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The effect of aspect ratio on the wake of the Ahmed body

J. Venning1 · D. Lo Jacono1,2 · D. Burton3 · M. Thompson1 · J. Sheridan1 

Due to the wide variability in the shape of ground vehi-

cles, Morel (1976) defined a generalised three-dimensional 

model that produces a wake with features similar to the 

important ones in automobile wakes. Ahmed et al. (1984) 

defined a similar body based on the fast-back shape of auto-

mobiles that has been accepted as the standard for aerody-

namic studies on ground vehicles. The body has a rounded 

front end and a slanted surface at the trailing edge that pro-

duces the major flow structure in the wake: a pair of counter-

rotating vortices. These so-called c-pillar vortices (so named 

due to their formation at the third, or ‘C’, pillar of a vehi-

cle) are conical in shape and produce a downwash between 

them. In this study, we adopt and systematically modify the 

Ahmed body geometry by changing the aspect ratio in order 

to understand and characterise the effects of aspect ratio on 

the wake. Our investigation aims to control the lateral spac-

ing of the c-pillar vortices and thereby understand the influ-

ence of their spacing on the strength and nature of these vor-

tices, the topology of other features within the wake, and, by 

inference, the drag. As Onorato and Costelli (1984) showed 

with their control volume momentum analysis, the c-pillar 

vortices contribute to the drag through energy losses and 

induced rotational kinetic energy in their cores.

The key parameter varied by Ahmed et al. (1984) was 

the angle of the slant at the rear of the body. It was found 

that the drag strongly depended on the slant angle, hav-

ing a minimum at 10
◦ and a maximum at a critical angle of 

30◦, before dropping sharply. Between these critical angles, 

the wake flow exhibits highly three-dimensional structures 

(Fig. 1). In addition to the c-pillar vortices, a pair of recir-

culation regions (A and B) forms behind the rear surface, 

and the flow separates from the ground plane due to the 

expansion of the underbody flow. Beyond the 30
◦ critical 

angle, the flow separates over the backlight (slanted sur-

face) (Ahmed et al. 1984; Strachan et al. 2007; Gilliéron 

Abstract This paper seeks to further elucidate the wake 

of the Ahmed body by investigating how the time-averaged 

flow structures vary with frontal aspect ratio. High-resolu-

tion particle image velocimetry results are provided for eight 

different width Ahmed geometries at Re√
FA

= 3 × 10
4. It 

is shown that the narrower the body, the greater the down-

wash over the back slant, meaning the flow remains more 

attached. At a critical aspect ratio (  = 1.9), the flow down-

stream changes. The separation over the back slant is shown 

to be affected by the , and this in turn has a significant 

effect on the circulation in the c-pillar vortices.

1 Introduction

A large component of the energy used in ground transpor-

tation comes from overcoming aerodynamic drag, with typ-

ically over 60 % of the total resistive force being aerody-

namic drag at highway speeds (Hucho 1993). Much effort 

has been expended in researching methods to reduce this 

drag, particularly focusing on the wake region, as approxi-

mately 85 % of the drag is produced at a simplified vehi-

cle’s rear end (Drouin et al. 2002).
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et al. 1999) and the flow is much more two-dimensional. 

Vino et al. (2005) propose that vortex A and the recircu-

lation region over the top of the backlight join into one 

structure.

It is well known in bluff-body aerodynamics that an 

increase in aspect ratio of a body tends to reduce three-

dimensional effects by increasing the distance between the 

end-affected flows. Huang et al. (2015) studied the effect of 

aspect ratio on rectangular plates, finding that at low aspect 

ratio, the edge vortices stabilise the wake and increase the 

stall angle. For higher aspect ratios, the flow separation 

at the leading edge occurs at a lower angle of attack. The 

effect of aspect ratio on the Ahmed model has not been 

exhaustively studied to date. Morel (1976) supposed that a 

change in aspect ratio of a generalised body would merely 

have a proportional effect, since the effect of c-pillar vor-

tices on the overall flow patterns becomes smaller, as only 

a relatively smaller portion of the base is exposed to them. 

