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SIGN OF FOURIER COEFFICIENTS OF MODULAR FORMS OF

HALF INTEGRAL WEIGHT

YUK-KAM LAU, EMMANUEL ROYER, AND JIE WU

ABSTRACT. We establish lower bounds for (i) the numbers of positive and neg-
ative terms and (ii) the number of sign changes in the sequence of Fourier coeffi-
cients at squarefree integers of a half-integral weight modular Hecke eigenform.

1. INTRODUCTION

1.1. Results. Let l ≥ 4 be a positive integer. Denote by Sl+1∕2 the set of all cusp
forms of weight l+1∕2 for the congruence subgroup Γ0(4) . The Fourier expansion
of f ∈ Sl+1∕2 at ∞ can be written as

f(z) =

∞∑
n=1

�f(n)n
l∕2−1∕4 e(nz) (z ∈ ℋ), (1)

where e(z) = e2�iz and ℋ is the Poincaré upper half plane. For any squarefree
integer t Waldspurger [17] proved the following elegant formula

�f(t)
2 = CfL(

1

2
, Sht f, �t), (2)

where Sht f is the Shimura lift of f associated to t (this is a cusp form of weight
2l and of level 2), �t(n) is a real character modulo t (defined in Section 2) and Cf

is a constant depending on f only. In the following, the letter t will always be a

squarefree integer and
∑♭

a sum over squarefree integers.
In view of (2), Kohnen [10] posed the following question: in the case where

�f(t) is a real number, what is its sign? Very recently, Hulse, Kairal, Kuan & Lim
made a significant progress toward this question by proving that �f(t) changes sign
infinitely often if f ∈ Sl+1∕2 is an eigenform of all the Hecke operators (see [4,
Theorem 1.1]).

In order to describe the order of magnitude of �f(t), we choose � a non negative
real number such that the inequality

�f(t) ≪f,� t
� (3)
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holds for all squarefree integers t. The implied constant depends on f and � only. It
is conjectured that one can take

� = "

for any " > 0. This could be regarded as an analogue of the Ramanujan conjecture
on cusp forms of integral weight. Conrey & Iwaniec [3, Corollary 1.3] proved that
one can take

� =
1

6
+ "

for any " > 0.
The main aim of this paper is to establish a quantitative version of the result of

Hulse, Kairal, Kuan & Lim. Define

 +
f
(x) = #

{
t ≤ x, t squarefree∶ �f(t) > 0

}

and

 −
f
(x) = #

{
t ≤ x, t squarefree∶ �f(t) < 0

}
.

We establish the following results.

Theorem 1 – Let l ≥ 4 be a positive integer and f ∈ Sl+1∕2 an eigenform of all

the Hecke operators. Then for any " > 0 , we have

 +
f
(x) ≥ x1−2�−",  −

f
(x) ≥ x1−2�−"

for all x ≥ x0(f, "), where � is given by (3) and x0(f, ") is a positive real number

depending only on f and ".

Remark 2 – In particular, the Conrey & Iwaniec bound leads to

 +
f
(x) ≥ x2∕3−",  −

f
(x) ≥ x2∕3−"

for all x ≥ x0(f, ").

Remark 3 – The study about the sign equidistribution of the sequence
(
�f(tn

2)
)
n∈ℕ

was investigated in [2], [10], [9], [5] and [6]. In particular, Inam & Wiese proved
in [5] that, if t is a fixed squarefree integer, then

lim
x→+∞

#{p prime∶ p ≤ x, �f(tp
2) > 0}

#{p prime∶ p ≤ x}
=

1

2

and

lim
x→+∞

#{p prime∶ p ≤ x, �f(tp
2) < 0}

#{p prime∶ p ≤ x}
=

1

2
.

Let us precise what we call number of squarefree sign changes of the sequence
�f =

(
�f(t)

)
t≥0 (where �f(0) = 0) restricted to squarefree indexes t. From this

sequence of Fourier coefficients, we build a sequence of pairs of squarefree integers
(t+n , t

−
n ), that may be finite or even void, in the following way: for any integer n, we

have
�f(t

+
n ) > 0, �f(t

−
n ) < 0,



SIGN OF FOURIER COEFFICIENTS OF MODULAR FORMS 3

max(t+n , t
−
n ) < min(t+

n+1
, t−
n+1

),

and �f(t) = 0 for all squarfree integer t between t+n and t−n . The number of squarefree
sign changes of �f is the function defined by

f(x) = #
{
n ≥ 1∶ max(t+n , t

−
n ) ≤ x

}
.

