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INTRODUCTION

1.1. Results. Let ≥ 4 be a positive integer. Denote by +1∕2 the vector space of all cusp forms of weight + 1∕2 for the congruence subgroup Γ 0 [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF] . The Fourier expansion of ∈ +1∕2 at ∞ can be written as

( ) = ∞ ∑ =1 ( ) ∕2-1∕4 e( ) ( ∈ ℋ ), (1) 
where e( ) = e 2 i and ℋ is the Poincaré upper half plane. For any squarefree integer Waldspurger [START_REF] Waldspurger | Sur les coefficients de Fourier des formes modulaires de poids demi-entier[END_REF] proved the following elegant formula

( ) 2 = ( 1 2 , Sh , ), (2) 
where Sh is the Shimura lift of associated to (this is a cusp form of weight 2 and of level 2), ( ) is a real character modulo (defined in Section 2) and is a constant depending on only. In the following, the letter will always be a squarefree integer and ∑ ♭ a sum over squarefree integers. In view of (2), Kohnen [START_REF] Kohnen | A short note on Fourier coefficients of half-integral weight modular forms[END_REF] posed the following question: in the case where ( ) is a real number, what is its sign? Very recently, Hulse, Kairal, Kuan & Lim made a significant progress toward this question by proving that ( ) changes sign infinitely often if ∈ +1∕2 is an eigenform of all the Hecke operators (see [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF]Theorem 1.1]).

In order to describe the order of magnitude of ( ), we choose a non negative real number such that the inequality ( ) ≪ , [START_REF] Conrey | The cubic moment of central values of automorphic -functions[END_REF] holds for all squarefree integers . The implied constant depends on and only. It is conjectured that one can take = for any > 0. This could be regarded as an analogue of the Ramanujan conjecture on cusp forms of integral weight. Conrey & Iwaniec [START_REF] Conrey | The cubic moment of central values of automorphic -functions[END_REF]Corollary 1.3] proved that one can take = 1 6 +

for any > 0.

The main aim of this paper is to establish a quantitative version of the result of Hulse, Kairal, Kuan & Lim. Define

 + ( ) = # ≤ , squarefree ∶ ( ) > 0 and  -( ) = # ≤ , squarefree ∶ ( ) < 0 .
We establish the following results.

Theorem 1 -Let ≥ 4 be a positive integer and ∈ +1∕2 an eigenform of all the Hecke operators such that the ( ) are real for all ≥ 1. Then for any > 0, we have

 + ( ) ≥ 1-2 -,  -( ) ≥ 1-2 -
for all ≥ 0 ( , ), where is given by (3) and 0 ( , ) is a positive real number depending only on and .

Remark 2 -In particular, the Conrey & Iwaniec bound leads to

 + ( ) ≥ 2∕3-,  -( ) ≥ 2∕3-
for all ≥ 0 ( , ).

Remark 3 -The study about the sign equidistribution of the sequence ( 2 ) ∈ℕ was investigated in [2], [START_REF] Kohnen | A short note on Fourier coefficients of half-integral weight modular forms[END_REF], [START_REF] Kohnen | Fourier coefficients of cusp forms of half-integral weight[END_REF], [START_REF] Inam | Equidistribution of signs for modular eigenforms of half integral weight[END_REF] and [START_REF]A Short Note on the Bruinier-Kohnen Sign Equidistribution Conjecture and Halász' Theorem[END_REF]. In particular, Inam & Wiese proved in [START_REF] Inam | Equidistribution of signs for modular eigenforms of half integral weight[END_REF] that, if is a fixed squarefree integer, then

lim →+∞ #{ prime ∶ ≤ , ( 2 ) > 0} #{ prime ∶ ≤ } = 1 2 and lim →+∞ #{ prime ∶ ≤ , ( 2 ) < 0} #{ prime ∶ ≤ } = 1 2 .
Let us precise what we call number of squarefree sign changes of the sequence = ( ) ≥0 (where (0) = 0) restricted to squarefree indexes . From this sequence of Fourier coefficients, we build a sequence of pairs of squarefree integers ( + , -), that may be finite or even void, in the following way: for any integer , we have ( + ) > 0, ( -) < 0, max( + , -) < min( + +1 , - +1 ), and ( ) = 0 for all squarfree integer between + and -. The number of squarefree sign changes of is the function defined by