However, Okada et al. (2005) found that the maximum vor-

ticity of an Ahmed model with  = 2.2 is much lower than 

that of a standard  = 1.8 body. McQueen et al. (2014) 

found that the corner vortices generated by the acceleration 

of the underbody flow increased in strength with increas-

ing . Corallo et al. (2015) performed a similar study to 

the present one with CFD. They found the critical angle of 

an Ahmed model to be dependent on the aspect ratio. For a 

slant angle of 25
◦, they suggest a critical aspect ratio of 1.5, 

beyond which the flow separates over the back slant.

In the present paper, we provide details regarding the 

wake of the Ahmed body as the aspect ratio is varied. 

The rest of this article is organised as follows. Section 2 

describes the experimental methodology and data acqui-

sition. Section 3 presents the results of the experiments. 

A description is given of the wake of the standard width 

Ahmed body at Re√
FA

= 3 × 10
4, and a comparison is 

shown with LDA data of Lienhart and Becker (2003). The 

effects of aspect ratio on the flow structures in the wake are 

then presented. Section 4 gives some concluding remarks 

and summarises the key findings.

2  Experimental set-up

For this study, Ahmed bodies with a slant angle of 25
◦ 

were used. According to Ahmed et al. (1984), this should 

produce wakes in the high-drag regime far from the criti-

cal angle of 30
◦. The models were scaled down to 25 % of 

the original size proposed by Ahmed et al. (1984) to reduce 

blockage effects (blockage was less than 2 %). The result-

ing size for the standard width (AM10) model was 261 mm 

long × 97 mm wide × 72 mm high, with an aspect ratio  

(  = W/LS = 1.75). The models were manufactured out of 

acetal, and the widths were varied between 60 % and 130 % 

of the standard model, while the height of the models was 

kept constant. With a freestream velocity of 0.365 ms
−1, 

the Reynolds number based on the square root of the stand-

ard body frontal area (FA) was Re√
FA

= 3 × 10
4. The flow 

velocity was constant for all bodies tested.

A flat plate was used to simulate the ground plane. The 

plate extended 4.2H upstream of the leading edge of the 

model and had a 4:1 elliptical leading edge. The models 

were attached to the ground plane via two symmetric airfoil 

stilts. The stilts were manufactured out of stainless steel 

and had a chord of 57 mm and thickness of 17 mm. The 

ground clearance was 0.17H as defined by Ahmed et al. 

(1984). This resulted in a boundary layer with height less 

than one-third that of the clearance between the model and 

the ground plane at the leading edge of the model. The dis-

placement thickness was one-tenth of the ground clearance 

at the leading edge. The origin of the coordinate system 

was defined as the base of the model at the rear edge in the 

symmetry line (Fig. 2).

The model (Fig. 2 and Table 1) and ground plane were 

placed upside down in a water channel at FLAIR (Fluids 

Laboratory for Aeronautical and Industrial Research) at 

Monash University, Victoria (Fig. 3). The water channel is 

a free-surface, closed circuit channel with cross section 600 

mm wide × 800 mm high and is 4000 mm long. The model 

and ground plane were mounted on parallel tracks to allow 

the position of the laser plane relative to the model to be 

varied between x/L = −0.2 and x/L = 0.5 (Fig. 4).

Fig. 1  Vortex system after Ahmed et al. (1984)



Particle image velocimetry (PIV) was used to quan-

tify the flow velocities in the wake of the model. The flow 

was seeded using Vestosint spherical particles (Vestos-

int, Germany) with density 1.016 g/cm3 and mean size 

56 µm. These particles were illuminated with two Mini-

lite II Continuum lasers (New Wave Research Inc., USA). 

These were Nd:YAG lasers emitting light at a wavelength 

of 532 nm and energy 25 mJ. The laser beam was passed 

through a series of optical components to spread the beam 

into a 3-mm-thick sheet which illuminated a cross-flow (yz) 

plane behind the model. This plane was then imaged using 

a high-resolution pco.4000 CCD camera (pco, Germany). 

The images were captured through a Nikkor 105 mm lens 

(Nikkor, Nikon Corporation); the camera was placed per-

pendicular to the channel side wall and captured images 

through a 45
◦ mirror mounted in the channel 6H down-

stream of the model. We verified that the mirror was not 

influencing the upstream flow by comparing velocity fields 

from data taken in an xz plane behind the model both with 

and without the mirror in place. There were no measurable 

differences in the flow.

