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Dynamic loadings produce high stress waves leading to the fragmentation of brittle materials such as ceramics, concrete, glass, and rocks, or ductile materials such as steels and alloys. The main mechanism used herein to explain the change of the number of fragments with strain and stress rates is an obscuration (or shielding) phenomenon associated with cracking or cavitation.

A probabilistic framework, which is based upon a Poisson point process, is introduced. Nonlocal (in space and time) expressions are obtained to account for multiple crack initiations or void nucleations, and their subsequent growth. This approach allows characteristic parameters (i.e. size, stress, stress rate, and time) involved in the fragmentation processes to be introduced. Examples are discussed to illustrate the use of these characteristic parameters in the analysis of dynamic fragmentation of brittle materials and spallation of tantalum.

Introduction

Dynamic loadings induce very severe degradations in brittle and ductile materials. In brittle materials, very dense crack patterns are observed when impacted by projectiles or loaded by blast (e.g. see [START_REF] Rinehart | Dynamic fracture strengths of rocks[END_REF][START_REF] Kutter | On the fracture process in blasting[END_REF][START_REF] Shockey | Fragmentation of rocks under dynamic loads[END_REF][START_REF] Hornemann | Experimental Investigation of Wave and Fracture Propagation in Glass -Slabs Loaded by Steel Cylinders at High Impact Velocities[END_REF][START_REF] Cagnoux | Déformation et ruine d'un verre pyrex soumis à un choc intense : étude expérimentale et modélisation du comportement[END_REF][START_REF] Strassburger | Fracture propagation during impact in three types of ceramics[END_REF]. Similarly, ductile spallation is the result of nucleation and growth (and possibly coalescence) of many cavities in a given region associated with the interaction of stress waves (e.g. see [START_REF] Mott | Fragmentation of shell cases[END_REF][START_REF] Meyers | Dynamic fracture (spalling) of metals[END_REF][START_REF] Grady | The spall strength of condensed matter[END_REF][START_REF] Curran | Micromechanical model for comminution and geranular ow of brittle material under high strain rate[END_REF].

In many instances, the elementary damage mechanisms are studied (i.e. either a single propagating crack (e.g. see [START_REF] Freund | Crack propagation in an elastic solid subjected to general loading -constant rate of extension[END_REF][START_REF] Ravi-Chandar | Dynamic crack-tip stresses under stress wave loading. a comparison of theory and experiment[END_REF][START_REF] Strassburger | Experimental Investigations of Wave and Fracture Phenomena in Impacted Ceramics and Glasses[END_REF], or a single growing cavity (e.g. see [START_REF] Carroll | Static and dynamic pore collapse relations for ductile porous materials[END_REF][START_REF] Glennie | The dynamic growth of a void in a plastic material and an application to fracture[END_REF][START_REF] Ortiz | Eect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material[END_REF][START_REF] Molinari | Micromechanical modeling of porous materials under dynamic loading[END_REF]). Of the three phases of the fragmentation process, namely, initiation, propagation and coalescence of cracks, or nucleation, growth and coalescence of voids, the main emphasis is therefore put on the modeling of propagation and growth. The validation of the developed models is generally performed with comparisons to macroscopic data, which are very dicult to extract from dynamic experiments.

Probabilistic aspects associated with brittle or ductile fragmentations were recognized very early on [START_REF] Mott | Fragmentation of shell cases[END_REF][START_REF] Shockey | Fragmentation of rocks under dynamic loads[END_REF]Grady and 2 Kipp, 1980). The Weibull law has been used as basis to describe inception mechanisms regimes [START_REF] Denoual | A probabilistic approach for fragmentation of ceramics under impact loading[END_REF][START_REF] Czarnota | Modelling of nucleation and 29 void growth in dynamic pressure loading, application to spall test on tantalum[END_REF]. However, their experimental characterization is even more dicult since it requires statistical data and possibly some information on their development during the test. The use of high speed imaging has allowed some progress to be made in the understanding of the experiment. However, in many instances, the pictures are used in a qualitative way. For brittle materials, the development of so-called edge-on-impact experiments has brought new insights into the cracking process of brittle materials [START_REF] Strassburger | Fracture propagation during impact in three types of ceramics[END_REF][START_REF] Riou | Visualization of the damage evolution in impacted silicon carbide ceramics[END_REF]. It is even possible to measure displacement elds [START_REF] Bertin-Mourot | High speed photography of moiré fringes -application to ceramics under impact[END_REF] and then use the strain elds to validate damage models (Denoual andHild, 2000, 2002).

One important aspect related to fragmentation studies is the interaction between growing cracks and voids and the inception of new voids [START_REF] Mott | Fragmentation of shell cases[END_REF] or cracks [START_REF] Denoual | A probabilistic approach for fragmentation of ceramics under impact loading[END_REF]. Some of the potential sites where inception may take place are inhibited because too close to growing cracks or voids. This phenomenon has been analyzed within the framework of Poisson point processes for brittle [START_REF] Denoual | A probabilistic approach for fragmentation of ceramics under impact loading[END_REF][START_REF] Grady | Fragmentation of Rings and Shells: The Legacy of N[END_REF] and ductile materials [START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF]. It will be used herein in a unied way to analyze dynamic fragmentation.