 ( ) = # ≥ 1 ∶ max( + , -) ≤ .
Theorem 4 -Let ≥ 4 be a positive integer and ∈ +1∕2 be an eigenform of all the Hecke operators such that the ( ) are real for all ≥ 1. For any > 0, the number of squarefree sign changes of satisfies

 ( ) ≫ , 1-4 5 -
for all ≥ 0 ( , ), where the constant 0 ( , ) and the implied constant depends on and .

Remark 5 -In particular, the Conrey & Iwaniec bound leads to for all ≥ 0 ( , ).

 ( ) ≫ ,
1.2. Methods. To prove Theorem 1, we detect signs with

| ( )| + ( ) 2 = ( ) if ( ) > 0 0 otherwise.
Bounding the Fourier coefficients with (3), we get plainly

∑ ♭ ≤ | | | ( ) | | | + ( ) log ≪ ,  + ( ) log
(recall that the letter is for squarefree integers hence the sum is restricted to squarefree integers). Then we use the analytic properties of the Dirichlet series

( , ) = ∑ ♭ ≤ ( ) - and ( ⊗ , ) = ∑ ≥1 ( ) 2 -
in Lemma 8 and Proposition 7 of §2.2 to make an auxiliary tool -Lemma 9. (Note that Lemma 8 is due to [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF].) More precisely, we utilize that the Dirichlet series defining ( , ) and ( ⊗ , ) are absolutely convergent for Re > 1. The function ( , ) has an analytic continuation to Re > 3∕4 whereas the function ( ⊗ , ) has a meromorphic continuation to Re > 1∕2 with a unique pole; this pole is at 1 and it is simple. Thus we can easily derive Lemma 9 and then the lower bound

∑ ♭ ≤ | | | ( ) | | | + ( ) log ≫ 1-.
Theorem 1 follows readily.

Theorem 4 rests on the following delicate device of Soundararajan [START_REF] Soundararajan | Smooth numbers in short intervals[END_REF]: let > 0 and > 0, then

1 2 i ∫ +i∞ -i∞ (e -1) 2 2 d = min log e 2 , log (1∕ ) if e -2 ≤ ≤ 1 0 otherwise. (4) 
(Thanks to the referee for suggesting this device.) Using it with the analytic properties of ( , ) and ( ⊗ , ), some weighted first and second moments on short intervals are evaluated. We use these moments to detect the sign changes via the positivity of

∑ ≤ ∑ ♭ 2 < < +ℎ 2 | | | ( ) | | | + ( ) min log + ℎ 2 , log 2 for all ( 1 , … , ) ∈ {-1, 1} .
The paper is organized as follows. Section 2 is devoted to the background on half-integral weight modular forms ( §2.1) and the establishment of the analytic properties for the Dirichlet series we need ( §2.2). Theorem 1 is proven in Section 3. Theorem 4 is proven in Section 4.
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BACKGROUND

Modular forms of half-integral weight.

In this section, we want to recall the basic facts we need on modular forms of half-integral weight on the congruence subgroup Γ 0 [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF]. All the content of this section is classical and is to be found in the main references [START_REF] Shimura | On modular forms of half integral weight[END_REF] and [START_REF] Ono | The web of modularity: arithmetic of the coefficients of modular forms and -series[END_REF]. It contains however the very few that the nonspecialist reader will need.

The theta function is defined on the upper half plane ℋ by

( ) = 1 + 2 +∞ ∑ =1 e( 2 )
for any ∈ ℋ . Since the function does not vanish on ℋ , we can define the theta multiplier: for any ∈ Γ 0 (4) and ∈ ℋ , let

( , ) = ( ) ( ) .
If = , it can be shown that ( , ) 2 = + . For any complex number , let 1∕2 denote | | 1∕2 e i arg( )∕2 where -< arg( ) ≤ . The coefficient ( , )∕( + ) 1∕2 is called the theta multiplier. It does not depend on and can be explicitly described in terms of and (see, for example, [7, §2.8]).

