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Abstract

Dynamic loadings produce high stress waves leading to the fragmentation of

brittle materials such as ceramics, concrete, glass, and rocks, or ductile ma-

terials such as steels and alloys. The main mechanism used herein to explain

the change of the number of fragments with strain and stress rates is an ob-

scuration (or shielding) phenomenon associated with cracking or cavitation.

A probabilistic framework, which is based upon a Poisson point process, is

introduced. Nonlocal (in space and time) expressions are obtained to ac-

count for multiple crack initiations or void nucleations, and their subsequent

growth. This approach allows characteristic parameters (i.e. size, stress,

stress rate, and time) involved in the fragmentation processes to be intro-

duced. Examples are discussed to illustrate the use of these characteristic

parameters in the analysis of dynamic fragmentation of brittle materials and

spallation of tantalum.
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1. Introduction

Dynamic loadings induce very severe degradations in brittle and ductile

materials. In brittle materials, very dense crack patterns are observed when

impacted by projectiles or loaded by blast (e.g. see Rinehart, 1965; Kutter

and Fairhurst, 1971; Shockey et al., 1974; Hornemann et al., 1984; Cagnoux,

1985; Strassburger et al., 1994). Similarly, ductile spallation is the result of

nucleation and growth (and possibly coalescence) of many cavities in a given

region associated with the interaction of stress waves (e.g. see Mott, 1947;

Meyers and Aimone, 1983; Grady, 1988; Curran et al., 1993).

In many instances, the elementary damage mechanisms are studied (i.e.

either a single propagating crack (e.g. see Freund, 1972; Ravi-Chandar and

Knauss, 1982; Strassburger and Senf, 1995), or a single growing cavity (e.g.

see Carroll and Holt, 1972; Glennie, 1972; Ortiz and Molinari, 1992; Moli-

nari and Mercier, 2001)). Of the three phases of the fragmentation pro-

cess, namely, initiation, propagation and coalescence of cracks, or nucleation,

growth and coalescence of voids, the main emphasis is therefore put on the

modeling of propagation and growth. The validation of the developed models

is generally performed with comparisons to macroscopic data, which are very

di�cult to extract from dynamic experiments.

Probabilistic aspects associated with brittle or ductile fragmentations

were recognized very early on (Mott, 1947; Shockey et al., 1974; Grady and
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Kipp, 1980). The Weibull law has been used as basis to describe inception

mechanisms regimes (Denoual et al., 1997; Czarnota et al., 2006). However,

their experimental characterization is even more di�cult since it requires sta-

tistical data and possibly some information on their development during the

test. The use of high speed imaging has allowed some progress to be made

in the understanding of the experiment. However, in many instances, the

pictures are used in a qualitative way. For brittle materials, the development

of so-called edge-on-impact experiments has brought new insights into the

cracking process of brittle materials (Strassburger et al., 1994; Riou et al.,

1998). It is even possible to measure displacement �elds (Bertin-Mourot

et al., 1997) and then use the strain �elds to validate damage models (De-

noual and Hild, 2000, 2002).

One important aspect related to fragmentation studies is the interaction

between growing cracks and voids and the inception of new voids (Mott,

1947) or cracks (Denoual et al., 1997). Some of the potential sites where

inception may take place are inhibited because too close to growing cracks or

voids. This phenomenon has been analyzed within the framework of Poisson

point processes for brittle (Denoual et al., 1997; Grady, 2006) and ductile

materials (Trumel et al., 2009). It will be used herein in a uni�ed way to

analyze dynamic fragmentation.

The aim of the present paper is to introduce characteristic parameters de-

scribing the fragmentation of brittle and ductile materials within the frame-

work of continuum damage mechanics (Lemaitre, 1992). In Section 2 the
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Poisson-Weibull formalism is introduced to account for the inception and

growth of cracks and pores. Governing equations are derived to estimate

the activated and growing site densities. Characteristic parameters are then

introduced in Section 3 for quasi-static and dynamic loading conditions. Var-

ious uses of the characteristic parameters are shown in Section 4.

2. Probabilistic Framework

The physical processes of inception and growth are complex under dy-

namic loading conditions. Wave propagation leads to nonuniform stress �elds

at the scale of the studied volume element. Due to the material microstruc-

ture additional �uctuations arise because of its heterogeneous nature. In-

ception will be described hereafter when the local stress σ(x, t) exceeds an

inception threshold σinc(x). The stress σ corresponds to the maximum prin-

cipal stress σ1 for brittle materials, and the hydrostatic stress σh for ductile

materials.

Once inception has occurred, an initiated crack or a nucleated void starts

to grow. The growth process is accompanied by a relaxation zone in which

the local stresses decrease (and are no longer equal to the levels that would

have been reached had inception not occurred). Outside the relaxation zone

the stress �eld is assumed to be unaltered by the presence of the growing

cavity or propagating crack. In the context of continuum damage mechan-

ics (Lemaitre, 1992), the relaxation zones de�ne the damaged regions in which

the material no longer sustains the applied stresses.
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2.1. Description of Inception

To account for such complex situations, a very simple probabilistic model

is introduced. All the heterogeneities are lumped into a random inception

stress when considering the macroscopic stress �eld (Trumel et al., 2009).