The PIV vector fields were acquired at 29 different cross-

stream (yz) planes downstream of the body (Fig. 4), from 

x/L = −0.2 to x/L = 0.5 in increment of x/L = 0.025. For 

each downstream location, 680 image pairs were gathered, 

with a ∆t of 3.5 ms, and a frame rate of 2 Hz. The image 

pairs were analysed using in-house cross-correlation soft-

ware (Fouras et al. 2007) with a window size of 32 × 32 

pixels and an overlap of 75 %. With a region of interest of 

2368 × 1600 pixels and a magnification factor of 13.84 px/

mm, the field of view was 1.75W × 1.6H, and the result-

ant vector field was 293 × 197 vectors, with vectors spaced 

every 0.58 mm (0.006W).

Streamwise (xz) velocity fields were also acquired at 

three spanwise positions: y/W = 0 (symmetry plane), 

y/W = 1/6, and y/W = 1/3. For each plane, 242 image 

pairs were acquired at a resolution of 4008 × 2672. The 

magnification factor was 26.07 px/mm, resulting in a field 

of view of 0.6L × 1.4H. The cross-correlation parameters 

were the same as for the yz planes, resulting in a vector 

field of 498 × 331 vectors which were spaced every 0.3 

mm (0.003H). Convergence of the mean flow (via variance 

of the fluctuating cross-velocity product from the cumula-

tive mean) was shown to occur (within 2 %) after 100 pairs, 

and therefore, 242 pairs were deemed sufficient.

The flow quality in the channel and freestream veloc-

ity was quantified using PIV. For a freestream velocity of 

0.365 ms
−1, the in-flow conditions were a turbulence inten-

sity (Iu) of less than 0.5 % and non-uniformity of ±1 % 

across the usable test section.

The Ŵ2 field as described by Graftieaux (2001) was used 

to define the bound of a vortex. Ŵ2 is a Galilean-invariant 

scalar related to the rotation of the fluid in a region of inter-

est around each point. It is not influenced by the magnitude 

of velocity vectors, but rather the direction of each vector.

For a point P, Ŵ2 is defined by:

where N is the number of points in the Ŵ2 interrogation 

region R and θ is the angle between the fluctuating velocity 

vector and a line between the origin of that vector and the 

point P. The size of the square region, R, used in this study 

is 41 × 41 vectors.

(1)Ŵ2(P) =

1

N

∑

R

sin (θ)

Table 1  Model geometries

Bold faced row indicates the scaled geometry matching that of the 

standard Ahmed body

Name Width % standard Width (mm) Height (mm)

AM06 60 58.4 72.3 1.05

AM07 70 68.1 72.3 1.23

AM08 80 77.8 72.3 1.40

AM09 90 87.5 72.3 1.58

AM10 100 97.3 72.3 1.75

AM11 110 107.0 72.3 1.93

AM12 120 116.7 72.3 2.10

AM13 130 126.4 72.3 2.28

W

H

L

U∞

Ls

25◦

z

x

z

y

Airfoil stilts

Fig. 2  Ahmed body geometry and axis reference. The standard (AM10) aspect ratio is shown



3  Results

3.1  Comparison with previous work

The present results were compared with Lienhart and 

Becker (2003) who provide wind tunnel laser Doppler ane-

mometry (LDA) data behind a standard Ahmed model at a 

Reynolds number of Re√
FA

= 8.9 × 10
5, an order of mag-

nitude higher than this study. While Lienhart and Becker 

used four cylindrical stilts mounted at the outer edges of the 

Ahmed body, the current experiment used two airfoil stilts 

in the symmetry plane. When the stilts are on the outside 

of the body, the underbody flow is likely to be accelerated 

between them, while for this study, the symmetry plane 

is in the wake of the struts, causing a slower flow. This is 

demonstrated in Fig. 5a where there is a large discrepancy 

near z/H = 0. The other notable difference between this 

study and the previous LDA data of Lienhart and Becker 

is that the wake deficit is larger in this study. Figure 5b 

shows this difference in the streamwise velocity plane. 

This is consistent with the findings of Spohn and Gilliéron 

(2002) who showed that the size of separated regions tends 

to decrease with Reynolds number. However, despite these 

differences, the major streamwise structures are consistent 

with Lienhart and Becker (2003), as can be seen in Fig. 6.