The aim of the present paper is to introduce characteristic parameters describing the fragmentation of brittle and ductile materials within the framework of continuum damage mechanics [START_REF] Lemaitre | A Course on Damage Mechanics[END_REF]. In Section 2 the Poisson-Weibull formalism is introduced to account for the inception and growth of cracks and pores. Governing equations are derived to estimate the activated and growing site densities. Characteristic parameters are then introduced in Section 3 for quasi-static and dynamic loading conditions. Various uses of the characteristic parameters are shown in Section 4.

Probabilistic Framework

The physical processes of inception and growth are complex under dynamic loading conditions. Wave propagation leads to nonuniform stress elds at the scale of the studied volume element. Due to the material microstructure additional uctuations arise because of its heterogeneous nature. Inception will be described hereafter when the local stress σ(x, t) exceeds an inception threshold σ inc (x). The stress σ corresponds to the maximum principal stress σ 1 for brittle materials, and the hydrostatic stress σ h for ductile materials.

Once inception has occurred, an initiated crack or a nucleated void starts to grow. The growth process is accompanied by a relaxation zone in which the local stresses decrease (and are no longer equal to the levels that would have been reached had inception not occurred). Outside the relaxation zone the stress eld is assumed to be unaltered by the presence of the growing cavity or propagating crack. In the context of continuum damage mechanics [START_REF] Lemaitre | A Course on Damage Mechanics[END_REF], the relaxation zones dene the damaged regions in which the material no longer sustains the applied stresses.

Description of Inception

To account for such complex situations, a very simple probabilistic model is introduced. All the heterogeneities are lumped into a random inception stress when considering the macroscopic stress eld [START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF].

The number N of sites where the applied stress exceeds the inception threshold is assumed to follow a Poisson point process. The probability P of nding N = ν sites in a uniformly loaded domain Ω reads

P (N = ν, Ω) = Λ ν ν! exp(-Λ) , ( 1 
)
where Λ is the average number of sites in Ω. The intensity of the Poisson point process is dened by

λ = Λ µ n (Ω) , ( 2 
)
where µ n is the Lebesgue measure in R n (i.e. length of Ω when n = 1, surface of Ω when n = 2, and volume of Ω when n = 3). The intensity λ corresponds to the density of sites that may initiate a crack or nucleate a cavity. If the domain Ω is not uniformly loaded, the previous expression can be extended to

Λ = ∫ Ω λ(x)dx .
(3)

In the following, it will be assumed that the intensity λ of the inception process will depend on the applied stress level, namely, the higher the stress level, the higher the intensity as more sites will satisfy the inception condition (i.e. σ(x, t) ≥ σ inc (x)).

Inception Probability

A rst consequence of this type of modeling is related to the additional assumption of weakest link statistics [START_REF] Pierce | Tensile tests for cotton yarns, v. the `weakest link' theorems on the strength of long and of composite specimens[END_REF][START_REF] Freudenthal | Statistical Approach to Brittle Fracture[END_REF]. The inception probability corresponds to the rst inception event. The probability P inc of nding at least one inception site reads

P inc = P (N ≥ 1, Ω) = 1 -P (N = 0, Ω) = 1 -exp(-Λ) . ( 4 
)
This type of hypothesis is known to accurately describe the behavior of brittle materials when subjected to quasi-static loading histories [START_REF] Weibull | A Statistical Theory of the Strength of Materials[END_REF][START_REF] Weibull | A statistical distribution function of wide applicability[END_REF]. If a Weibull model is to be retrieved, it follows that

λ = λ 0 ( ⟨σ⟩ σ 0 ) m , ( 5 
)
where m is the shape parameter (or Weibull modulus), σ 0 /λ 1/m 0 the so-called scale parameter, σ the local equivalent stress, and ⟨•⟩ Macauley's brackets.

The mean stress at rst inception σ i is given by

σ i = σ 0 (λ 0 µ n (Ω)H m ) 1/m Γ ( m + 1 m ) (6)
and the corresponding standard deviation σ i

σ i = σ 0 (λ 0 V eff ) 1/m √ Γ ( m + 2 m ) -Γ 2 ( m + 1 m ) , ( 7 
)
where Γ is the Euler (gamma) function of the second kind, and H m the stress heterogeneity factor (Hild et al., 1992)

H m = 1 µ n (Ω) ∫ Ω ( σ σ m ) m dx with σ m = max Ω σ(x) . ( 8 
)
The product µ 3 (Ω)H m corresponds to the so-called eective volume [START_REF] Davies | The statistical approach to engineering design in ceramics[END_REF], and µ 2 (Ω)H m the eective surface [START_REF] Gy | Characterization of a mode of rupture of glass at 610[END_REF][START_REF] Oakley | An empirical study of the eect of stressed area on the strength of oat glass surfaces[END_REF]. experiments may be used to identify the material parameters [START_REF] Denoual | A damage model for the dynamic fragmentation of brittle solids[END_REF][START_REF] Hild | On the probabilisticdeterministic transition involved in a fragmentation process of brittle materials[END_REF][START_REF] Forquin | A probabilistic damage model of the dynamic fragmentation process in brittle materials[END_REF]. Once they are de-termined, they can be used in situations in which single fragmentation no longer occurs (e.g. dynamic fragmentation).