Theorem 4 – Let l ≥ 4 be a positive integer and f ∈ Sl+1∕2 be an eigenform of

all the Hecke operators. Let

� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

4

5
(1 + �) if 0 ≤ � < 1

16
or

1

8
≤ � ≤ 1

6

3

4
+ 2�

1+4�
if

1

16
≤ � < 1

12

1

2
+ 1

3−4�
if

1

12
≤ � < 1

8
.

For any " > 0, the number of squarefree sign changes of �f satisfies

f(x)≫f," x
1−�−"

for all x ≥ x0(f, �), where the constant x0(f, �) and the implied constant depends

on f and ".

Figure 1 shows the graph of 1 − � against �.
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FIGURE 1. Graph of 1 − � as a function of �.

Remark 5 – f(x) ≫ x
1

15
−" by Theorem 4 and Conrey & Iwaniec’s bound.
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1.2. Methods. To prove Theorem 1, we detect signs with

|�f(t)| + �f(t)
2

=

{
�f(t) if �f(t) > 0

0 otherwise.

Bounding the Fourier coefficients with (3), we get plainly
∑♭

t≤x

(|||�f(t)
||| + �f(t)

)
log

(
x

t

)
≪f,�  +

f
(x)x� log x (4)

(recall that the letter t is for squarefree integers hence the sum is restricted to square-
free integers). We use the analytic properties of the Dirichlet series

M(f, s) =
∑♭

t≤x
�f(t)t

−s and D(f⊗ f, s) =
∑
n≥1

�f(n)
2n−s

in Lemma 8 and Proposition 7 of §2.2 to get a lower bound for the sum in (4).
(Note that Lemma 8 is due to [4].) More precisely, the Dirichlet series defining
M(f, s) andD(f⊗ f, s) are absolutely convergent for Re s > 1. The function M(f, s)

has an analytic continuation to Re s > 3∕4 whereas the function D(f ⊗ f, s) has a
meromorphic continuation to Re s > 1∕2 with a unique pole; this pole is at 1 and it
is simple. Thus we can easily derive Lemma 9 and then the lower bound

∑♭

t≤x

(|||�f(t)
||| + �f(t)

)
log

(
x

t

)
≫ x1−� .

Theorem 1 follows readily.
Theorem 4 rests on the following delicate device of Soundararajan [15]: let c > 0

and � > 0, then

1

2�i ∫
c+i∞

c−i∞

(
e�s −1

)2
s2

�s ds

=

{
min

(
log

(
e2� �

)
, log (1∕�)

)
if e−2� ≤ � ≤ 1

0 otherwise.
(5)

(Thanks to the referee for suggesting this device.) Using it with the analytic prop-
erties of M(f, s) and D(f⊗ f, s), some weighted first and second moments on short
intervals are evaluated. We use these moments to detect the sign changes via the
positivity of

∑
m≤A

∑♭

x

m2
<t< x+ℎ

m2

(|||�f(t)
||| + "m�f(t)

)
min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))

for all ("1,… , "A) ∈ {−1, 1}A.
The paper is organized as follows. Section 2 is devoted to the background on

half-integral weight modular forms (§2.1) and the establishment of the analytic
properties for the Dirichlet series we need (§2.2). Theorem 1 is proven in Section 3.
Theorem 4 is proven in Section 4.
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2. BACKGROUND

2.1. Modular forms of half-integral weight. In this section, we want to recall the
basic facts we need on modular forms of half-integral weight on the congruence
subgroup Γ0(4). All the content of this section is classical and is to be found in
the main references [14] and [13]. It contains however the very few that the non-
specialist reader will need.

The theta function is defined on the upper half plane ℋ by

�(z) = 1 + 2

+∞∑
n=1

e(n2z)

for any z ∈ ℋ. Since the � function does not vanish on ℋ, we can define the theta
multiplier: for any 
 ∈ Γ0(4) and z ∈ ℋ, let

j(
, z) =
�(
z)

�(z)
.

If 
 =
(
a b
c d

)
, it can be shown that j(
, z)2 = cz+d. For any complex number �, let

�1∕2 denote |�|1∕2 ei arg(�)∕2 where −� < arg(�) ≤ �. The coefficient j(
, z)∕(cz +
d)1∕2 is called the theta multiplier. It does not depend on z and can be explicitly
described in terms of c and d (see, for example, [7, §2.8]).

Let l be a non negative integer. A modular form of weight l + 1∕2 is a holo-
morphic function f on ℋ satisfying

f(
z) = j(
, z)2l+1f(z)

for all 
 ∈ Γ0(4) and z ∈ ℋ, and that is holomorphic at the cusps of Γ0(4). If
moreover f vanishes at the cusps of Γ0(4), then f is called a cusp form of weight l+
1∕2. The congruence subgroup has three cusps: 0, −1∕2 and∞. The corresponding
scaling matrices are respectively

�0 =

(
0 −1∕2
2 0

)
, �−1∕2 =

(
1 0
−2 1

)
and �∞ =

(
1 0
0 1

)
.