While the present study was performed at a relatively 

low Reynolds number, the major flow structures are com-

parable to those at higher Re. Thus, it is likely that our 

results are applicable to higher Re range, even though there 

might be some Reynolds number dependence of the critical 

aspect ratio (discussed later), which depends on whether 

the separating flow from the slant reattaches again.

3.2  Flow structures for the standard width Ahmed 

model

The PIV data allowed the time-mean structures in the 

wake to be visualised and quantified. Figure 7 shows four 

Fig. 3  Experimental set-up for 

PIV acquisition in cross-stream 

(yz) planes

Field of View

Ahmed Model

Ground Plane

LaserOptics

Mirror

Camera

U∞

Fig. 4  The twenty-nine 

cross-stream PIV acquisi-

tion planes covering the range 

−0.2 ≤ x/L ≤ 0.5 in 0.025 

increments. The darker plane is 

a streamwise (xz) plane. Only 

the symmetry plane (y/W = 0) 

is shown for simplicity. Other 

planes are located at y/W = 1/6 

and y/W = 1/3



downstream planes behind the standard width Ahmed 

model. The Ŵ2 criterion was used to quantify the rotation 

of the flow. In Fig. 7a at x/L = 0.1, three structures are pre-

sent. The c-pillar vortex is shown in red (positive rotation) 

near the end of the slant and at the side edge of the body. 

The other positively rotating structure at this downstream 

location is the corner vortex. This forms from accelerated 

flow under the body rolling up over the bottom corner. 

These vortices are (presumably) suppressed in most Ahmed 

model experiments due to the stilts being on the outside. 

They have been seen in other studies with clean underbod-

ies or stilts in the centreplane (e.g. Strachan et al. 2007; 

Krajnovic and Davidson 2004; McQueen et al. 2014). 

The third structure evident in this plane is the blue (nega-

tive rotation) structure below the c-pillar vortex. This is the 

streamwise element of structure B (Fig. 1), which forms 

as the flow separates at the bottom edge of the body. It is 

a predominantly spanwise structure (Fig. 8) and does not 

extend far downstream (Fig. 7b).

Slightly further downstream at x/L = 0.2, Fig. 7b 

shows the persistence of the c-pillar and corner vortices, 

but recirculation structure B is no longer visible. By this 

downstream position, a new structure has emerged (struc-

ture D), which is formed as the underbody flow expands 

significantly downstream of the end of the body. This 

causes the boundary layer on the ground plane to separate 

at x/L = 0.1, with a local separation zone resulting (see 

Fig. 8a). This structure does not extend far in the spanwise 

direction (notice in Fig. 8c that the bubble is no longer vis-

ible), and the associated boundary layer vorticity is tilted 

into the streamwise direction. Interestingly, this vortical 

structure is not depicted in Ahmed’s schematic of the mean 

flow topology, reproduced in Fig. 1, although it does appear 

in the study of Drouin et al. (2002) at a Reynolds number 

an order of magnitude higher than this study. Hence, this 

suggests that it is not generated because of the lower Reyn-

olds number, although of course, it might be amplified by 

it. Figure 7a, b shows the sudden development of this struc-

ture. Further downstream, the associated boundary layer 

vortex filaments tilt away from the symmetry plane towards 

the corner vortex.

Velocity/U∞
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(a) x

L
= 0.084

Velocity/U∞
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(b) x
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=0 .420

Fig. 5  Comparison of time averages of streamwise (squares) and 

vertical velocity (circles) profiles across the symmetry plane at two 

downstream positions in the wake of the standard width Ahmed 

model. The black symbols represent the PIV data from the present 

study (Re√
FA

= 3 × 10
4), and only one in five points is shown for 

clarity. The grey symbols are LDA data from Lienhart and Becker 

(2003) (Re√
FA

= 8.9 × 10
5)

Fig. 6  Comparison of time-averaged cross-stream (yz) velocity data 

represented by vectors. Left is LDA data from Lienhart and Becker 

(2003), right is PIV data from the present study. One in sixty-four 

PIV vectors shown for clarity. Freestream velocity is towards the 

observer. Half of symmetry plane shown for brevity



At x/L = 0.3 (Fig. 7c), the horseshoe vortex starts to 

merge with the corner vortex, and by x/L = 0.4 (Fig. 7d), 

the vortices have merged. The c-pillar vortex is also mov-

ing downwards, driven by the downwash from the opposite 

c-pillar vortex. These vortices merge with the corner and 

horseshoe vortices.