Modeling of Growth

When inception has occurred, the next question to address is growth.

Dealing with waves, it is logical to relate the growth of cracks or cavities to the corresponding wave speeds. For cracks in an elastic medium, the longitudinal wave speed c 0 is a natural choice since it has been shown that the crack propagation velocity is a fraction of the former [START_REF] Freund | Crack propagation in an elastic solid subjected to general loading -constant rate of extension[END_REF][START_REF] Ravi-Chandar | An experimental investigation into dynamic fracture: Iii, steady-state crack propagation and crack branching[END_REF][START_REF] Strassburger | Experimental Investigations of Wave and Fracture Phenomena in Impacted Ceramics and Glasses[END_REF]. A propagating crack is accompanied by a relaxation zone whose size is proportional to the crack size. Conversely, the so-called `plastic velocity' [START_REF] Zel'dovich | Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena[END_REF] c p can be used to describe the growth of the plastic zone surrounding a growing cavity [START_REF] Hopkins | Dynamic expansion of spherical cavities in metals[END_REF][START_REF] Hunter | Similarity solution for the rapid uniform expansion of a spherical cavity in a compressible elastic-plastic solid[END_REF][START_REF] Carroll | Static and dynamic pore collapse relations for ductile porous materials[END_REF]. It has been shown that the stress level no longer increases in the plastic zone [START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF]. Further, the issue of micro-inertia, which has not been recognized for a long time, is the subject of continued modeling (see e.g. [START_REF] Ortiz | Eect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material[END_REF][START_REF] Tong | Inertial eects on void growth in porous viscoplastic materials[END_REF][START_REF] Wang | A yield criterion for porous ductile media at high strain-rate[END_REF][START_REF] Molinari | Micromechanical modeling of porous materials under dynamic loading[END_REF][START_REF] Wu | The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading[END_REF][START_REF] Roy | Vers une modélisation approfondie de l'endommagement dynamique ductile. Investigation expérimentale d'une nuance de tantale et développements théoriques[END_REF].

It does not only slow down the growth of individual pores, but it also connes each growing pore within an evolving neighborhood bounded by elastic relaxation waves. Hence, dynamic pore interactions are strongly linked to pore spacing, themselves driven by the nucleation process. The latter thus appears as a crucial mechanism. This is even more important when studying pure materials (e.g. tantalum [START_REF] Roy | Vers une modélisation approfondie de l'endommagement dynamique ductile. Investigation expérimentale d'une nuance de tantale et développements théoriques[END_REF]) over a large range of shock levels and durations, which show extreme size distributions in recovered samples, thereby indicating that nucleation is a continuous process taking place up to coalescence.

In both cases (i.e. brittle and ductile fragmentation), it will be assumed that the growth process is accompanied by a stress relaxation zone in which no new inception event will occur. This observation shows that as soon as the rst inception event has occurred, new inceptions are only possible outside the so-called obscuration zones. It is worth noting that unloading waves may interact to form additional cracks [START_REF] Chambart | How the obscuration-zone hypothesis aects fragmentation: Illustration with the cohesive-element method[END_REF] and possibly fragments as observed in spallation. This phenomenon will not be accounted for at the microscopic level. Similarly, crack branching or coalescence phenomena are not described hereafter.

In the following, the typical size ℓ obs of the obscuration zone Ω obs is assumed to depend upon the dierence between the current time t and the time to inception t inc ≤ t

ℓ obs = ℓ obs (t -t inc ) (9) 
so that the Lebesgue measure of Ω obs reads

µ n (Ω obs (t -t inc )) = S[ℓ obs (t -t inc )] n , ( 10 
)
where S is a shape parameter (e.g. S = 2 for a 1D problem (i.e. n = 1), S = π for a 2D problem for which the obscuration zone is a disk, S = 4π/3 for a spherical obscuration zone).

The change of Ω obs (t -t inc ) with time denes a spatiotemporal domain in which no new inceptions can occur for any event taking place after t inc .

Conversely, the horizon for a given location (x, t) in space and time of an inception site [START_REF] Cahn | The time-cone method for nucleation and growth kinetics on a nite domain[END_REF][START_REF] Denoual | A probabilistic approach for fragmentation of ceramics under impact loading[END_REF] denes the spatiotemporal domain in which no inception should have occurred. Any point that would have led to an inception and that belongs to the horizon will obscure the given site. Consequently, the inception process becomes nonlocal in a spatiotemporal setting in which obscuration zones develop as more and more inceptions occur, which is less and less likely as higher fractions of the considered domain are gradually obscured.

The following general expression of µ n (Ω obs ) is chosen when ramp loadings are considered [START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF])

µ n (Ω obs (t -t inc )) = S [ v p α + 1 ( σ σ p ) α ⟨t -t inc ⟩ α+1 ] n . ( 11 
)
This type of expression can be used to model the fragmentation of brittle materials by setting α to 0, v p to the crack propagation velocity (here assumed to be proportional to the longitudinal wave speed c 0 ). For ductile materials, it was shown by micromechanical arguments [START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF] that the stress-sensitivity exponent α = 1/2 is a good approximation of the growth of the plastic zone, σ p the cavitation stress and v p the plastic velocity [START_REF] Forrestal | Dynamic spherical cavity-expansion in a compressible elastic-plastic solid[END_REF].