Let be a non negative integer. A modular form of weight + 1∕2 is a holomorphic function on ℋ satisfying

( ) = ( , ) 2 +1 ( )
for all ∈ Γ 0 (4) and ∈ ℋ , and that is holomorphic at the cusps of Γ 0 (4). If moreover vanishes at the cusps of Γ 0 (4), then is called a cusp form of weight + 1∕2. The congruence subgroup has three cusps: 0, -1∕2 and ∞. The corresponding scaling matrices are respectively

0 = 0 -1∕2 2 0 , -1∕2 = 1 0 -2 1 and ∞ = 1 0 0 1 .
Then, if is a cusp form of weight + 1∕2, the following functions have a Fourier expansion vanishing at ∞:

| 0 ( ) = (2 ) --1∕2 - 1 4 and | -1∕2 ( ) = (-2 + 1) --1∕2 - 1 2 -1 .
We shall write

( ) = +∞ ∑ =1 ̂ ( ) e( ) (5) 
for the Fourier expansion of . The set +1∕2 of modular forms of weight + 1∕2 is a finite dimensional vector space over ℂ. If ≤ 3, then +1∕2 = {0}. In the following, we shall assume ≥ 4.

Shimura established a correspondence between half-integral cusp forms and integral weight cusp forms on a congruence subgroup. Niwa [START_REF] Niwa | Modular forms of half integral weight and the integral of certain theta-functions[END_REF] gave a more direct proof of this correspondence and lowered the level of the congruence group involved. Fix a squarefree integer . We write 0 for the principal character of modulus 2 and define a character by

( ) = 0 ( ) -1 .
Let ∈ +1∕2 . Then, the Dirichlet series defined by the product

( , -+ 1) +∞ ∑ =1 ̂ ( 2 )
is the Dirichlet series of a cusp form of integral weight 2 over the congruence subgroup Γ 0 (2). We denote by Sh this cusp form and 2 the vector space of cusp forms of weight 2 over Γ 0 (2). At this point, the dependence in of Sh is not really clear. It will become clearer after we introduce the Hecke operators.

The Hecke operator of half-integral weight + 1∕2 and order 2 is the linear endomorphism 2 on +1∕2 that sends any cusp form with Fourier coefficients ( ̂ ( )) ≥1 to the cusp form with Fourier coefficients defined by

̂ 2 ( )( ) = ̂ ( 2 ) + 0 ( ) (-1) -1 ̂ ( ) + 0 ( ) 2 -1 ̂ 2 .
If ∕ 2 is not an integer, then ̂ ( ∕ 2 ) is considered to be 0. Hecke operators and the Shimura correspondence commute, meaning that if is the Hecke operator of order over 2 , then Sh ( 2 ) = (Sh ) for any ∈ +1∕2 . In particular, if is an eigenform of 2 , then Sh is an eigenform of with same eigenvalue. Let be an eigenform of all the Hecke operators 2 : denote by the corresponding eigenvalue. One has

( , -+ 1) +∞ ∑ =1 ̂ ( 2 ) = ̂ ( ) ∏ 1 - + 0 ( ) 2 -2 +1 -1 (6) 
the product being over all prime numbers. This product is the -function of a cusp form in 2 . We denote by Sh this cusp form. Remark that it does not depend on and that Sh = ̂ ( ) Sh . Let be the arithmetic function defined by

( ) = ∏ | 1 + -1∕2
the product being on prime numbers. We write for the divisor function and clearly ( ) ≤ ( ) for every ∈ ℕ * . The next Lemma improves slightly Lemma 4.1 in [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF].