The spanwise structures are shown in Fig. 8. The sub-

figures, which represent different spanwise planes, show 

streamlines based on the time-mean flow, with coloured 

contours of spanwise vorticity overlaid. Note that the 

streamlines are used to indicate the approximate local flow 

direction and should not be interpreted to show the trajecto-

ries of fluid particles based on the mean flow. In particular, 

in the centerplane, since symmetry enforces a zero span-

wise velocity component, the foci shown in that plane can-

not be real.

The streamlines clearly indicate the recirculation regions 

A and B, which are generated by the flow separation at the 

back of the body. The separation region D, off the boundary 

layer, is seen in the symmetry plane (Fig. 8a), and a very 

small separation is seen at y/W = 1/6 (Fig. 8b). Note that 

the ‘banding’ of positive, negative, and positive vorticity in 

the y/W = 1/3 plane is due to the plane slicing through the 

Fig. 7  Downstream evolution of vortical structures in the wake of 

AM10 (  = 1.75). One in one hundred time-averaged velocity vec-

tors is shown for clarity. The vertical black dashed line represents 

the symmetry plane. Filled contours are Ŵ2, with red representing 

positive (counter-clockwise) rotation and blue representing negative 

(clockwise) rotation, with levels between ±1. Freestream velocity is 

towards the observer

Fig. 8  Spanwise vorticity and velocity streamlines in three xz planes 

in the time-averaged wake of the standard width model (AM10). Pos-

itive vorticity (clockwise, red) and negative vorticity (counter-clock-

wise, blue), with levels between ±5



c-pillar vortex. The main structures in the flow contributing 

to the downstream wake can be seen in Figs.  9 and 10.

3.3  Circulation and the effects of aspect ratio

The circulation in the c-pillar vortex was determined by 

integrating the out-of-plane vorticity across the cross 

section of the vortex. The bound was defined as where 

Ŵ2 = ±
2

π
 (Graftieaux 2001). The vorticity was non-dimen-

sionalised with the freestream velocity and the square root 

of the frontal area.

The circulation as it varies with downstream position 

and aspect ratio is given in Fig. 11; in the standard width 

geometry (AM10), several trends can be seen. Firstly, 

there is an increase in the circulation over the slant until 

x/L = 0.1, as the boundary layer on the side surface of the 

body rolls over the slant edge. This explains the growth of 

circulation up until x/L = 0, where the body ends. Accord-

ing to Kelvin’s theorem, circulation is a conserved quantity 

in a vortex tube; in an incompressible flow, vorticity origi-

nates at the solid surfaces of the body. Since the stream-

wise vorticity in the c-pillar vortex is increasing even after 

the body ends at x/L = 0, this vorticity must come from 

another plane. A plausible hypothesis is that the vorticity 

is fed in from the recirculation region A. While this struc-

ture is initially spanwise (Fig. 7), vortical fluid feeding 

along the core is tilted into the streamwise direction giving 

it the same sign as the corresponding c-pillar vortex; this 

structure is consistent with the vortex system described by 

Hucho (1993). While Hucho describes vortex A as having 

low circulation, he presents no data to support this. How-

ever, our data show that the circulation in A has 45 % as 

much circulation as the slant recirculation region, and B 

has 30 %, using the Ŵ2 criterion for calculating the bounds 

of these regions. These data and the increase in the circula-

tion of the c-pillar vortex show that this structure contains 

significant circulation. While A and B may be sections of 

the standard time-averaged toric structure, the increased 

circulation of A compared to B suggests that not all the cir-

culation is bound in this toroid, and some may be being fed 

into the c-pillar vortex.