Then, if f is a cusp form of weight l + 1∕2, the following functions have a Fourier
expansion vanishing at ∞:

f|�0(z) = (2z)−l−1∕2f
(
−

1

4z

)
and f|�−1∕2(z) = (−2z + 1)−l−1∕2f

(
−

1

2z − 1

)
.

We shall write

f(z) =

+∞∑
n=1

f̂(n) e(nz) (6)
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for the Fourier expansion of f. The set Sl+1∕2 of modular forms of weight l +1∕2

is a finite dimensional vector space over ℂ. If l ≤ 3, then Sl+1∕2 = {0}. In the
following, we shall assume l ≥ 4.

Shimura established a correspondence between half-integral cusp forms and in-
tegral weight cusp forms on a congruence subgroup. Niwa [12] gave a more dir-
ect proof of this correspondence and lowered the level of the congruence group
involved. Fix a squarefree integer t. We write �0 for the principal character of
modulus 2 and define a character �t by

�t(n) = �0(n)
(
−1

n

)l ( t
n

)
.

Let f ∈ Sl+1∕2. Then, the Dirichlet series defined by the product

L(�t, s − l + 1)

+∞∑
n=1

f̂(tn2)

ns

is the Dirichlet series of a cusp form of integral weight 2l over the congruence
subgroup Γ0(2). We denote by Sht f this cusp form and S2l the vector space of
cusp forms of weight 2l over Γ0(2). At this point, the dependence in t of Sht f is
not really clear. It will become clearer after we introduced the Hecke operators.

The Hecke operator of half-integral weight l + 1∕2 and order p2 is the linear
endomorphism Tp2 on Sl+1∕2 that sends any cusp form with Fourier coefficients

(̂f(n))n≥1 to the cusp form with Fourier coefficients defined by

T̂p2(f)(n) = f̂(p2n) + �0(p)

(
(−1)ln

p

)
pl−1f̂ (n) + �0(p)p

2l−1 f̂

(
n

p2

)
.

If n∕p2 is not an integer, then f̂(n∕p2) is considered to be 0. Hecke operators and
the Shimura correspondence commute, meaning that if Tp is the Hecke operator of
order p over S2l , then

Sht(Tp2f) = Tp(Sht f)

for any f ∈ Sl+1∕2. In particular, if f is an eigenform of Tp2 , then Sht f is an eigen-
form of Tp with same eigenvalue. Let f be an eigenform of all the Hecke operators
Tp2 : denote by wp the corresponding eigenvalue. Since Sht f is an eigenform of all
the Hecke operators Tp, it has real Fourier coefficients. From

+∞∑
n=1

f̂(tn2)

ns
=

+∞∑
n=1

�(n)�t(n)

ns−l+1

+∞∑
n=1

Ŝht f(n)

ns
,

where � is the Möbius function, it follows that f̂(tn2) is real for any squarefree
integer t and any integer n. Since any integer may be written uniquely as tn2 with
squarefree t, it follows that the Fourier coefficients of f are real. Moreover, one has

L(�t, s − l + 1)

+∞∑
n=1

f̂(tn2)

ns
= f̂(t)

∏
p

(
1 −

!p

ps
+

�0(p)

p2s−2l+1

)−1

(7)
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the product being over all prime numbers. This product is the L-function of a cusp
form in S2l. We denote by Sh f this cusp form. Remark that it does not depend on
t and that Sht f = f̂(t) Sh f.

Let  be the arithmetic function defined by

 (n) =
∏
p∣n

(
1 + p−1∕2

)

the product being on prime numbers. We write � for the divisor function and clearly
 (n) ≤ �(n) for every n ∈ ℕ

∗. The next Lemma improves slightly Lemma 4.1
in [4].

Lemma 6 – Let f ∈ Sl+1∕2 be an eigenform of all the Hecke operators Tp2 . There

exists a constant C > 0 such that, for any squarefree integer t and any integer n we

have |||f̂(tn
2)
||| ≤ C

|||f̂(t)
|||n

l−1∕2�(n) (n).

Proof. From (7) we get

f̂(tn2) = f̂(t)
∑
d∣n

�t

(
n

d

)
�
(
n

d

)(
n

d

)l−1

Ŝh f(d). (8)

By the Deligne estimate, there exists C > 0 such that
|||Ŝh f(d)

||| ≤ Cd(2l−1)∕2�(d) (9)

for any d. It follows from (8) and (9) that

|||f̂(tn
2)
||| ≤ C

|||f̂(t)
|||n

l−1
∑
d∣n

||||�
(
n

d

)||||d
1∕2�(d) ≤ C

|||f̂(t)
|||n

l−1∕2�(n) (n).