The number N of sites where the applied stress exceeds the inception thresh-

old is assumed to follow a Poisson point process. The probability P of �nding

N = ν sites in a uniformly loaded domain Ω reads

P (N = ν,Ω) =
Λν

ν!
exp(−Λ) , (1)

where Λ is the average number of sites in Ω. The intensity of the Poisson

point process is de�ned by

λ =
Λ

µn(Ω)
, (2)

where µn is the Lebesgue measure in Rn (i.e. length of Ω when n = 1, surface

of Ω when n = 2, and volume of Ω when n = 3). The intensity λ corresponds

to the density of sites that may initiate a crack or nucleate a cavity. If the

domain Ω is not uniformly loaded, the previous expression can be extended

to

Λ =

∫
Ω

λ(x)dx . (3)

In the following, it will be assumed that the intensity λ of the inception

process will depend on the applied stress level, namely, the higher the stress

level, the higher the intensity as more sites will satisfy the inception condition

(i.e. σ(x, t) ≥ σinc(x)).
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2.2. Inception Probability

A �rst consequence of this type of modeling is related to the additional

assumption of weakest link statistics (Pierce, 1926; Freudenthal, 1968). The

inception probability corresponds to the �rst inception event. The probabil-

ity Pinc of �nding at least one inception site reads

Pinc = P (N ≥ 1,Ω) = 1− P (N = 0,Ω) = 1− exp(−Λ) . (4)

This type of hypothesis is known to accurately describe the behavior of brittle

materials when subjected to quasi-static loading histories (Weibull, 1939,

1951). If a Weibull model is to be retrieved, it follows that

λ = λ0

(
⟨σ⟩
σ0

)m

, (5)

where m is the shape parameter (or Weibull modulus), σ0/λ
1/m
0 the so-called

scale parameter, σ the local equivalent stress, and ⟨·⟩ Macauley's brackets.

The mean stress at �rst inception σi is given by

σi =
σ0

(λ0µn(Ω)Hm)1/m
Γ

(
m+ 1

m

)
(6)

and the corresponding standard deviation σi

σi =
σ0

(λ0Veff)1/m

√
Γ

(
m+ 2

m

)
− Γ2

(
m+ 1

m

)
, (7)

where Γ is the Euler (gamma) function of the second kind, and Hm the stress

heterogeneity factor (Hild et al., 1992)

Hm =
1

µn(Ω)

∫
Ω

(
σ

σm

)m

dx with σm = max
Ω

σ(x) . (8)
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The product µ3(Ω)Hm corresponds to the so-called e�ective volume (Davies,

1973), and µ2(Ω)Hm the e�ective surface (Gy and Guillemet, 1992; Oakley,

1996).

The Weibull parameters used to model the intensity λ of the Poisson

point process are representative of the material microstructure, and more

precisely the distribution of inception sites. The Weibull modulus mainly

characterizes the scatter of the considered distribution since the coe�cient

of variation σi/σi only depends onm. Consequently, di�erent Weibull moduli

are an indication of di�erent populations of inception sites, in particular for

the lower stress levels, i.e. the ones likely to initiate failure under quasi-static

loading conditions.

For a given reference density λ0, di�erent stress levels σ0 are induced by

di�erent local toughnesses and defect sizes (for brittle materials) or yield

stresses (for ductile materials). Di�erent inception populations will therefore

lead to di�erent Weibull parameters. Conversely, di�erent Weibull param-

eters are indicators of di�erent distributions of inception stresses. When

dealing with dynamic fragmentation, the Weibull model itself can no longer

be used since the weakest link hypothesis does not apply. However, the fol-

lowing microstructure model (i.e. Poisson point process) still using Weibull

parameters is considered. It has to be valid for describing single and multiple

fragmentation regimes. Its advantage then lies in the fact that quasi-static

experiments may be used to identify the material parameters (Denoual and

Hild, 2000; Hild et al., 2003; Forquin and Hild, 2010). Once they are de-
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termined, they can be used in situations in which single fragmentation no

longer occurs (e.g. dynamic fragmentation).

2.3. Modeling of Growth

When inception has occurred, the next question to address is growth.

Dealing with waves, it is logical to relate the growth of cracks or cavities to

the corresponding wave speeds. For cracks in an elastic medium, the longi-

tudinal wave speed c0 is a natural choice since it has been shown that the

crack propagation velocity is a fraction of the former (Freund, 1972; Ravi-

Chandar and Knauss, 1984; Strassburger and Senf, 1995). A propagating

crack is accompanied by a relaxation zone whose size is proportional to the

crack size. Conversely, the so-called `plastic velocity' (Zel'dovich and Raizer,

2002) cp can be used to describe the growth of the plastic zone surrounding a

growing cavity (Hopkins, 1960; Hunter and Crozier, 1968; Carroll and Holt,

1972). It has been shown that the stress level no longer increases in the

plastic zone (Trumel et al., 2009). Further, the issue of micro-inertia, which

has not been recognized for a long time, is the subject of continued model-

ing (see e.g. Ortiz and Molinari, 1992; Tong and Ravichandran, 1995; Wang

and Jiang, 1997; Molinari and Mercier, 2001; Wu et al., 2003; Roy, 2003).