From x/L = 0.1 to x/L = 0.3, the circulation remains 

constant. At x/L = 0.3, however, there is a sudden rise in 

the circulation. This increase occurs due to the merging of 

three vortex systems: the c-pillar vortex, the corner vortex, 

Fig. 9  The flow topology of the standard width (AM10) Ahmed 

model. Skin friction lines on the back surface are calculated from PIV 

data near the surface. The three-dimensional structure is an isosurface 

of Ŵ2 at 2/π

Corner

C

A

B

Horseshoe

Slant Recirculation

Fig. 10  Vortex structure schematic in the wake of the standard width 

Ahmed body, with lines indicating location of vortex cores. The 

structure is dashed for y/W < 0 and solid for y/W > 0. Spanwise 

rotation indicated by black arrows, streamwise rotation indicated by 

red or blue arrows for positive or negative rotation, respectively
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Fig. 11  Time-averaged circulation (non-dimensionalised) in the 

c-pillar vortex as it varies with downstream location and aspect ratio. 

Darker lines represent wider bodies. The vertical dotted lines denote 

the locations used for Fig. 12



and the horseshoe vortex. For the AM10 model, this merger 

takes place at x/L = 0.3, causing a significant increase in 

circulation. From x/L = 0.375 onwards, the circulation 

remains approximately constant. The streamwise circula-

tion in each of the component vortices is given in Table 2.

For all the geometries tested, there is an increase in 

the circulation in the c-pillar vortex from the start of the 

slant to x/L ≈ 0.1. From this point onwards, there are two 

separate regimes. The circulation of the narrower five bod-

ies increases between x/L = 0.1 and x/L = 0.4. This sec-

ondary increase in circulation is due to the merging of the 

c-pillar vortex with the corner vortex. This increase occurs 

at different points for the different width bodies, but by 

x/L = 0.4, the circulation has again reached a constant 

level, and the increase is proportionally constant, as shown 

in Fig. 12.

The wider three models have significantly less circula-

tion across the measurement domain. The reason for this 

is twofold: firstly, the additional circulation from vortex A 

is considerably reduced, and secondly, the corner vortex 

does not merge with the c-pillar vortex as far downstream 

as we measured, though it is proposed that eventually these 

two vortices will merge. Furthermore, while the narrower 

five bodies show an increase in circulation with width, this 

trend is reversed for the widest three (Fig. 12).

The large difference in circulation in the c-pillar vortices 

between the bodies with  < 1.8 and those with  > 1.9 

stems from the separation over the back slant (Fig. 13). For 

the narrowest five cases, the stronger induced downwash 

between the two c-pillar vortices promotes the reattach-

ment of the flow over the slant. In the regimes where the 

flow reattaches over the slant, the vorticity built up in this 

recirculation zone must be fed downstream by some mech-

anism; since the flow is attached, the initially spanwise vor-

ticity becomes entrained through the spanwise circulation 

bubble and is tilted into the c-pillar vortices.

When the flow is separated, this vorticity can be shed 

downstream directly as spanwise vorticity. Figure 14 

shows the percentage of time the flow remains attached 

for each aspect ratio. This is calculated by comparing the 

pitch angle of the velocity vector at each snapshot at the 

end of the slant. If the pitch angle is aligned with the slant, 

then the flow is defined as attached. It is clear that the nar-

rower bodies have much more attached flow over the rear 

slant. For all cases, the flow was more separated closer to 

the symmetry plane, further from the c-pillar vortices. Fig-

ure 15 supports this by finding the reattachment length as a 

function of aspect ratio and spanwise position. The wider 

the body, the further down the slant the flow reattaches, if it 

reattaches at all.

This behaviour is similar to that seen for a standard 

width Ahmed geometry as it passes the critical slant angle. 

At angles lower than the critical, the partially attached flow 

serves to strengthen the c-pillar vortices, causing a lower 

core pressure and hence higher drag. Conversely, past the 

critical angle, the flow separates from the backlight and has 

significantly lower drag.

While the flow in the high-drag regime for the standard 

body (α < 30°) is recognised as three-dimensional, for  

> 1.9, the flow is in a sense much more two-dimensional. 

Figure 16 shows the vertical velocity as it varies with span-

wise position. It is clear that spanwise position has little 

effect on the flow velocity for  > 1.9, while in the nar-

rower cases, the variation across the span is significant.

The turbulence levels in the wake also increase with  

(Fig. 17), indicating a significant change in the wake topol-

ogy. There is a clear correlation between Figs. 17 and 14 

showing that the separation that occurs for the wider 

bodies causes the increase in turbulence intensity in the 

wake. This is consistent with our hypothesis that there is 

increased spanwise vorticity shedding into the wake due to 

the separation.