Governing Equations

Up to now, inception and growth phenomena have been studied for isolated sites (i.e. no interactions have been accounted for between propagating sites and new activated sites). The collective behavior of all propagating sites and the inhibition of new sites is addressed. The obscuration zones around each propagating site introduced in the previous section dene regions in which no new inception is possible. Any new inception site should therefore not belong to any obscuration zone. The increment of activated site density λ act is therefore related to the density of potential inception sites λ by

dλ act dt = (1 -P obs ) dλ dt , ( 12 
)
where P obs is the obscuration probability, whose expression is obtained from the condition of nding no inception site in the horizon of the considered site, and the underlying Poisson point process [START_REF] Denoual | A probabilistic approach for fragmentation of ceramics under impact loading[END_REF][START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF])

P obs = 1 -exp [ - ∫ t 0 µ n (Ω obs (t -τ )) dλ dτ (τ ) dτ ] . ( 13 
)
Equation ( 13) shows that the obscuration probability depends on the convolution product of the Lebesgue measure of obscuration domains with the intensity increment of the Poisson point process.

Of all the activated sites, only a fraction is still growing (i.e. its centers are not obscured). The corresponding density λ gro is related to λ act by

λ gro = (1 -P obs )λ act (14)
Equations (12-14) are the governing equations for the dynamic fragmentation model. It is worth noting that in the present case, the spatial variations of the intensity are not considered for the sake of simplicity. The interested reader will nd the generalization to this case in [START_REF] Forquin | A probabilistic damage model of the dynamic fragmentation process in brittle materials[END_REF].

Last, in the framework of mathematical morphology, this model constitutes an instance of a Boolean islands model [START_REF] Jeulin | Synthesis of rough surfaces by random morphological functions[END_REF][START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF]. In the context of isothermal diusive phase transformations, the previous governing equations are central to the so-called Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetic theory of nucleation and growth [START_REF] Kolmogorov | On the statistical theory of metal crystallization[END_REF][START_REF] Johnson | Reaction kinetics in processes of nucleation and growth[END_REF][START_REF] Avrami | Kinetics of phase change. iii. granulation, phase change, and microstructure[END_REF].

Characteristic Parameters

In the sequel, a stress ramp with constant rate σ is applied. In that case, closed-form solutions can be derived for brittle and ductile damage [START_REF] Denoual | A probabilistic approach for fragmentation of ceramics under impact loading[END_REF][START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF]. The solutions are written in terms of dimensionless stress, time and density when using characteristic parameters.

Quasi-Static Loading

Quasi-static loading conditions for which the weakest link hypothesis applies correspond to cases dealing with brittle materials [START_REF] Weibull | A Statistical Theory of the Strength of Materials[END_REF][START_REF] Freudenthal | Statistical Approach to Brittle Fracture[END_REF]. Necking may also be a phenomenon for which the weakest link applies under quasi-static loading conditions. Conversely, multiple necks can be observed in dynamic loading histories [START_REF] Zhang | On the dynamics of necking and fragmentation i.real-time and post-mortem observations in al 6061-o[END_REF][START_REF] Besnard | Analysis of necking in high speed experiments by stereocorrelation[END_REF]. In these cases, the inception probability coincides with the failure probability. The mean inception stress and the corresponding standard deviation are then equal to the mean failure stress σ f and its standard deviation σ f since brittle fracture is controlled by crack initiation.

It is worth noting that σ f and σ f are proportional to σ 0 (λ

0 µ n (Ω)H m ) -1/m
(see Equations ( 6) and ( 7)). For this stress level, the mean number N of initiation sites in Ω is equal to unity. This result is important since it allows for the characterization of the single inception event by the corresponding stress level that depends on the considered domain Ω and the stress heterogeneity (i.e. H m ). Consequently, volume and stress heterogeneity eects are accounted for in the present setting [START_REF] Weibull | A survey of `statistical eects' in the eld of material failure[END_REF]Hild and Marquis, 1992).

This stress will be referred to as characteristic quasi-static stress.

Another way of accounting for volume and stress heterogeneity eects is through the Lebesgue measure of the eective domain (i.e. µ n (Ω)H m ). The failure probability P f , which coincides with the inception probability, then becomes

P f ≡ P inc = 1 -exp [ -λ 0 µ n (Ω)H m ( ⟨σ m ⟩ σ 0 ) m ] , ( 15 
)
where σ m is the failure stress.

Dynamic Loading

For dynamic loading conditions, let us use the same condition as before to dene characteristic parameters, namely,

µ n (Ω obs (t c ))λ(t c ) = 1 , ( 16 
)
which requires a single inception event to occur in an obscuration domain Ω obs for a time increment t -t inc equal to t c . From Equations ( 5) and ( 11), the following characteristic dynamic parameters are obtained For any value of the Weibull modulus, it is concluded that the characteristic dynamic time decreases as the stress rate increases (with power-law dependence). Conversely, the characteristic dynamic stress and density increase with the stress rate, thereby leading to higher stress levels and activated site densities. This qualitative trends are in agreement with experimental observations concerning brittle materials [START_REF] Brara | Experimental and numerical study of concrete at high strain rates in tension[END_REF][START_REF] Forquin | A probabilistic damage model of the dynamic fragmentation process in brittle materials[END_REF] and ductile materials [START_REF] Romanchenko | Dependence of the critical stresses on the loading time parameters during spall in copper, aluminum and steel[END_REF][START_REF] Meyers | Dynamic fracture (spalling) of metals[END_REF][START_REF] Kanel | Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature[END_REF][START_REF] Thomason | Ductile spallation fracture and the mechanics of void growth and coalescence under shock-loading conditions[END_REF][START_REF] Czarnota | Modelling of nucleation and 29 void growth in dynamic pressure loading, application to spall test on tantalum[END_REF].