Lemma 6 -Let ∈ +1∕2 be an eigenform of all the Hecke operators 2 . There exists a constant > 0 such that, for any squarefree integer and any integer we have

| | | ̂ ( 2 ) | | | ≤ | | | ̂ ( ) | | | -1∕2 ( ) ( ).
Proof. From (6) we get

̂ ( 2 ) = ̂ ( ) ∑ | -1 Ŝh ( ). (7) 
By the Deligne estimate, there exists > 0 such that

| | | Ŝh ( ) | | | ≤ (2 -1)∕2 ( ) (8) 
for any . It follows from ( 7) and ( 8) that

| | | ̂ ( 2 ) | | | ≤ | | | ̂ ( ) | | | -1 ̂ ( ) | | | -1∕2 ( ) ( ).
The size of the Fourier coefficients of a half integral weight modular form is therefore controlled by the size of its Fourier coefficients at squarefree integers. Deligne's bound for integral weight modular forms does not apply, although it conjecturally does. Let be a positive real number such that, if ∈ +1∕2 , then | ̂ ( )| ≤ ( +1∕2-1)∕2+ for any squarefree integer (and is a real number depending only on and ). Ramanujan-Petersson conjecture asserts that can be taken arbitrarily small. The best proven result is due to Conrey & Iwaniec [START_REF] Conrey | The cubic moment of central values of automorphic -functions[END_REF] (see also the Appendix by Mao in [START_REF] Blomer | A Burgess-like subconvex bound for twisted -functions[END_REF] for an uniform value of ). Their result implies that we can take = 1∕6 + with any real positive . If ∈ +1∕2 is an eigenform of all the Hecke operators, we have by comparison of (1) and ( 5)

( ) = ̂ ( ) ( +1∕2-1)∕2 .
For any squarefree integer and integer , we have then

| | | ( 2 ) | | | ≤ 1 | | | ( ) | | | ( ) ( ) ≤ 2 ( ) ( ) (9) 
with the admissible choice = 1∕6 + , where 1 and 2 are positive real numbers not depending on or .

2.2. Some associated Dirichlet series. Let ∈ +1∕2 , and assume it is an eigenform of all the Hecke operators. We define

( ⊗ , ) = +∞ ∑ =1 ( ) 2 -. (10) 
Write = Re and = Im . 1 According to ( 9), we know it is absolutely convergent as soon as > 1 + 2 . We state analytical informations on this function. The proof is quite standard, but since we have not found a handy proof in the literature for this case, we provide the details for completeness.

Proposition 7 -Let ∈ +1∕2 , and assume it is an eigenform of all the Hecke operators. The Dirichlet series [START_REF] Kohnen | A short note on Fourier coefficients of half-integral weight modular forms[END_REF] converges absolutely as soon as Re > 1. It can be continued analytically to a meromorphic function in the half plane Re > 1 2 with the only pole at = 1 . This pole is simple. Further for any > 0 we have

( ⊗ , ) ≪ , | | 2 max(1-,0)+ 1 2 + ≤ ≤ 3, | | ≥ 1 .
The implied constant depends on and only.

Proof. Let be a cusp of Γ = Γ 0 (4). We denote by Γ its stability group, and by its scaling matrix (see [7, §2.3]). The Eisenstein series associated to is

( , ) = ∑ ∈ Γ ∖ Γ Im( -1 ) = ∑ ∈ Γ ∞ ∖ Γ Im( -1 ) = ∞ ( -1 , ).
We take {0, -1∕2, ∞} as a representative set of cusps and obtain

0 ( , ) = ∞ - 1 4 , and -1∕2 ( , ) = ∞ - 2 -1 , .
1 No confusion will arise with the divisor function ( ) from the context.

These series converge absolutely for Re > 1 (see, for example [START_REF] Kubota | Elementary theory of Eisenstein series[END_REF]Theorem 2.1.1]). Moreover, | admits a Fourier expansion

| ( ) = +∞ ∑ =1 ( +1∕2-1)∕2
, ( ) e( ).