�

The size of the Fourier coefficients of a half integral weight modular form is
therefore controlled by the size of its Fourier coefficients at squarefree integers.
Deligne’s bound for integral weight modular forms does not apply, although it con-
jecturally does. Let � be a positive real number such that, if f ∈ Sl+1∕2, then

|̂f(t)| ≤ Ct(l+1∕2−1)∕2+�

for any squarefree integer t (and C is a real number depending only on f and �).
Ramanujan-Petersson conjecture asserts that � can be taken arbitrarily small. The
best proven result is due to Conrey & Iwaniec [3] (see also the Appendix by Mao
in [1] for an uniform value of C). Their result implies that we can take � = 1∕6+ "
with any real positive ". If f ∈ Sl+1∕2 is an eigenform of all the Hecke operators,
we have by comparison of (1) and (6)

�f(n) =
f̂(n)

n(l+1∕2−1)∕2
.

For any squarefree integer t and integer n, we have then
|||�f(tn

2)
||| ≤ C1

|||�f(t)
|||�(n) (n) ≤ C2t

��(n) (n) (10)
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with the admissible choice � = 1∕6+", where C1 and C2 are positive real numbers
not depending on t or n.

2.2. Some associated Dirichlet series. Let f ∈ Sl+1∕2, and assume it is an eigen-
form of all the Hecke operators. We define

D(f⊗ f, s) =

+∞∑
n=1

�f(n)
2n−s. (11)

Write � = Re s and � = Im s.1 According to (10), we know it is absolutely conver-
gent as soon as � > 1 + 2�. We state analytical informations on this function. The
proof is quite standard, but since we have not found a handy proof in the literature
for this case, we provide the details for completeness.

Proposition 7 – Let f ∈ Sl+1∕2, and assume it is an eigenform of all the Hecke

operators. The Dirichlet series (11) converges absolutely as soon as Re s > 1. It

can be continued analytically to a meromorphic function in the half plane Re s > 1

2
with the only pole at s = 1 . This pole is simple. Further for any " > 0 we have

D(f⊗ f, s)≪f," |�|2max(1−�,0)+"
(
1

2
+ " ≤ � ≤ 3, |�| ≥ 1

)
.

The implied constant depends on f and " only.

Proof. Let a be a cusp of Γ = Γ0(4). We denote by Γa its stability group, and by
�a its scaling matrix (see [7, §2.3]). The Eisenstein series associated to a is

Ea(z, s) =
∑


∈Γa∖
Γ

Im(�−1
a

z)s

=
∑


∈Γ∞∖Γ

Im(
�−1
a
z)s = E∞(�−1

a
z, s).

We take {0,−1∕2,∞} as a representative set of cusps and obtain

E0(z, s) = E∞

(
−

1

4z
, s
)

and E−1∕2(z, s) = E∞

(
−

z

2z − 1
, s
)
.

These series converge absolutely for Re s > 1 (see, for example [11, Theorem
2.1.1]). Moreover, f|�a admits a Fourier expansion

f|�a(z) =
+∞∑
n=1

n(l+1∕2−1)∕2�f,a(n) e(nz).

Let

D(fa ⊗ fa, s) =

+∞∑
n=1

|||�f,a(n)
|||
2
n−s. (12)

Classically (see, for example, [7, §13.2]), we have

(4�)s+l−1∕2Γ
(
s + l −

1

2

)
D(fa ⊗ fa, s) = ∫

Γ∖ℋ
yl+1∕2|f(z)|2Ea(z, s)

dx dy

y2

1No confusion will arise with the divisor function �(n) from the context.
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for Re s large enough. The right hand side provides an analytic continuation in the
region Re s > 1. By Landau Lemma, this implies that the Dirichlet series (12) is ab-
solutely convergent for Re s > 1. The general theory implies that s ↦ Ea(z, s) has
a meromorphic continuation to the whole complex plane and satisfies the functional
equation

E⃗(z, s) = Φ(s)E⃗(z, 1 − s)

where E⃗ is the transpose of (E∞, E0, E−1∕2) and Φ =
(
'a,b

)
(a,b)∈{∞,0,−1∕2}2

is the
scattering matrix. Indeed,

'a,b(s) = �1∕2
Γ(s − 1

2
)

Γ(s)

∑
c>0

 (c)c−2s

where  (c) is the number of d, incongruent modulo c such that, there exist a and
b satisfying

�a

(
a b
c d

)
�−1
b

∈ Γ0(4).