t c = ( σ m 0 λ 0 ) 1 m+n(α+1) ( (α+1)σ α p S 1/n vp ) n m+n(α+1) ( σ) -(m+nα) m+n(α+1) σ c = ( σ m 0 λ 0 ) 1 m+n(α+1) ( (α+1)σ α p S 1/n vp ) n m+n(α+1) ( σ) n m+n(α+1) λ c = ( σ m 0 λ 0 ) -n(α+1) m+n(α+1) ( (α+1)σ α p S 1/n vp ) mn m+n(α+1) ( σ)
The obscuration probability can be expressed in terms of the dimensionless time t/t c or equivalently the dimensionless stress σ/σ c

P obs = 1 -exp [ -B(m, n(α + 1)) ( t t c ) m+n(α+1) ] , ( 18 
)
with B(a, b) = Γ(a + 1)Γ(b + 1)/Γ(a + b + 1), and the dimensionless activated site density

λ act λ c = mB(m, n(α + 1)) -m m+n(α+1) m + n(α + 1) + 1 × γ [ m m + n(α + 1) + 1 ; B(m, n(α + 1)) ( t t c ) m+n(α+1) ] , (19) 
where γ(a; x) = ∫ x 0 ξ a-1 exp(-ξ) dξ is the incomplete gamma function such that γ(a; x → +∞) = Γ(a).

The obscuration probability P obs can be used to dene a damage variable in the framework of continuum damage mechanics [START_REF] Lemaitre | A Course on Damage Mechanics[END_REF]. Under dynamic loading conditions, there is a gradual growth due to the combination of multiple inceptions and simultaneous growth of part of the activated sites.

By averaging over a representative zone (e.g. one nite element), P obs is assumed to be equal to the damage variable D, which measures the volume fraction of damaged material (i.e. the union of all obscuration zones in the considered volume). The growth law of the damage variable is given by

D ≡ P obs = 1 -exp [ -B(m, n(α + 1)) ( σ σ c ) m+n(α+1) ] , ( 20 
)
where σ corresponds to the microscopic stress (i.e. the stress in the undamaged part of the volume element). Consequently, the macroscopic stress Σ is related to the microscopic stress by [START_REF] Denoual | A probabilistic approach for fragmentation of ceramics under impact loading[END_REF][START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF])

Σ = σ(1 -D) (21)
so that the ultimate tensile strength (UTS) Σ U T S reads

Σ U T S σ c = [(m + n(α + 1))B(m, n(α + 1))e] -1 m+n(α+1) , ( 22 
)
the time to reach the UTS, which is usually referred to as the critical time, is given by

t U T S t c = [(m + n(α + 1))B(m, n(α + 1))] -1 m+n(α+1) (23)
and the corresponding damage level

D U T S = 1 -exp ( - 1 m + n(α + 1) ) . ( 24 
)
It is worth noting that the damage model derived in this section incorporates the fragmentation analysis, namely, the damage variable D coincides with the obscuration probability that can be used to compute the density of activated sites (by integrating Equation ( 12)) and the density of growing sites (by using Equation ( 14)).

All these results show that once the sought quantities have been made dimensionless (i.e. using their characteristic counterparts), the only parameters that inuence the results are the Weibull modulus m characterizing the scatter of inception events, the space dimension n, and the power α, which is equal to 0 for brittle materials and greater than 0 for ductile materials [START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF].

Applications

Various examples will illustrate some of the possible uses of the characteristic parameters introduced above. The rst two analyses are based on Monte Carlo simulations in 1D and 3D cases representative of the behavior of brittle materials. Issues related to the choice of the mesh size when using such fragmentation models is then addressed. Last, spallation experiments on tantalum are analyzed.

Ring Expansion

Since the pioneering work of [START_REF] Mott | Fragmentation of shell cases[END_REF], the ring expansion problem has been one of the basic analyses to discuss fragmentation issues, mostly for ductile materials [START_REF] Rajendran | Inertia eects on the ductile failure of thin rings[END_REF][START_REF] Johnson | Ductile fracture of rapidly expanding rings[END_REF][START_REF] Grady | Fragmentation of metal rings by electromagnetic loading[END_REF][START_REF] Grady | Geometric statistics and dynamic fragmentation[END_REF][START_REF] Gourdin | Analysis and assessment of electromagnetic ring expansion as a high-strain rate test[END_REF][START_REF] Altynova | Increased ductility in high velocity electromagnetic ring expansion[END_REF][START_REF] Grady | Fragmentation of Rings and Shells: The Legacy of N[END_REF], but also for brittle materials [START_REF] Zhou | A cohesive model based fragmentation analysis: Eects of strain rates and initial defects distribution[END_REF][START_REF] Grady | Fragmentation of Rings and Shells: The Legacy of N[END_REF][START_REF] Grady | Length scales and size distributions in dynamic fragmentation[END_REF]. The fact that it is related to one dimensional analyses makes many calculations easier.

