Packing coloring of some undirected and oriented coronae graphs - Archive ouverte HAL
Article Dans Une Revue Discussiones Mathematicae Graph Theory Année : 2017

Packing coloring of some undirected and oriented coronae graphs

Daouya Laïche
  • Fonction : Auteur
Isma Bouchemakh
  • Fonction : Auteur

Résumé

The packing chromatic number $\pcn(G)$ of a graph $G$ is the smallest integer $k$ such that its set of vertices $V(G)$ can be partitioned into $k$ disjoint subsets $V_1$, \ldots, $V_k$, in such a way that every two distinct vertices in $V_i$ are at distance greater than $i$ in $G$ for every $i$, $1\le i\le k$. For a given integer $p \ge 1$, the generalized corona $G\odot pK_1$ of a graph $G$ is the graph obtained from $G$ by adding $p$ degree-one neighbors to every vertex of $G$. In this paper, we determine the packing chromatic number of generalized coronae of paths and cycles. Moreover, by considering digraphs and the (weak) directed distance between vertices, we get a natural extension of the notion of packing coloring to digraphs. We then determine the packing chromatic number of orientations of generalized coronae of paths and cycles.
Fichier principal
Vignette du fichier
Laiche_Bouchemakh_Sopena.pdf (192.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01167187 , version 1 (24-06-2015)

Identifiants

Citer

Daouya Laïche, Isma Bouchemakh, Eric Sopena. Packing coloring of some undirected and oriented coronae graphs. Discussiones Mathematicae Graph Theory, 2017, 37, pp.665-690. ⟨hal-01167187⟩

Collections

CNRS TDS-MACS
101 Consultations
237 Téléchargements

Altmetric

Partager

More