Let

( ⊗ , ) = +∞ ∑ =1 | | | , ( ) | | | 2 -. ( 11 
)
Classically (see, for example, [7, §13.2]), we have

(4 ) + -1∕2 Γ + - 1 2 ( ⊗ , ) = ∫ Γ ∖ ℋ +1∕2 | ( )| 2 ( , ) d d 2
for Re large enough. The right hand side provides an analytic continuation in the region Re > 1. By Landau Lemma, this implies that the Dirichlet series ( 11) is absolutely convergent for Re > 1. The general theory implies that ↦ ( , ) has a meromorphic continuation to the whole complex plane and satisfies the functional equation

⃗ ( , ) = Φ( ) ⃗ ( , 1 -)
where ⃗ is the transpose of ( ∞ , 0 , -1∕2 ) and Φ = , ( , )∈{∞,0,-1∕2} 2 is the scattering matrix. Indeed, , ( ) = 1∕2 Γ( - 1 2 ) Γ( )

∑ >0  ( ) -2
where  ( ) is the number of , incongruent modulo such that, there exist and satisfying -1 ∈ Γ 0 (4).

This leads to

Φ( ) = Λ(2 -1) Λ(2 ) 2 1-2 2 2 -1 ⎛ ⎜ ⎜ ⎝ 1 2 2 -1 -1 2 2 -1 -1 2 2 -1 -1 1 2 2 -1 -1 2 2 -1 -1 2 2 -1 -1 1 ⎞ ⎟ ⎟ ⎠ = Λ(2 -1) Λ(2 ) Ψ( ), say,
where Λ( ) = -∕2 Γ( ∕2) ( ). On the half plane Re ≥ 1∕2, and , have the same poles of the same orders [START_REF] Kubota | Elementary theory of Eisenstein series[END_REF]Theorems 4.4.2,4.3.4,4.3.5]. The only pole on Re ≥ 1∕2 is then = 1 and it is simple. Note that this follows also from the general theory since we are working on a congruence subgroup ( [START_REF]Spectral methods of automorphic forms[END_REF]Theorem 11.3]).

Let ⃗ ( ⊗ , ) be the transpose of

( ⊗ , ), ( 0 ⊗ 0 , ), ( -1∕2 ⊗ -1∕2 , ) and ⃗ Λ( , ) = (2 ) -2 Γ( )Γ( + -1∕2) (2 ) ⃗ ( ⊗ , ).
We proved that

• ⃗ Λ( , ) = Ψ( ) ⃗ Λ( , 1 -) • in the half plane Re ≥ 1∕2, the function ( ⊗ , ) has only a simple pole at = 1.
Now, let ‖⋅‖ denote the Euclidean norm in ℝ 3 . Using ‖ ( ⊗ , 1 + + i )‖ ≪ , 1 for any ∈ ℝ and any fixed > 0, we deduce

| (-2 + 2i )| ⋅ ‖ ‖ ‖ ⃗ ( ⊗ , -+ i ) ‖ ‖ ‖ ≪ , (1 + | |) 2+
from the functional equation, and the estimate

| (2 )| ⋅ ‖ ‖ ‖ ⃗ ( ⊗ , ) ‖ ‖ ‖ ≪ , (1 + | |) 2(1-)+ ( = + i , ∈ [0, 1], | | ≥ 1)
by the standard argument with the convexity principle. 2 This leads to the desired result.

Another useful Dirichlet series is

( , ) = ∑ ♭ ≥1 ( ) -. (12) 
The series ( , ) is absolutely convergent for Re > 1 by the Cauchy-Schwarz inequality and Proposition 7. The next lemma is due to Hulse, Kiral,

Lemma 8 -Let ≥ 4 be a positive integer and ∈ +1∕2 be an eigenform of all the Hecke operators. The series ( , ), given by [START_REF] Niwa | Modular forms of half integral weight and the integral of certain theta-functions[END_REF], converges for Re > 3 4 . Further for any > 0 we have

( , + i ) ≪ , (| | + 1) max(1-,0)+2 ( 3 4 + ≤ ≤ 3, | | ≥ 1)
where the implied constant depends on and only.

