, then the pendant vertices must be colored 2, 3, 4 and 5, as otherwise the packing coloring cannot be extended far enough. The coloring is then "forced" around the color 1 as . . . 43271(2345)6234 . . . . It is then easy to check that this pattern cannot be extended to a packing 7-coloring of C 11 ⊙ pK 1 (the smallest extension has length 14 and is given by [43271(2345)623425362]).Packing 7-colorings of C n ⊙ pK 1 , for 7 ≤ n ≤ 15, n = 11, are given by the following circular patterns:

	234] [2345] [23456] [234256].
	It is not difficult to check that these packing colorings are optimal.
	On the other hand, a packing 8-coloring of C 11 ⊙ pK 1 is given by the following
	circular pattern:
	[23425324678].
	n = 7 : [2342567];
	n = 8 : [23425367];
	n = 9 : [234253267];
	n = 10 : [2342532467];
	n = 12 : [234253246257];
	n = 13 : [2342532462357];
	n = 14 : [23425362432576];
	n = 15 : [234253264235276].

Table 1 gives

 1 13, 15, . . . , 22, 24, . . . , 27, 30, . . . , 36, 39, 40, 41} Proof. By Theorem 10 and Proposition 1, we know that χ ρ (C n ⊙ 3K 1 ) ≤ 7 for every n ≥ 3, n = 11. Packing colorings of C 3 ⊙ 3K 1 , C 4 ⊙ 3K 1 , C 5 ⊙ 3K 1 and C 6 ⊙ 3K 1 are given by the following circular patterns: , as circular patterns, packing 6-colorings of C n ⊙ 3K 1 for every n ∈ {14, 23, 29, 38, 44, 46, 61, 67, 69, 73, 76, 82, 92} (pendant neighbors of vertices colored 1 are always assigned colors 2,

	∪ {45, 47, . . . , 50, 53, 54, 55, 59, 62, 63, 64, 68, 77, 78, 91},
	6 otherwise.
	[234], [2345], [23456], [234256],
	whose optimality is easy to check.

Table 1 :

 1 Circular patterns for the proof of Theorem 12

	1 ) = 7 has been

Let

-→ D be a digraph, with vertex set V ( -→ D) and arc set E

  1 2 3121 . . . 3121 32].

	The remaining case is i = 3, which corresponds to condition (2.3) of the theorem. We will prove that in that case -→ C n does not admit any good packing 3-coloring, which implies χ ρ ( -→ C n ) = 4. Note first that the directed path -→ P = x 0 x n-1 . . . x 3 has length n -3 ≡ 1 (mod 4). Let us consider the possible packing 3-colorings of -→ P . Clearly, the pattern 123 can only be used on the left end of -→ P , while the pattern 321 can only be used on the right end of -→ P . Moreover, the only circular good pattern is [1213].
	Therefore, up to mirror symmetry (reversing the orientation of every arc of -→ C n gives the same oriented graph), there are six possible packing 3-colorings of -→ P , given by the following patterns:
	1213 . . . 1213 12,	
	1213 . . . 1213 21,	
	123 1213 . . . 1213 121,	
	2131 . . . 2131 21,	
	3121 . . . 3121 31,	
	3121 . . . 3121 32.	
	Similarly, if i ≡ 1 (mod 4), a good packing 3-coloring of	-→ C n is then given
	by:	
	[ 1 2131 . . . 2131 2 3121 . . . 3121 32].	

Now, if i ≡ 3 (mod 4), i ≥ 7, a good packing 3-coloring of -→ C n is given by: [ 123 1213 . . . 1213 2 1312 . . . 1312].
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Oriented paths, oriented cycles and their generalized coronaeIn this section, we extend the notion of packing colorings to digraphs and study the case of oriented graphs whose underlying undirected graph is a path, a cycle, or a generalized corona of a path or a cycle.
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