It does not only slow down the growth of individual pores, but it also con-

�nes each growing pore within an evolving neighborhood bounded by elastic

relaxation waves. Hence, dynamic pore interactions are strongly linked to

pore spacing, themselves driven by the nucleation process. The latter thus
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appears as a crucial mechanism. This is even more important when studying

pure materials (e.g. tantalum (Roy, 2003)) over a large range of shock levels

and durations, which show extreme size distributions in recovered samples,

thereby indicating that nucleation is a continuous process taking place up to

coalescence.

In both cases (i.e. brittle and ductile fragmentation), it will be assumed

that the growth process is accompanied by a stress relaxation zone in which

no new inception event will occur. This observation shows that as soon

as the �rst inception event has occurred, new inceptions are only possible

outside the so-called obscuration zones. It is worth noting that unloading

waves may interact to form additional cracks (Chambart et al., 2011) and

possibly fragments as observed in spallation. This phenomenon will not

be accounted for at the microscopic level. Similarly, crack branching or

coalescence phenomena are not described hereafter.

In the following, the typical size ℓobs of the obscuration zone Ωobs is as-

sumed to depend upon the di�erence between the current time t and the

time to inception tinc ≤ t

ℓobs = ℓobs(t− tinc) (9)

so that the Lebesgue measure of Ωobs reads

µn(Ωobs(t− tinc)) = S[ℓobs(t− tinc)]
n , (10)

where S is a shape parameter (e.g. S = 2 for a 1D problem (i.e. n = 1),
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S = π for a 2D problem for which the obscuration zone is a disk, S = 4π/3

for a spherical obscuration zone).

The change of Ωobs(t − tinc) with time de�nes a spatiotemporal domain

in which no new inceptions can occur for any event taking place after tinc.

Conversely, the horizon for a given location (x, t) in space and time of an

inception site (Cahn, 1996; Denoual et al., 1997) de�nes the spatiotemporal

domain in which no inception should have occurred. Any point that would

have led to an inception and that belongs to the horizon will obscure the

given site. Consequently, the inception process becomes nonlocal in a spa-

tiotemporal setting in which obscuration zones develop as more and more

inceptions occur, which is less and less likely as higher fractions of the con-

sidered domain are gradually obscured.

The following general expression of µn(Ωobs) is chosen when ramp loadings

are considered (Trumel et al., 2009)

µn(Ωobs(t− tinc)) = S

[
vp

α + 1

(
σ̇

σp

)α

⟨t− tinc⟩α+1

]n
. (11)

This type of expression can be used to model the fragmentation of brittle

materials by setting α to 0, vp to the crack propagation velocity (here assumed

to be proportional to the longitudinal wave speed c0). For ductile materials,

it was shown by micromechanical arguments (Trumel et al., 2009) that the

stress-sensitivity exponent α = 1/2 is a good approximation of the growth of

the plastic zone, σp the cavitation stress and vp the plastic velocity (Forrestal

and Luk, 1988).
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2.4. Governing Equations

Up to now, inception and growth phenomena have been studied for iso-

lated sites (i.e. no interactions have been accounted for between propagating

sites and new activated sites). The collective behavior of all propagating sites

and the inhibition of new sites is addressed. The obscuration zones around

each propagating site introduced in the previous section de�ne regions in

which no new inception is possible. Any new inception site should therefore

not belong to any obscuration zone. The increment of activated site density

λact is therefore related to the density of potential inception sites λ by

dλact

dt
= (1− Pobs)

dλ

dt
, (12)

where Pobs is the obscuration probability, whose expression is obtained from

the condition of �nding no inception site in the horizon of the considered

site, and the underlying Poisson point process (Denoual et al., 1997; Trumel

et al., 2009)

Pobs = 1− exp

[
−
∫ t

0

µn(Ωobs(t− τ))
dλ

dτ
(τ) dτ

]
. (13)

Equation (13) shows that the obscuration probability depends on the con-

volution product of the Lebesgue measure of obscuration domains with the

intensity increment of the Poisson point process.

Of all the activated sites, only a fraction is still growing (i.e. its centers

are not obscured). The corresponding density λgro is related to λact by

λgro = (1− Pobs)λact (14)
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Equations (12-14) are the governing equations for the dynamic fragmentation

model. It is worth noting that in the present case, the spatial variations of

the intensity are not considered for the sake of simplicity. The interested

reader will �nd the generalization to this case in (Forquin and Hild, 2010).

Last, in the framework of mathematical morphology, this model consti-

tutes an instance of a Boolean islands model (Jeulin and Jeulin, 1981; Serra,

1982). In the context of isothermal di�usive phase transformations, the pre-

vious governing equations are central to the so-called Kolmogorov-Johnson-

Mehl-Avrami (KJMA) kinetic theory of nucleation and growth (Kolmogorov,

1937; Johnson and Mehl, 1939; Avrami, 1941).

3. Characteristic Parameters

In the sequel, a stress ramp with constant rate σ̇ is applied. In that case,

closed-form solutions can be derived for brittle and ductile damage (Denoual

et al., 1997; Trumel et al., 2009). The solutions are written in terms of

dimensionless stress, time and density when using characteristic parameters.