This leads to

Φ(s) =
Λ(2s − 1)

Λ(2s)

21−2s

22s − 1

⎛⎜⎜⎝

1 22s−1 − 1 22s−1 − 1

22s−1 − 1 1 22s−1 − 1

22s−1 − 1 22s−1 − 1 1

⎞⎟⎟⎠
=

Λ(2s − 1)

Λ(2s)
Ψ(s), say,

where Λ(s) = �−s∕2Γ(s∕2)� (s). On the half plane Re s ≥ 1∕2, Ea and 'a,a have
the same poles of the same orders [11, Theorems 4.4.2, 4.3.4, 4.3.5]. The only pole
on Re s ≥ 1∕2 is then s = 1 and it is simple. Note that this follows also from
the general theory since we are working on a congruence subgroup ([8, Theorem
11.3]).

Let L⃗(f⊗ f, s) be the transpose of(
D(f⊗ f, s), D(f0 ⊗ f0, s), D(f−1∕2 ⊗ f−1∕2, s)

)

and
Λ⃗(f, s) = (2�)−2sΓ(s)Γ(s + l − 1∕2)� (2s)L⃗(f⊗ f, s).

We proved that

∙ Λ⃗(f, s) = Ψ(s)Λ⃗(f, 1 − s)

∙ in the half plane Re s ≥ 1∕2, the function D(fa ⊗ fa, s) has only a simple
pole at s = 1.

Now, let ‖⋅‖ denote the Euclidean norm in ℝ
3. Using ‖D(fa⊗fa, 1+"+i�)‖ ≪f," 1

for any � ∈ ℝ and any fixed " > 0, we deduce

|� (−2" + 2i�)| ⋅ ‖‖‖L⃗(f⊗ f,−" + i�)
‖‖‖ ≪f," (1 + |�|)2+"

from the functional equation, and the estimate

|� (2s)| ⋅ ‖‖‖L⃗(f⊗ f, s)
‖‖‖ ≪f," (1 + |�|)2(1−�)+" (s = � + i�, � ∈ [0, 1], |�| ≥ 1)
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by the standard argument with the convexity principle.2 This leads to the desired
result. �

Another useful Dirichlet series is

M(f, s) =
∑♭

t≥1
�f(t)t

−s. (13)

The series M(f, s) is absolutely convergent for Re s > 1 by the Cauchy-Schwarz
inequality and Proposition 7. The next lemma is due to Hulse, Kiral, Kuan & Lim
[4, Proposition 4.4].

Lemma 8 – Let l ≥ 4 be a positive integer and f ∈ Sl+1∕2 be an eigenform of

all the Hecke operators. The series M(f, s), given by (13), converges for Re s > 3

4
.

Further for any " > 0 we have

M(f, � + i�) ≪f," (|�| + 1)max(1−�,0)+2" (
3

4
+ " ≤ � ≤ 3, |�| ≥ 1)

where the implied constant depends on f and " only.

Proof. We only sketch the proof since it is nearly the same as in [4, Proposition
4.4]. By the relation

�(m)2 =
∑
r2∣m

�(r)

we have

M(f, s) =

+∞∑
r=1

�(r)Dr(s) (14)

where

Dr(s) =

+∞∑
m=1

m≡0 (mod r2)

�f(m)m
−s.

This series is absolutely convergent for Re s > 1 by Cauchy-Schwarz inequality
and Proposition 7. Then, introducing additive characters to remove the congruence
condition and applying the Mellin transform, we get

Dr(s) =
(2�)s+(l+1∕2−1)∕2

Γ(s + (l + 1∕2 − 1)∕2)
⋅
1

r2

∑
d∣r2

∑
u (mod d)
(u,d)=1

Λ
(
f,
u

d
, s
)

with

Λ(f, q, s) = ∫
+∞

0

f(iy + q)ys+(l−1∕2)∕2
dy

y
for any rational number q. Using the functional equation for Λ(f, q, s) (see [4,
Lemma 4.3]), we obtain

Dr(−" + i�) ≪",f (1 + |�|)1+2"r2+5".
2One needs the estimate |� (2s)| ⋅ ‖L⃗(f⊗ f, s)‖ ≪ ee

�|�|
for some � > 0 in the strip so as to apply

the convexity principle. This can be easily verified by the Fourier expansion of Ea(z, s) and [11,
(2.2.6)-(2.2.11)].



SIGN OF FOURIER COEFFICIENTS OF MODULAR FORMS 11

From (10), we have also

Dr(1 + " + i�) ≪",f
1

r2
.