In the following, Monte Carlo simulations are performed with a ring of circumference λ c L ≫ 1 discretized with N e elements of equal length

λ c δ = λ c L/N e ≪ 1.
These simulations closely follow the simplifying hypothesis consisting of neglecting fragmentations induced by interacting unloading waves in obscuration zones. Finite element simulations are a (much more complex) alternative in which the relevance of that hypothesis can be assessed [START_REF] Chambart | How the obscuration-zone hypothesis aects fragmentation: Illustration with the cohesive-element method[END_REF]. With the chosen parameters (λ c L = 100, λ c δ = 10 -3 ), it was checked that the distribution of breaks for a Poisson point process follows very closely the asymptotic exponential form valid for an innite line [START_REF] Lineau | Random fracture of a brittle solid[END_REF][START_REF] Grady | Particle size statistics in dynamic fragmentation[END_REF]. Figure 1 shows the change of the activated site density as a function of time when normalized by their respective parameters when m = 10, and α = 0. The Monte Carlo simulations are in good agreement with the results of Equation ( 19).

The probability density function f of fragment length ℓ at the end of the fragmentation process is approximated by Lineau's law

f (ℓ) ≈ λ l exp(-λ l ℓ) ( 25 
)
or its dimensionless equivalent shown in Figure 2 1

λ c f ( l) ≈ λl exp ( -λl l) (26) 
with l = λ c ℓ, and λl = λ l /λ c (λ l is the parameter of Lineau's law). The best t of the numerical results obtained by leaving λ l free is compared to the case where λ l = λ act (+∞) in Figure 2. The latter condition corresponds to a good approximation of the numerical results.

Single and Multiple Fragmentations

The present example is devoted to the analysis of the transition between single and multiple fragmentation regimes in uniaxial tension (i.e. H m = 1) of a brittle material (i.e. α = 0). Depending on the stress rate, two dierent solutions will be found. When the stress rate is low, it is expected that single fragmentation occurs, which is controlled by the rst inception. Conversely, for very high stress rates, the rst propagating crack has not necessarily traversed the whole domain before other cracks are initiated. In that case, multiple fragmentations are predicted. Therefore, there exists a transition between the two fragmentation regimes when [START_REF] Denoual | A damage model for the dynamic fragmentation of brittle solids[END_REF])

σ f (V ) = Σ U T S ( σ) (27) 
since σ f depends upon the volume of the considered domain (i.e. n = 3), and Σ U T S depends on the stress rate σ via σ c . This condition can be rewritten as , quasi-static solution (6) σ > σt multiple fragmentation, dynamic solution (22) (28)

     σ ≤ σt single fragmentation
with the transition stress rate σt expressed as

σt = σc [ Γ ( m + 1 m )] m+3 3 [(m + 3)B(m, 3)e] 1 3 (29) 
where the characteristic stress rate is given by

σc = σ 0 (λ 0 V ) 1/m ( S(vp) 3 V ) 1/3 inception growth (30)
The characteristic stress rate is proportional to the characteristic quasi-static stress and inversely proportional to the characteristic growth time (i.e. the time for volume V to be fully relaxed). The volume V of the considered domain appears in both parameters. The higher V , the smaller the characteristic quasi-static stress, the sooner the transition to multiple fragmentation. Therefore, the regime transition does not only depend upon material (Weibull) parameters but also involves the volume V of the considered domain and the applied stress rate σ. The response of a large volume can be considered as `dynamic' for low stress rates even if the same material follows the weakest link hypothesis for the same loading applied to a smaller volume.

There is therefore no intrinsic relationship between material parameters and characteristic scales to describe the fragmentation of brittle materials.

Figure 3 shows the change of the mean UTS normalized by the characteristic dynamic stress σ c with the dimensionless stress rate σ/ σc . The pa- rameters used in the Monte Carlo simulations correspond to those of a SiC ceramic (i.e. m = 9.6, 1/λ 0 = 1.25 mm 3 , σ 0 = 380 MPa, and v p = 4300 m/s, see [START_REF] Denoual | A damage model for the dynamic fragmentation of brittle solids[END_REF]). For the sake of simplicity, the considered domain has a volume V equal to 1/λ 0 . The two lines represent the analytical quasi-static and dynamic solutions (Equations ( 6) and ( 22)) while the circles correspond to the mean of 500 Monte Carlo simulations per stress rate. A very good agreement is observed between the simulations and the closed-formed solutions.

In the present case, the transition takes place over one decade of normalized stress rate. When normalized by the characteristic dynamic stress σ c , the mean UTS is constant in the multiple fragmentation regime as expected from Equation ( 22). Conversely, the mean UTS is underpredicted in the single fragmentation regime when normalized by σ c . A damage model based upon the derivations of Section 3.2 does not apply in that regime.