3.1. Quasi-Static Loading

Quasi-static loading conditions for which the weakest link hypothesis

applies correspond to cases dealing with brittle materials (Weibull, 1939;

Freudenthal, 1968). Necking may also be a phenomenon for which the weak-

est link applies under quasi-static loading conditions. Conversely, multi-

ple necks can be observed in dynamic loading histories (Zhang and Ravi-
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Chandar, 2006; Besnard et al., 2012). In these cases, the inception probabil-

ity coincides with the failure probability. The mean inception stress and the

corresponding standard deviation are then equal to the mean failure stress

σf and its standard deviation σf since brittle fracture is controlled by crack

initiation.

It is worth noting that σf and σf are proportional to σ0(λ0µn(Ω)Hm)
−1/m

(see Equations (6) and (7)). For this stress level, the mean number N of ini-

tiation sites in Ω is equal to unity. This result is important since it allows

for the characterization of the single inception event by the corresponding

stress level that depends on the considered domain Ω and the stress hetero-

geneity (i.e. Hm). Consequently, volume and stress heterogeneity e�ects are

accounted for in the present setting (Weibull, 1952; Hild and Marquis, 1992).

This stress will be referred to as characteristic quasi-static stress.

Another way of accounting for volume and stress heterogeneity e�ects is

through the Lebesgue measure of the e�ective domain (i.e. µn(Ω)Hm). The

failure probability Pf , which coincides with the inception probability, then

becomes

Pf ≡ Pinc = 1− exp

[
−λ0µn(Ω)Hm

(
⟨σm⟩
σ0

)m]
, (15)

where σm is the failure stress.
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3.2. Dynamic Loading

For dynamic loading conditions, let us use the same condition as before

to de�ne characteristic parameters, namely,

µn(Ωobs(tc))λ(tc) = 1 , (16)

which requires a single inception event to occur in an obscuration domain

Ωobs for a time increment t− tinc equal to tc. From Equations (5) and (11),

the following characteristic dynamic parameters are obtained

tc =
(

σm
0

λ0

) 1
m+n(α+1)

(
(α+1)σα

p

S1/nvp

) n
m+n(α+1)

(σ̇)
−(m+nα)
m+n(α+1)

σc =
(

σm
0

λ0

) 1
m+n(α+1)

(
(α+1)σα

p

S1/nvp

) n
m+n(α+1)

(σ̇)
n

m+n(α+1)

λc =
(

σm
0

λ0

) −n(α+1)
m+n(α+1)

(
(α+1)σα

p

S1/nvp

) mn
m+n(α+1)

(σ̇)
mn

m+n(α+1)

︸ ︷︷ ︸
inception

︸ ︷︷ ︸
growth

︸ ︷︷ ︸
loading

(17)

which combine parameters related to inception, growth and loading history

(i.e. σ = σ̇t). The characteristic dynamic parameters have stress rate depen-

dencies that di�er. The characteristic dynamic time tc is inversely propor-

tional to stress rate for high Weibull moduli. In that case, the fragmentation

process is completely controlled by multiple inceptions. The correspond-

ing characteristic dynamic stress σc is virtually stress-rate independent as in

quasi-static loading. The characteristic dynamic density λc is proportional

to the stress rate raised to the power n and inversely proportional to the

propagation velocity vp raised to the same power, thereby indicating the

competition between stress relaxation described by vp and stress increase
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characterized by σ̇. Last, the characteristic dynamic measure of Ωobs(tc) is

inversely proportional to λc = λ(tc), see Equation (16).

For any value of the Weibull modulus, it is concluded that the character-

istic dynamic time decreases as the stress rate increases (with power-law de-

pendence). Conversely, the characteristic dynamic stress and density increase

with the stress rate, thereby leading to higher stress levels and activated site

densities. This qualitative trends are in agreement with experimental obser-

vations concerning brittle materials (Brara et al., 2001; Forquin and Hild,

2010) and ductile materials (Romanchenko and Stepanov, 1980; Meyers and

Aimone, 1983; Kanel et al., 1997; Thomason, 1999; Czarnota et al., 2006).

The obscuration probability can be expressed in terms of the dimension-

less time t/tc or equivalently the dimensionless stress σ/σc

Pobs = 1− exp

[
−B(m,n(α + 1))

(
t

tc

)m+n(α+1)
]

, (18)

with B(a, b) = Γ(a+1)Γ(b+1)/Γ(a+ b+1), and the dimensionless activated

site density

λact

λc

=
mB(m,n(α + 1))

−m
m+n(α+1)

m+ n(α + 1) + 1

× γ

[
m

m+ n(α + 1) + 1
;B(m,n(α+ 1))

(
t

tc

)m+n(α+1)
]

, (19)

where γ(a;x) =
∫ x

0
ξa−1 exp(−ξ) dξ is the incomplete gamma function such

that γ(a; x → +∞) = Γ(a).

The obscuration probability Pobs can be used to de�ne a damage variable

in the framework of continuum damage mechanics (Lemaitre, 1992). Under
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dynamic loading conditions, there is a gradual growth due to the combination

of multiple inceptions and simultaneous growth of part of the activated sites.