Proof. We only sketch the proof since it is nearly the same as in [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF]Proposition 4.4]. By the relation

( ) 2 = ∑ 2 | ( )
we have

( , ) = +∞ ∑ =1 ( ) ( ) (13) 
where

( ) = +∞ ∑ =1 ≡0 (mod 2 ) ( ) -. 2 One needs the estimate | (2 )| ⋅ ‖ ⃗ ( ⊗ , )‖ ≪ e e | |
for some > 0 in the strip so as to apply the convexity principle. This can be easily verified by the Fourier expansion of ( , ) and [11, (2.2.6)- (2.2.11)]. This series is absolutely convergent for Re > 1 by Cauchy-Schwarz inequality and Proposition 7. Then, introducing additive characters to remove the congruence condition and applying the Mellin transform, we get

( ) = (2 ) +( +1∕2-1)∕2 Γ( + ( + 1∕2 -1)∕2) ⋅ 1 2 ∑ | 2 ∑ (mod ) ( , )=1 Λ , , with Λ( , , ) = ∫ +∞ 0 (i + ) +( -1∕2)∕2 d
for any rational number . Using the functional equation for Λ( , , ) (see [START_REF] Hulse | The sign of Fourier coefficients of half-integral weight cusp forms[END_REF]Lemma 4.3]), we obtain

(-+ i ) ≪ , (1 + | |) 1+2 2+5 .
From ( 9), we have also

(1 + + i ) ≪ , 1 2 .
Finally, by the Phrägmen-Lindelöf principle, we deduce

( + i ) ≪ , (1 + | |) 1-+ 2-4 + .
Reinserting this bound into (13) leads to the result.

PROOF OF THEOREM 1

We begin by establishing mean value results for the Fourier coefficients at squarefree integers.

Lemma 9 -Let ∈ +1∕2 , and assume it is an eigenform of all the Hecke operators. Let > 0. There exist positive real numbers 1 , 2 and 3 such that, for any ≥ 1, we have

∑ ♭ ≤ ( ) log ≤ 1 3∕4+ and 2 ≤ ∑ ♭ ≤ ( ) 2 ≤ 3
for any ≥ 0 ( ).

Proof. Using the Perron formula [16, Theorem II.2.3], we write

∑ ♭ ≤ ( ) log = 1 2 i ∫ 2+i∞ 2-i∞ ( , ) d 2 .
We move the line of integration to Re = 3∕4 + and use Lemma 8 to have

∑ ♭ ≤ ( ) log ≤ 1 3∕4+ .
For the second formula, we use an effective version of the Perron formula [16, Corollary II.2.2.1]:

∑ ≤ ( ) 2 = 1 2 i ∫ +i -i ( ⊗ , ) d + 1+2 +
for any ≤ and = 1 + 1∕ log . Proposition 7 allows to shift the line of integration to Re = 1∕2 + . We get

1 2 i ∫ +i -i ( ⊗ , ) d = + 1 2 i ∫  ( ⊗ , ) d
where is the residue at = 1 of ( ⊗ , ) and  is the contour made from segments joining in order the points -i , 1∕2 + -i , 1∕2 + + i and + i . With the convexity bound in Proposition 7 we have

∫ ±i 1∕2+ ±i ( ⊗ , ) d ≪ 1+ if ≤ 1∕2 and ∫ 1∕2+ +i 1∕2+ -i ( ⊗ , ) d ≪ 1∕2+ .
We choose = 1∕4+ and obtain

∑ ≤ ( ) 2 = + 3∕4+ + . ( 14 
)
Each positive integer may be decomposed uniquely as = 2 with squarefree . Using (9) we have

∑ ≤ ( ) 2 ≪ ∑ ♭ ≤ ( ) 2 ∑ ≤( ∕ ) 1∕2 ( ) ( ) ≪ 1∕2 ∑ ♭ ≤ ( ) 2
1∕2 log .

Combining this with ( 14) we find

∑ ♭ ≤ ( ) 2 1∕2 log ≥ 1 1∕2 ( ≥ 0 ( )) (15) 
where the constant 1 depends only on . On the other hand, (14) leads to

∑ ♭ ≤ ( ) 2 1∕2 log ≤ ∑ ≤ ( ) 2 1∕2 log ≤ 2 1∕2 (16) 
Moreover, [START_REF] Waldspurger | Sur les coefficients de Fourier des formes modulaires de poids demi-entier[END_REF] and Lemma 9 imply

∑ ♭ ≤ | ( )| + ( ) log = ∑ ♭ ≤ | ( )| log + ∑ ♭ ≤ ( ) log ≫ 1-+ 3∕4+ ≫ 1-. ( 19 
)
Finally, equations ( 18) and ( 19) give

 + ( ) ≫ 1-2 log ⋅ Similarly, using | ( )| -( ) 2 = -( ) if ( ) < 0 0 otherwise we obtain  -( ) ≫ 1-2 log ⋅
This finishes the proof of Theorem 1.