Finally, by the Phrägmen-Lindelöf principle, we deduce

Dr(� + i�) ≪",f (1 + |�|)1−�+"r2−4�+".
Reinserting this bound into (14) leads to the result. �

3. PROOF OF THEOREM 1

We begin by establishing mean value results for the Fourier coefficients at square-
free integers.

Lemma 9 – Let f ∈ Sl+1∕2, and assume it is an eigenform of all the Hecke

operators. Let " > 0. There exist positive real numbers C1, C2 and C3 such that,

for any x ≥ 1, we have
∑♭

t≤x
�f(t) log

(
x

t

) ≤ C1x
3∕4+"

and

C2x ≤ ∑♭

t≤x
�f(t)

2 ≤ C3x

for any x ≥ x0(f).

Proof. Using the Perron formula [16, Theorem II.2.3], we write

∑♭

t≤x
�f(t) log

(
x

t

)
=

1

2�i ∫
2+i∞

2−i∞

M(f, s)xs
ds

s2
.

We move the line of integration to Re s = 3∕4 + " and use Lemma 8 to have
∑♭

t≤x
�f(t) log

(
x

t

) ≤ C1x
3∕4+".

For the second formula, we use an effective version of the Perron formula [16,
Corollary II.2.2.1]:

∑
n≤x

�f(n)
2 =

1

2�i ∫
�+iT

�−iT
D(f⊗ f, s)xs

ds

s
+O

(
x1+2�+"

T

)

for any T ≤ x and � = 1 + 1∕ log x. Proposition 7 allows to shift the line of
integration to Re s = 1∕2 + ". We get

1

2�i ∫
�+iT

�−iT
D(f⊗ f, s)xs

ds

s
= rfx +

1

2�i ∫
D(f⊗ f, s)xs

ds

s

where rf is the residue at s = 1 of D(f ⊗ f, s) and  is the contour made from
segments joining in order the points � − iT , 1∕2 + "− iT , 1∕2 + "+ iT and � + iT .
With the convexity bound in Proposition 7 we have

∫
�±iT

1∕2+"±iT
D(f⊗ f, s)xs

ds

s
≪
x1+"

T
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if T ≤ x1∕2 and

∫
1∕2+"+iT

1∕2+"−iT
D(f⊗ f, s)xs

ds

s
≪ x1∕2+"T .

We choose T = x1∕4+� and obtain∑
n≤x

�f(n)
2 = rfx +O

(
x3∕4+�+"

)
. (15)

Each positive integer n may be decomposed uniquely as n = tm2 with squarefree t.
Using (10) we have

∑
n≤x

�f(n)
2 ≪f

∑♭

t≤x
�f(t)

2
∑

m≤(x∕t)1∕2
�(m) (m)

≪f x
1∕2

∑♭

t≤x
�f(t)

2

t1∕2
log

(
x

t

)
.

Combining this with (15) we find

∑♭

t≤x
�f(t)

2

t1∕2
log

(
x

t

) ≥ c1x
1∕2 (x ≥ x0(f)) (16)

where the constant c1 depends only on f. On the other hand, (15) leads to

∑♭

t≤x
�f(t)

2

t1∕2
log

(
x

t

) ≤ ∑
n≤x

�f(n)
2

n1∕2
log

(
x

n

) ≤ c2x
1∕2 (17)

where c2 depends only on f. Let c3 ∈]0, 1[. From (16) and (17), it follows that

log(1∕c3)

(c3x)
1∕2

∑♭

c3x<t≤x
�f(t)

2 ≥ ∑♭

c3x<t≤x
�f(t)

2

t1∕2
log

(
x

t

)

=
∑♭

t≤x
�f(t)

2

t1∕2
log

(
x

t

)
−

∑♭

t≤c3x
�f(t)

2

t1∕2
log

(
x

t

)

≥ (
c1 − c2c

1∕2

3

)
x1∕2.

We deduce
∑♭

c3x<t≤x
�f(t)

2 ≥ c
1∕2

3

log(1∕c3)

(
c1 − c2c

1∕2

3

)
x.

Choosing c3 < min(1, c2
1
∕c2

2
) we have

∑♭

t≤x
�f(t)

2 ≫
∑♭

c3x<t≤x
�f(t)

2 ≫ x.

Finally, (15) gives ∑♭

t≤x
�f(t)

2 ≤ ∑
n≤x

�f(n)
2 ≪ x
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hence ∑♭

t≤x
�f(t)

2 ≍ x.