By averaging over a representative zone (e.g. one �nite element), Pobs is

assumed to be equal to the damage variable D, which measures the volume

fraction of damaged material (i.e. the union of all obscuration zones in the

considered volume). The growth law of the damage variable is given by

D ≡ Pobs = 1− exp

[
−B(m,n(α + 1))

(
σ

σc

)m+n(α+1)
]

, (20)

where σ corresponds to the microscopic stress (i.e. the stress in the undam-

aged part of the volume element). Consequently, the macroscopic stress Σ

is related to the microscopic stress by (Denoual et al., 1997; Trumel et al.,

2009)

Σ = σ(1−D) (21)

so that the ultimate tensile strength (UTS) ΣUTS reads

ΣUTS

σc

= [(m+ n(α + 1))B(m,n(α + 1))e]
−1

m+n(α+1) , (22)

the time to reach the UTS, which is usually referred to as the critical time,

is given by

tUTS

tc
= [(m+ n(α+ 1))B(m,n(α + 1))]

−1
m+n(α+1) (23)

and the corresponding damage level

DUTS = 1− exp

(
− 1

m+ n(α + 1)

)
. (24)
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It is worth noting that the damage model derived in this section incorporates

the fragmentation analysis, namely, the damage variableD coincides with the

obscuration probability that can be used to compute the density of activated

sites (by integrating Equation (12)) and the density of growing sites (by using

Equation (14)).

All these results show that once the sought quantities have been made

dimensionless (i.e. using their characteristic counterparts), the only param-

eters that in�uence the results are the Weibull modulus m characterizing

the scatter of inception events, the space dimension n, and the power α,

which is equal to 0 for brittle materials and greater than 0 for ductile mate-

rials (Trumel et al., 2009).

4. Applications

Various examples will illustrate some of the possible uses of the charac-

teristic parameters introduced above. The �rst two analyses are based on

Monte Carlo simulations in 1D and 3D cases representative of the behavior

of brittle materials. Issues related to the choice of the mesh size when using

such fragmentation models is then addressed. Last, spallation experiments

on tantalum are analyzed.

4.1. Ring Expansion

Since the pioneering work of Mott (1947), the ring expansion problem

has been one of the basic analyses to discuss fragmentation issues, mostly
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for ductile materials (Rajendran and Fyfe, 1982; Johnson, 1983; Grady and

Benson, 1983; Grady and Kipp, 1985; Gourdin, 1989; Altynova et al., 1996;

Grady, 2006), but also for brittle materials (Zhou et al., 2005; Grady, 2006,

2010). The fact that it is related to one dimensional analyses makes many

calculations easier.

In the following, Monte Carlo simulations are performed with a ring

of circumference λcL ≫ 1 discretized with Ne elements of equal length

λcδ = λcL/Ne ≪ 1. These simulations closely follow the simplifying hy-

pothesis consisting of neglecting fragmentations induced by interacting un-

loading waves in obscuration zones. Finite element simulations are a (much

more complex) alternative in which the relevance of that hypothesis can be

assessed (Chambart et al., 2011). With the chosen parameters (λcL = 100,

λcδ = 10−3), it was checked that the distribution of breaks for a Poisson

point process follows very closely the asymptotic exponential form valid for

an in�nite line (Lineau, 1936; Grady, 1990). Figure 1 shows the change of

the activated site density as a function of time when normalized by their re-

spective parameters when m = 10, and α = 0. The Monte Carlo simulations

are in good agreement with the results of Equation (19).

The probability density function f of fragment length ℓ at the end of the

fragmentation process is approximated by Lineau's law

f(ℓ) ≈ λl exp(−λlℓ) (25)
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or its dimensionless equivalent shown in Figure 2

1

λc

f(ℓ̃) ≈ λ̃l exp
(
−λ̃lℓ̃

)
(26)

with ℓ̃ = λcℓ, and λ̃l = λl/λc (λl is the parameter of Lineau's law). The best

�t of the numerical results obtained by leaving λl free is compared to the

case where λl = λact(+∞) in Figure 2. The latter condition corresponds to

a good approximation of the numerical results.

4.2. Single and Multiple Fragmentations

The present example is devoted to the analysis of the transition between

single and multiple fragmentation regimes in uniaxial tension (i.e. Hm = 1)

of a brittle material (i.e. α = 0). Depending on the stress rate, two di�erent

solutions will be found. When the stress rate is low, it is expected that single

fragmentation occurs, which is controlled by the �rst inception. Conversely,

for very high stress rates, the �rst propagating crack has not necessarily

traversed the whole domain before other cracks are initiated. In that case,

multiple fragmentations are predicted. Therefore, there exists a transition

between the two fragmentation regimes when (Denoual and Hild, 2000)

σf (V ) = ΣUTS(σ̇) (27)

since σf depends upon the volume of the considered domain (i.e. n = 3), and

ΣUTS depends on the stress rate σ̇ via σc. This condition can be rewritten as σ̇ ≤ σ̇t single fragmentation, quasi-static solution (6)

σ̇ > σ̇t multiple fragmentation, dynamic solution (22)
(28)
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with the transition stress rate σ̇t expressed as