Last, let us note that such transitions have also been observed when studying the ultimate tensile strength of ceramic matrix composites [START_REF] Curtin | Strength versus gauge length in ceramic-matrix composites[END_REF][START_REF] Hild | Tensile and exural ultimate strength of ber-reinforced ceramic-matrix composites[END_REF]. In that case, the obscuration mechanism is related to ber pullout in the vicinity of ber breaks, itself driven by the interfacial shear strength. The model used to describe the formation of ber breaks is also based upon a Poisson point process whose intensity is written in terms of Weibull parameters [START_REF] Gulino | Weibull strength statistics for graphite bres measured from the break progression in a model graphite/glass/epoxy microcomposite[END_REF]. The characteristic strength and length are related to the Weibull parameters of the ber, the ber radius and the interfacial shear strength [START_REF] Henstenburg | Interfacial shear strength studies using the single-lament-composite test. part ii: A probability model and monte carlo simulations[END_REF][START_REF] Curtin | Exact theory of ber fragmentation in single-lament composite[END_REF].

Modeling Issues

The previous results have some consequences in terms of numerical strategies. Being bounded by 0 and 1, the obscuration probability can be used as a damage variable. Since the damage variable is associated with obscuration domains, it is associated with a nonlocal model because of the convolution product (see Equation ( 13)). However, contrary to standard propositions [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF][START_REF] Allix | Delayed-damage modeling for fracture prediction of laminated composites under dynamic loading[END_REF], there is no constant characteristic length or characteristic time, but a growing domain associated with the obscuration length ℓ obs (t-t inc ) and the propagation

velocity v p .
Moreover, in the multiple fragmentation regime, the mean measure of the obscuration zone is given by

µ n (Ω obs (t)) = 1 λ(t) ∫ t 0 µ n (Ω obs (t -τ )) dλ dτ (τ ) dτ (31) 
The latter depends not only on the propagation velocity but also on the intensity of the Poisson point process describing multiple inceptions. Noting that µ n (Ω obs (t)) ≤ µ n (Ω obs (t)), the latter can be used to check the meshrelevance of nite element calculations. During each time step, the fragmentation variables (i.e. damage or obscuration probability, activated and growing site densities) are computed using the incremental form of the governing equations (12)(13)(14). When the measure of each element ℓ n F E is less than µ n (Ω obs (t)), neighboring elements share part of their horizons (i.e. a nonlocal implementation should be considered [START_REF] Brajer | On the dynamic fragmentation of glass: A meso-damage model[END_REF]).

The nonlocal framework can be used to describe mesocrack coalescence induced by growing microcracks, in particular when studying the fragmentation of glass. Consequently, the nonlocal part is related to the growth a mesocrack that is stopped as soon as the propagation conditions are no longer satised [START_REF] Brajer | On the dynamic fragmentation of glass: A meso-damage model[END_REF]. Prior to mesocrack or porosity coalescence, the obscuration zone is the result of multiple inceptions and growth (see Equation ( 31)). After mesoscopic coalescence occurs, the interactions are captured by the numerical scheme and it is mainly controlled by the growth rates of mesocrack or mesovoids.

To avoid such a situation, let us calculate the time at which the damage variable has reached a level of, say, 0.9 (or the obscuration probability is equal to 90%) for a constant stress rate. The corresponding normalized time t 90% /t c is less than 2 when m ≥ 1, see Figure 4. Consequently, when α+1) , see Equation ( 11)) any point within the horizon associated with the center of a given nite element will always belong to the considered element. A local model [START_REF] Denoual | A damage model for the dynamic fragmentation of brittle solids[END_REF] can be used in that case.

ℓ n F E ≥ µ n (Ω obs (2t c )) or λ c ℓ n F E ≥ 2 n(α+1) (since µ n (Ω obs (t)) ∝ t n(
Last, the mean number of potential inception sites ℓ n F E λ(t) may also be used to know whether deterministic or probabilistic approaches apply. For low stress rates, few fragments are generated (i.e. ℓ n F E λ(t) is of the order of 1). In that case, a discrete and probabilistic description should be selected [START_REF] Denoual | Dynamic fragmentation of brittle solids: A multi-scale model[END_REF]. It consists of modifying the intensity λ of the Poisson point process and assigning the rst inception stress by randomly selecting the inception probability. The rst inception stress is evaluated according to Equation ( 15) with µ n (Ω) = ℓ n F E and H m = 1 (i.e. the stress state in each nite element is considered uniform). Conversely, when high stress rates are generated, i.e. ℓ n F E λ(t) becomes signicantly greater than 1, many small fragments are created, and a deterministic model can be considered.

All these issues are direct consequences of the results shown in Figure 3.

The latter can be seen as a master plot that only depends upon the Weibull modulus m, the space dimension n, and the stress sensitivity exponent α. Different experimental validations have been proposed for various brittle materials [START_REF] Forquin | A probabilistic damage model of the dynamic fragmentation process in brittle materials[END_REF]. In particular, spallation tests on concrete have allowed the prediction shown in Figure 3 to be validated by using the Weibull parameters of the material and its crack propagation velocity [START_REF] Forquin | Dynamic fragmentation process in concrete under impact and spalling tests[END_REF].