Figure 18 shows the wake structure of three geometries: 

AM08, which has attached flow and no groundplane horse-

shoe vortex; AM10, which has attached flow over the slant 

Table 2  The circulation in each of the component vortices of Fig. 7

Italics represent vortex merging

Plane CPV Corner D B

x/L = 0 3.567 0.520

x/L = 0.1 4.673 0.363 −0.744

x/L = 0.2 4.917 0.213 0.382

x/L = 0.3 4.818 0.999

x/L = 0.4 6.870
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Fig. 12  Variation of the time-averaged circulation (non-dimensional-

ised) in the c-pillar vortex at two downstream locations, x/L = 0.1 in 

grey and x/L = 0.4 in black. Positive circulation (squares) and nega-

tive (circles)



and the groundplane horseshoe vortex; and AM12, which 

has separated flow and the groundplane vortex. The skin 

friction lines on the back surface of AM08 and AM10 

show a negative bifurcation line near the back slant. This is 

because when the slant boundary layer separates at the end 

of the body, there exists both the separation zone A (in red) 

and a much smaller secondary structure above (not shown). 

In the wider case (AM12), this negative bifurcation line 

disappears since there is no secondary structure because the 

flow has already separated across the slant.

4  Conclusions

High-resolution PIV data taken in the wakes of different 

width Ahmed bodies show the effect of aspect ratio on their 

Fig. 13  Time-averaged 

spanwise vorticity and veloc-

ity streamlines in xz planes at 

y/W = 0. Positive vorticity 

(red) and negative vorticity 

(blue). Vorticity is non-dimen-

sionalised, and levels are 

between ±5



 

time-averaged wake structures. The models were investi-

gated in the FLAIR water channel at Monash University.

The downstream evolution of the c-pillar vortices was 

quantified for each case and found to be consistent with 

them comprising of four elements. (1) The side shear lay-

ers roll up over the slant side edges, feeding the c-pillar 

vortices that advect downstream, forming the main trailing 

vortex structures. (2) The spanwise recirculation region (A 

in Fig. 1) feeds spanwise vortical fluid along the core out-

wards from the centreplane, combining it with the c-pillar 

flow and in doing so tilting the vorticity into the stream-

wise direction. In addition, as these trailing vortices move 

downstream, they merge with (3) the corner vortices gener-

ated from the underbody and (4) with a horseshoe vortex 

caused by the expansion of the underbody flow away from 

the groundplane. This horseshoe vortex was strengthened 

with increasing .

The wake was shown to exist in one of two regimes. In 

the first regime (   < 1.9), the flow over the top rear edge 

predominantly reattaches before reaching the rear edge of 

the slant. In this case, the spanwise vorticity fed into the 

recirculation region advects into (and combines with) the 

trailing vortex structures, as described above. In the second 

regime (  > 1.9), the flow separates over the slant, but on 

average fails to reattach, and thus, this spanwise vorticity is 

shed downstream directly. This causes the circulation in the 

trailing vortices to be much lower than in the first regime.

The increase in aspect ratio past the critical  has a 

similar effect to increasing the slant angle past the critical 

30
◦ for the standard width model. When varying the slant 

angle, previous research (Ahmed et al. 1984) has seen 

a significant drop in the drag coefficient once the flow is 

separated. It is a plausible hypothesis that the same effect 
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Fig. 14  Ratio of instantaneous frames with the flow attached at the 

end of the slant to those with the flow separated. Symmetry plane 

y/W = 0 (filled square), y/W = 1/6 (filled circle), and y/W = 1/3 

(open square)
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Fig. 15  Reattachment length of time-averaged flow along the slant. 

Symmetry plane y/W = 0 (filled square), y/W = 1/6 (filled circle), 

and y/W = 1/3 (open square)
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Fig. 16  Time average of vertical velocity at a point 

x/L = 0, z/H = 1. Symmetry plane y/W = 0 (filled square), 

y/W = 1/6 (filled circle), and y/W = 1/3 (open square)
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Fig. 17  Vertical turbulence intensity at a point x/L = 0, z/H = 1. 

Symmetry plane y/W = 0 (filled square), y/W = 1/6 (filled circle), 

and y/W = 1/3 (open square)



would be seen when varying the aspect ratio, with higher 

 geometries experiencing lower drag coefficients.
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