σ̇t = σ̇c

[
Γ

(
m+ 1

m

)]m+3
3

[(m+ 3)B(m, 3)e]
1
3 (29)

where the characteristic stress rate is given by

σ̇c =
σ0

(λ0V )1/m

(
S(vp)3

V

)1/3

︸ ︷︷ ︸
inception

︸ ︷︷ ︸
growth

(30)

The characteristic stress rate is proportional to the characteristic quasi-static

stress and inversely proportional to the characteristic growth time (i.e. the

time for volume V to be fully relaxed). The volume V of the considered

domain appears in both parameters. The higher V , the smaller the charac-

teristic quasi-static stress, the sooner the transition to multiple fragmenta-

tion. Therefore, the regime transition does not only depend upon material

(Weibull) parameters but also involves the volume V of the considered do-

main and the applied stress rate σ̇. The response of a large volume can be

considered as `dynamic' for low stress rates even if the same material follows

the weakest link hypothesis for the same loading applied to a smaller volume.

There is therefore no intrinsic relationship between material parameters and

characteristic scales to describe the fragmentation of brittle materials.

Figure 3 shows the change of the mean UTS normalized by the charac-

teristic dynamic stress σc with the dimensionless stress rate σ̇/σ̇c. The pa-

rameters used in the Monte Carlo simulations correspond to those of a SiC

ceramic (i.e. m = 9.6, 1/λ0 = 1.25 mm3, σ0 = 380 MPa, and vp = 4300 m/s,
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see (Denoual and Hild, 2000)). For the sake of simplicity, the considered

domain has a volume V equal to 1/λ0. The two lines represent the analyt-

ical quasi-static and dynamic solutions (Equations (6) and (22)) while the

circles correspond to the mean of 500 Monte Carlo simulations per stress

rate. A very good agreement is observed between the simulations and the

closed-formed solutions.

In the present case, the transition takes place over one decade of normal-

ized stress rate. When normalized by the characteristic dynamic stress σc,

the mean UTS is constant in the multiple fragmentation regime as expected

from Equation (22). Conversely, the mean UTS is underpredicted in the

single fragmentation regime when normalized by σc. A damage model based

upon the derivations of Section 3.2 does not apply in that regime.

Last, let us note that such transitions have also been observed when

studying the ultimate tensile strength of ceramic matrix composites (Curtin,

1994; Hild et al., 1994). In that case, the obscuration mechanism is related

to �ber pullout in the vicinity of �ber breaks, itself driven by the interfacial

shear strength. The model used to describe the formation of �ber breaks is

also based upon a Poisson point process whose intensity is written in terms of

Weibull parameters (Gulino and Phoenix, 1991). The characteristic strength

and length are related to the Weibull parameters of the �ber, the �ber radius

and the interfacial shear strength (Henstenburg and Phoenix, 1989; Curtin,

1991).
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4.3. Modeling Issues

The previous results have some consequences in terms of numerical strate-

gies. Being bounded by 0 and 1, the obscuration probability can be used as

a damage variable. Since the damage variable is associated with obscura-

tion domains, it is associated with a nonlocal model because of the convo-

lution product (see Equation (13)). However, contrary to standard propo-

sitions (Pijaudier-Cabot and Bazant, 1987; Allix and Deü, 1997), there is

no constant characteristic length or characteristic time, but a growing do-

main associated with the obscuration length ℓobs(t−tinc) and the propagation

velocity vp.

Moreover, in the multiple fragmentation regime, the mean measure of the

obscuration zone is given by

µn(Ωobs(t)) =
1

λ(t)

∫ t

0

µn(Ωobs(t− τ))
dλ

dτ
(τ) dτ (31)

The latter depends not only on the propagation velocity but also on the in-

tensity of the Poisson point process describing multiple inceptions. Noting

that µn(Ωobs(t)) ≤ µn(Ωobs(t)), the latter can be used to check the mesh-

relevance of �nite element calculations. During each time step, the frag-

mentation variables (i.e. damage or obscuration probability, activated and

growing site densities) are computed using the incremental form of the gov-

erning equations (12-14). When the measure of each element ℓnFE is less than

µn(Ωobs(t)), neighboring elements share part of their horizons (i.e. a nonlocal

implementation should be considered (Brajer et al., 2010)).
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The nonlocal framework can be used to describe mesocrack coalescence

induced by growing microcracks, in particular when studying the fragmen-

tation of glass. Consequently, the nonlocal part is related to the growth

a mesocrack that is stopped as soon as the propagation conditions are no

longer satis�ed (Brajer et al., 2010). Prior to mesocrack or porosity coales-

cence, the obscuration zone is the result of multiple inceptions and growth

(see Equation (31)). After mesoscopic coalescence occurs, the interactions

are captured by the numerical scheme and it is mainly controlled by the

growth rates of mesocrack or mesovoids.

To avoid such a situation, let us calculate the time at which the damage

variable has reached a level of, say, 0.9 (or the obscuration probability is

equal to 90%) for a constant stress rate. The corresponding normalized

time t90%/tc is less than 2 when m ≥ 1, see Figure 4. Consequently, when

ℓnFE ≥ µn(Ωobs(2tc)) or λcℓ
n
FE ≥ 2n(α+1) (since µn(Ωobs(t)) ∝ tn(α+1), see

Equation (11)) any point within the horizon associated with the center of a

given �nite element will always belong to the considered element. A local

model (Denoual and Hild, 2000) can be used in that case.