�

With this Lemma, we can complete the proof of Theorem 1. From (10) we derive
∑♭

t≤x
|||�f(t)

||| log
(
x

t

)
≫ x−�

∑♭

t≤x
|||�f(t)

|||
2
log

(
x

t

)

≫ x−�
∑♭

t≤x∕2
|||�f(t)

|||
2
.

Hence, Lemma 9 implies
∑♭

t≤x
|||�f(t)

||| log
(
x

t

)
≫f,� x

1−� . (18)

We detect signs of Fourier coefficients with the help of

|�f(t)| + �f(t)
2

=

{
�f(t) if �f(t) > 0

0 otherwise.

Using (10), we have
∑♭

t≤x
(|�f(t)| + �f(t)

)
log

(
x

t

)
≪  +

f
(x)x� log x. (19)

Moreover, (18) and Lemma 9 imply
∑♭

t≤x
(|�f(t)| + �f(t)

)
log

(
x

t

)
=

∑♭

t≤x
|�f(t)| log

(
x

t

)
+

∑♭

t≤x
�f(t) log

(
x

t

)

≫ x1−� +O
(
x3∕4+"

)

≫ x1−� . (20)

Finally, equations (19) and (20) give

 +
f
(x) ≫

x1−2�

log x
.

Similarly, using

|�f(t)| − �f(t)
2

=

{
−�f(t) if �f(t) < 0

0 otherwise

we obtain

 −
f
(x) ≫

x1−2�

log x
.

This finishes the proof of Theorem 1.
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4. PROOF OF THEOREM 4

The basic idea of proof is the same as for Theorem 1, although here we localize
on short intervals. The device (5) with the analytic properties of M(f, s) gives a
nice mean value estimate for �f(t) over the squarefree integers in a short interval,

see (21). However our series D(f⊗ f, s) runs over all positive (not just squarefree)
integers. We cannot obtain a counterpart for |�f(t)|2. To get around, we consider a
bundle of short intervals and lead to two moment estimates (22) and (29) in §4.1.
Then we can enumerate the sign changes in §4.2.

4.1. Computation of moments of order 1 and 2. Let �0 = 3∕4 + �. Let � satis-
fying hypothesis in Theorem 4. Suppose that x is sufficiently large. We set ℎ = x�

and define � by e2� = 1 + ℎ∕x. We have � ≍ ℎ∕x.
For all s ∈ ℂ such that |Re s| ≤ 2, we have

(
e�s −1

)2
∕s2 ≪ min

(
�2, 1∕|s|2).

It follows then by Lemma 8 and (5) that

∑♭

x≤t≤x+ℎ
�f(t)min

(
log

(
x + ℎ

t

)
, log

(
t

x

))

=
1

2�i ∫
3∕4+"+i∞

3∕4+"−i∞
M(f, s)

(
e�s −1

)2
s2

xs ds

≪ x3∕4+" ∫
+∞

−∞

(|�| + 1)1∕4+"min

(
�2,

1

1 + |�|2
)
d�

≪ ℎ3∕4x". (21)

For any integer constant A > 0, let ("1,… , "m) ∈ {−1, 1}A. The bound for the
moment of order 1 follows from (21), that is

∑
m≤A

"m
∑♭

x

m2
<t< x+ℎ

m2

�f(t)min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))
≪ ℎ3∕4x". (22)

We turn to the evaluation of the moment of order 2. By (10), we have

∑
x<n<x+ℎ

�f(n)
2 ≪

∑
m≤√x+ℎ

�(m)4
∑♭

x

m2
<t< x+ℎ

m2

�f(t)
2.

Since � > �0, this equation and equation (15) imply

Cℎ ≤ ∑
m≤√x+ℎ

�(m)4
∑♭

x

m2
<t< x+ℎ

m2

�f(t)
2 (23)

for some constant C > 0. We prove next that
√
x + ℎ can be replaced by some

constant A in the outer sum up to the cost of a replacement of C by C∕2.
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Set � =
�−�0

2(1−�0)
. Then, if m ≤ x�−", we have ℎ∕m2 ≫ (x∕m2)�0+" hence, equa-

tion (15) leads to
∑♭

x

m2
<t< x+ℎ

m2

�f(t)
2 ≪

ℎ

m2
.

If m > x�−", then we use either (3) to derive

∑♭

x

m2
<t< x+ℎ

m2

�f(t)
2 ≪

∑♭

x

m2
<t< x+ℎ

m2

t2� ≪
(
1 +

ℎ

m2

)
x2�

m4�

or we use (15) to get

∑♭

x

m2
<t< x+ℎ

m2

�f(t)
2 ≤ ∑♭

t< x+ℎ

m2

�f(t)
2 ≪

x1+"

m2
.