PROOF OF THEOREM 4

The basic idea of proof is the same as for Theorem 1, although here we localize on short intervals. The device (4) with the analytic properties of ( , ) gives a nice mean value estimate for ( ) over the squarefree integers in a short interval, see (20). However our series ( ⊗ , ) runs over all positive (not just squarefree) integers. We cannot obtain a counterpart for | ( )| 2 . To get around, we consider a bundle of short intervals and lead to two moment estimates (21) and (26) in §4.1. Then we can enumerate the sign changes in §4.2. 

4. 1 .

 1 Computation of moments of order 1 and 2. Let0 ≤ < 1∕4 and 1 > > 3∕4 + .Suppose that is sufficiently large. We set ℎ = and define by e 2 = 1 + ℎ∕ . We have ≍ ℎ∕ . For all ∈ ℂ such that |Re | ≤ 2, we have (e -1) 2 ∕ 2 ≪ min 2 , 1∕| | 2 . It follows then by Lemma 8 and (4+ 1) 1∕4+ min2 ,1 1 + | | 2 d ≪ ℎ 3∕4 . (20) (note 3 > 2 > 1 > 0). The 4 subsums are evaluated via the following summations:

This work was supported by a grant from France/Hong Kong Joint Research Scheme, Procore, sponsored by the Research Grants Council of Hong Kong (F-HK026/12T) and the Consulate General of France in Hong Kong & Macau (PHC PROCORE 2013, N • 28212PE). Lau is also supported by GRF 17302514 of the Research Grants Council of Hong Kong.

where 2 depends only on . Let 3 ∈]0, 1[. From [START_REF] Soundararajan | Smooth numbers in short intervals[END_REF] and [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF], it follows that log(1∕ 3 )

We deduce

.

Finally, [START_REF] Shimura | On modular forms of half integral weight[END_REF] gives

With this Lemma, we can complete the proof of Theorem 1. From (9) we derive

Hence, Lemma 9 implies

We detect signs of Fourier coefficients with the help of

Using (9), we have

For any integer constant > 0, let ( 1 , … , ) ∈ {-1, 1} . The bound for the moment of order 1 follows from (20), that is

We turn to the evaluation of the moment of order 2. Since > 3∕4 + , by ( 14) and Lemma 6, we obtain for some positive constant ,

Next we prove that √ + ℎ can be replaced by some constant in the outer sum up to the cost of a replacement of a smaller . Indeed we will prove, for any fixed > 0,

Note that

by [START_REF] Shimura | On modular forms of half integral weight[END_REF]. In light of ( 22), ( 14) and (3), it suffices to evaluate

.

Write = ∕ 2 and = ∕ 2 , then 0 < < and ≫ 1. Note 2 < 3∕4 + . The term min{⋯} in the preceding formula is then handled by observing

We split the sum over into 4 subsums with the ranges of summation dividing at the points for which = 1, = 3∕4-and = 3∕4+ + respectively. Write

4.2. Implication on the number of sign changes. We use ( 21) and ( 9) to write

by ( 26). If > 4 5 (1 + ), we deduce

Assume that, for all ∈ {1, … , }, there exists ∈ {-1, 1} such that the sign of ( ) isfor every squarefree ∈ 2 , +ℎ 2 . Then, The interval ( + 1) is on the left side of 0 ( ). Moreover, if ≠ , then ( ) ∩ ( ) = ∅. It follows that the intervals ( ) are disjoint. Since, for any , there exists such that ( ) contains a sign change, we obtain at least ≫ 1- sign changes over the interval [1, ]. The proof is complete after replacing by + .