Last, the mean number of potential inception sites ℓnFEλ(t) may also be

used to know whether deterministic or probabilistic approaches apply. For

low stress rates, few fragments are generated (i.e. ℓnFEλ(t) is of the order

of 1). In that case, a discrete and probabilistic description should be se-

lected (Denoual and Hild, 2002). It consists of modifying the intensity λ of

the Poisson point process and assigning the �rst inception stress by randomly
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selecting the inception probability. The �rst inception stress is evaluated ac-

cording to Equation (15) with µn(Ω) = ℓnFE and Hm = 1 (i.e. the stress state

in each �nite element is considered uniform). Conversely, when high stress

rates are generated, i.e. ℓnFEλ(t) becomes signi�cantly greater than 1, many

small fragments are created, and a deterministic model can be considered.

All these issues are direct consequences of the results shown in Figure 3.

The latter can be seen as a master plot that only depends upon the Weibull

modulusm, the space dimension n, and the stress sensitivity exponent α. Dif-

ferent experimental validations have been proposed for various brittle materi-

als (Forquin and Hild, 2010). In particular, spallation tests on concrete have

allowed the prediction shown in Figure 3 to be validated by using the Weibull

parameters of the material and its crack propagation velocity (Forquin and

Erzar, 2010).

4.4. Tantalum Spallation

Spallation of tantalum is brie�y analyzed. A typical damaged sample is

shown in Figure 5. The interested reader will �nd additional details in (Roy,

2003; Trumel et al., 2009). Three sets of data are available (Figure 6). First,

the change of the pore density λ with the shock pressure σ. Second, the

critical time tUTS as a function of the stress rate σ̇, and third, the spall

strength ΣUTS versus stress rate. By using the Poisson-Weibull framework

summarized above and the expressions of the characteristic parameters, it is

24



expected that

λ ∝ σm , tUTS ∝ σ̇−(m+3α)/(m+3(α+1)) , ΣUTS ∝ σ̇3/(m+3(α+1)) (32)

since n = 3. Resorting to least squares �t, the Weibull modulus m is found

to be equal to 8, and the stress sensitivity exponent α to 4.5. A very good

agreement is obtained when compared to experimental data (Figure 6). It

is however worth noting that the value of α departs from micromechanical

analyses that suggest α = 1/2 (Trumel et al., 2009). This �nal observation

shows that the experimental information, which is extremely di�cult to get

for such types of plate impact tests, is crucial if additional validations are to

be performed.

5. Summary

A uni�ed probabilistic framework has been introduced to model dynamic

fragmentation of brittle and ductile materials. It is based upon Poisson point

processes whose intensities depend on Weibull parameters. The governing

equations account for random inceptions, which may be inhibited by grow-

ing cracks or voids. By analyzing ramp loadings, two sets of characteristic

parameters are obtained. The �rst one is related to single fragmentation, and

the second one to multiple fragmentation. In both cases, the condition used

to derive the characteristic parameters are related to the discrete inception

(and growth) event.

By resorting to Monte Carlo simulations, it was possible to validate simple

expressions for the fragment distribution in ring expansion, and the change
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of the ultimate tensile strength of brittle materials with the stress rate. This

last result has been used to discuss modeling issues when implementing such

fragmentation models in �nite element codes. In particular, the size of the

elements has to be carefully chosen, and the characteristic parameters can

be used to propose guidelines in terms of damage models to be chosen. In

particular, the measure of the horizon and its change with time is the key

quantity to choose between local and nonlocal, deterministic or probabilistic

descriptions of damage models.

Last, experimental data obtained in plate impact tests on high purity

tantalum have been used to identify two exponents that appear in the char-

acteristic dynamic parameters when applied to the analysis of ductile spal-

lation. It has been shown that the power-law dependencies with respect to

stress and stress rate predicted with the introduced characteristic parameters

are in good agreement with experimental observations.

It is worth noting that this type of scaling also applies to quasi-static

loading conditions when studying the gradual degradation of composite ma-

terials (Henstenburg and Phoenix, 1989; Curtin, 1991; Neumeister, 1993;

Hild et al., 1994; Hui et al., 1995), of rocks when analyzing CO2 sequestra-

tion in deep reservoirs (Guy et al., 2012), or thermal striping in stainless

steels (Malésys et al., 2006, 2009). In all these cases, stable crack networks

are formed and then grow with the applied stress, time, or number of cycles.

26



Acknowledgments

The developments presented herein are the result of numerous and fruitful

discussions with Drs. Xavier Brajer, Charles Cottenot, Christophe Denoual,

Pascal Forquin, Sébastien Grange, René Gy, Yves-Patrick Pellegrini, Lau-

rent Rota, Stéphane Roux, Gilles Roy, Hervé Trumel and Mr. Stéphane

Menccaci. Funding from Centre National de la Recherche Scienti�que, Délé-

gation Générale de l'Armement, Nitrochimie, and Saint-Gobain is also grate-

fully acknowledged. Last, this paper is dedicated to the 65th anniversary of

Prof. A. Molinari. Happy birthday Alain!