Tantalum Spallation

Spallation of tantalum is briey analyzed. A typical damaged sample is shown in Figure 5. The interested reader will nd additional details in [START_REF] Roy | Vers une modélisation approfondie de l'endommagement dynamique ductile. Investigation expérimentale d'une nuance de tantale et développements théoriques[END_REF][START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF]. Three sets of data are available (Figure 6). First, the change of the pore density λ with the shock pressure σ. Second, the critical time t U T S as a function of the stress rate σ, and third, the spall strength Σ U T S versus stress rate. By using the Poisson-Weibull framework summarized above and the expressions of the characteristic parameters, it is expected that

λ ∝ σ m , t U T S ∝ σ-(m+3α)/(m+3(α+1)) , Σ U T S ∝ σ3/(m+3(α+1)) (32) 
since n = 3. Resorting to least squares t, the Weibull modulus m is found to be equal to 8, and the stress sensitivity exponent α to 4.5. A very good agreement is obtained when compared to experimental data (Figure 6). It is however worth noting that the value of α departs from micromechanical analyses that suggest α = 1/2 [START_REF] Trumel | On probabilistic aspects in the dynamic degradation of ductile materials[END_REF]. This nal observation

shows that the experimental information, which is extremely dicult to get for such types of plate impact tests, is crucial if additional validations are to be performed. By resorting to Monte Carlo simulations, it was possible to validate simple expressions for the fragment distribution in ring expansion, and the change of the ultimate tensile strength of brittle materials with the stress rate. This last result has been used to discuss modeling issues when implementing such fragmentation models in nite element codes. In particular, the size of the elements has to be carefully chosen, and the characteristic parameters can be used to propose guidelines in terms of damage models to be chosen. In particular, the measure of the horizon and its change with time is the key quantity to choose between local and nonlocal, deterministic or probabilistic descriptions of damage models.

Last, experimental data obtained in plate impact tests on high purity tantalum have been used to identify two exponents that appear in the characteristic dynamic parameters when applied to the analysis of ductile spallation. It has been shown that the power-law dependencies with respect to stress and stress rate predicted with the introduced characteristic parameters are in good agreement with experimental observations.

It is worth noting that this type of scaling also applies to quasi-static loading conditions when studying the gradual degradation of composite materials [START_REF] Henstenburg | Interfacial shear strength studies using the single-lament-composite test. part ii: A probability model and monte carlo simulations[END_REF][START_REF] Curtin | Exact theory of ber fragmentation in single-lament composite[END_REF][START_REF] Neumeister | A constitutive law for continuous ber reinforced brittle matrix composites with ber fragmentation and stress recovery[END_REF][START_REF] Hild | Tensile and exural ultimate strength of ber-reinforced ceramic-matrix composites[END_REF][START_REF] Hui | An exact closed form solution for fragmentation of weibull bers in a single lament composite with applications to ber-reinforced ceramics[END_REF], of rocks when analyzing CO 2 sequestration in deep reservoirs [START_REF] Guy | A probabilistic nonlocal model for crack initiation and propagation in heterogeneous brittle materials[END_REF], or thermal striping in stainless steels [START_REF] Malésys | On the formation of crack networks in high cycle fatigue[END_REF][START_REF] Malésys | A probabilistic model to predict the formation and propagation of crack networks in thermal fatigue[END_REF]. In all these cases, stable crack networks are formed and then grow with the applied stress, time, or number of cycles. [START_REF] Denoual | A damage model for the dynamic fragmentation of brittle solids[END_REF]. Two fragmentation regimes are observed. For low stress rates, single fragmentation occurs (Equation ( 6)) while for high stress rates multiple fragmentations are observed (Equation ( 22 [START_REF] Denoual | A damage model for the dynamic fragmentation of brittle solids[END_REF]. Two fragmentation regimes are observed. For low stress rates, single fragmentation occurs (Equation ( 6)) while for high stress rates multiple fragmentations are observed (Equation ( 22 
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  framework has been introduced to model dynamic fragmentation of brittle and ductile materials. It is based upon Poisson point processes whose intensities depend on Weibull parameters. The governing equations account for random inceptions, which may be inhibited by growing cracks or voids. By analyzing ramp loadings, two sets of characteristic parameters are obtained. The rst one is related to single fragmentation, and the second one to multiple fragmentation. In both cases, the condition used to derive the characteristic parameters are related to the discrete inception (and growth) event.
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 12 Figure 1: Dimensionless densities as functions of dimensionless time t/t c for the ring expansion simulation. The dashed line corresponds to the intensity of the Poisson point process, the solid line is the closed-form solution (19) when m = 10 and α = 0. The crosses are the results of a Monte Carlo simulation (λ c L = 100 and λ c δ = 10 -3 )
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 3 Figure 3: Mean ultimate tensile strength normalized by σ c as a function of the dimensionless stress rate σ/ σc . The open circles correspond to the results of 500 Monte Carlo simulations for each considered stress rate[START_REF] Denoual | A damage model for the dynamic fragmentation of brittle solids[END_REF]. Two fragmentation
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 4 Figure 4: Dimensionless time t 90% /t c to reach an obscuration probability equal to 90% as a function of the Weibull modulus m. Two dierent values of the stress sensitivity exponent α are considered
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The open circles are experimental data [START_REF] Roy | Vers une modélisation approfondie de l'endommagement dynamique ductile. Investigation expérimentale d'une nuance de tantale et développements théoriques[END_REF], and the solid lines are results given by Equation (32) when m = 8 and α = 4.5