Let A > 0 be a constant to be chosen later but large enough so that n ≥ A implies
�(n) ≤ n1∕8. We split the right hand side of (23) into four sums according to m ≤ A,
A < m ≤ x�−", x�−" < m ≤ ℎ1∕2 and ℎ1∕2 < m ≤ √

x + ℎ. The last three pieces
contribute no more than

ℎ
∑

A<m≤x�−"
�(m)4

m2
+x"min

(
x, ℎx2�(1−2�)

) ∑
x�−"<m≤ℎ1∕2

1

m2
+x2�

∑
ℎ1∕2<m≤√x+ℎ

�(m)4

m4�

≪ ℎA−1∕2 + x−�+"min
(
x, ℎx2�(1−2�)

)
+ x1∕2+". (24)

We note that min
(
x, ℎx2�(1−2�)

)
= x if and only if � ≥ 1∕12. It follows that the

right hand side of (24) is bounded by Cℎ∕2 for large enough A if

⎧⎪⎪⎨⎪⎪⎩

� >
3

4
+

2�

1 + 4�
in case � ≤ 1

12
or

� >
1

2
+

1

3 − 4�
in case � >

1

12
.

(25)

Under this condition we deduce a lower bound for the first split piece:

ℎ ≪
∑
m≤A

�(m)4
∑♭

x

m2
<t< x+ℎ

m2

�f(t)
2.

This equation remains true if we replace (x, ℎ) by (x + ℎ∕4, ℎ∕2), so

ℎ ≪
∑
m≤A

�(m)4
∑♭

x+ℎ∕2

m2
<t≤ x+3ℎ∕4

m2

�f(t)
2. (26)
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Moreover

∑
m≤A

�(m)4
∑♭

x

m2
<t< x+ℎ

m2

�f(t)
2 min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))

≥ ∑
m≤A

�(m)4
∑♭

x+ℎ∕4

m2
<t≤ x+3ℎ∕4

m2

�f(t)
2 min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))
(27)

and, if t ∈
[
x+ℎ∕4

m2
, x+3ℎ∕4

m2

]
then

x

ℎ
min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))
≫ 1. (28)

We deduce from (27), (28) and (26) that
∑
m≤A

�(m)4
∑♭

x

m2
<t< x+ℎ

m2

�f(t)
2 min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))
≫
ℎ2

x
. (29)

This is our moment of order 2.

4.2. Implication on the number of sign changes. We use (22) and (10) to write
∑
m≤A

∑♭

x

m2
<t< x+ℎ

m2

(|||�f(t)
||| + "m�f(t)

)
min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))

≫
∑
m≤A

∑♭

x

m2
<t< x+ℎ

m2

t−��f(t)
2 min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))
+O

(
ℎ3∕4+"

)

≫ x−1−�ℎ2 + O
(
ℎ3∕4+"

)
(30)

by (29). If � > 4

5
(1 + �) and � also satisfies (25), we deduce

∑
m≤A

∑♭

x

m2
<t< x+ℎ

m2

(|||�f(t)
||| + "m�f(t)

)
min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))
≫ x2�−1−� .

Assume that, for all m ∈ {1,… , A}, there exists "m ∈ {−1, 1} such that the sign

of �f(t) is −"m for every squarefree t ∈
]
x

m2
, x+ℎ
m2

[
. Then,

∑
m≤A

∑♭

x

m2
<t< x+ℎ

m2

(|||�f(t)
||| + "m�f(t)

)
min

(
log

(
x + ℎ

tm2

)
, log

(
tm2

x

))
= 0

in contradiction with (30). Consequently, there exists m ∈ {1,… , A} such that the

interval
]
x

m2
, x+ℎ
m2

[
contains squarefree integers t and t′ satisfying

|||�f(t)
||| = �f(t) ≠ 0 and |||�f(t

′)
||| = −�f(t

′) ≠ 0

i.e. �f(t)�f(t
′) < 0.
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Let X be any sufficiently large number. Write B = (1 + 1∕A)2, H = (BX)� and
J = ⌊(B − 1)X∕H⌋. For any j ∈ {0,… , J − 1} and any m ∈ {1,… , A}, let

Ij(m) =

]
X + jH

m2
,
X + (j + 1)H

m2

[
.

The interval IJ (m+1) is on the left side of I0(m). Moreover, if j ≠ k, then Ij(m) ∩
Ik(m) = ∅. It follows that the AJ intervals Ij(m) are disjoint. Since, for any j,
there exists m such that Ij(m) contains a sign change, we obtain at least J ≫ X1−�

sign changes over the interval [1, X]. The proof is complete after simplifying the
conditions in (25) and � > 4

5
(1 + �), and replacing � by � + ".
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