27



References

Allix, O., Deü, J., 1997. Delayed-damage modeling for fracture prediction of

laminated composites under dynamic loading. Eng. Trans. 45, 29�46.

Altynova, M., Hu, X., Daehn, S., 1996. Increased ductility in high velocity

electromagnetic ring expansion. Metall. Mat. Trans. 27A, 1837�1843.

Avrami, M., 1941. Kinetics of phase change. iii. granulation, phase change,

and microstructure. J. Chem. Phys. 9, 177�184.

Bertin-Mourot, T., Denoual, C., Dehors, G., Louvigné, P., Thomas, T., 1997.

High speed photography of moiré fringes - application to ceramics under

impact. J. Physique IV Coll. C3, 311�316.

Besnard, G., Hild, F., Lagrange, J., Martinuzzi, P., Roux, S., 2012. Analysis

of necking in high speed experiments by stereocorrelation. Int. J. Impact

Eng. 49, 179�191.

Brajer, X., Hild, F., Roux, S., 2010. On the dynamic fragmentation of glass:

A meso-damage model. Int. J. Fract. 163, 121�131.

Brara, A., Camborde, F., Klepaczko, J., Mariotti, C., 2001. Experimental

and numerical study of concrete at high strain rates in tension. Mech. Mat.

33, 33�45.

Cagnoux, J., 1985. Déformation et ruine d'un verre pyrex soumis à un choc

28



intense : étude expérimentale et modélisation du comportement. Thèse

d'etat.

Cahn, J., 1996. The time-cone method for nucleation and growth kinetics on

a �nite domain, in: MRS Symposium on Thermodynamics and Kinetics of

Phase Transformations, Mat. Res. Soc., Pittsburgh, PA (USA). pp. 425�

438.

Carroll, M., Holt, A., 1972. Static and dynamic pore collapse relations for

ductile porous materials. J. Appl. Phys. 43, 1626�1636.

Chambart, M., Levy, S., Molinari, J., 2011. How the obscuration-zone

hypothesis a�ects fragmentation: Illustration with the cohesive-element

method. Int. J. Fract. 171, 125�137.

Curran, D., Seaman, L., Cooper, T., Shockey, D., 1993. Micromechanical

model for comminution and geranular �ow of brittle material under high

strain rate. Int. J. Impact Eng. 13, 53�83.

Curtin, W., 1991. Exact theory of �ber fragmentation in single-�lament

composite. J. Mater. Sci. 26, 5239�5253.

Curtin, W., 1994. Strength versus gauge length in ceramic-matrix compos-

ites. J. Am. Ceram. Soc. 77, 1072�1074.

Czarnota, C., Mercier, S., Molinari, A., 2006. Modelling of nucleation and

29



void growth in dynamic pressure loading, application to spall test on tan-

talum. Int. J. Fract. 141, 177�194.

Davies, D., 1973. The statistical approach to engineering design in ceramics.

Proc. Brit. Ceram. Soc. 22, 429�452.

Denoual, C., Barbier, G., Hild, F., 1997. A probabilistic approach for frag-

mentation of ceramics under impact loading. C. R. Acad. Sci. Paris 325,

685�691.

Denoual, C., Hild, F., 2000. A damage model for the dynamic fragmentation

of brittle solids. Comp. Meth. Appl. Mech. Eng. 183, 247�258.

Denoual, C., Hild, F., 2002. Dynamic fragmentation of brittle solids: A

multi-scale model. Eur. J. Mech. A/Solids 21, 105�120.

Forquin, P., Erzar, B., 2010. Dynamic fragmentation process in concrete

under impact and spalling tests. International Journal of Fracture 163,

193�215.

Forquin, P., Hild, F., 2010. A probabilistic damage model of the dynamic

fragmentation process in brittle materials. Adv. Appl. Mech. 44, 1�72.

Forrestal, M.J., Luk, V.K., 1988. Dynamic spherical cavity-expansion in a

compressible elastic-plastic solid. J. Appl. Mech. 55, 275�279.

Freudenthal, A., 1968. Statistical Approach to Brittle Fracture. Academic

Press, New York (USA). volume 2. pp. 591�619.

30



Freund, L., 1972. Crack propagation in an elastic solid subjected to general

loading - constant rate of extension. J. Mech. Phys. Solids 20, 129�140.

Glennie, E., 1972. The dynamic growth of a void in a plastic material and

an application to fracture. J. Mech. Phys. Solids 20, 415�429.

Gourdin, W., 1989. Analysis and assessment of electromagnetic ring expan-

sion as a high-strain rate test. J. Appl. Phys. 65, 411�422.

Grady, D., 1988. The spall strength of condensed matter. J. Mech. Phys.

Solids 36, 353�384.

Grady, D., 1990. Particle size statistics in dynamic fragmentation. J. Appl.

Phys. 68, 6099�6105.

Grady, D., 2006. Fragmentation of Rings and Shells: The Legacy of N.F.

Mott. Springer.

Grady, D., 2010. Length scales and size distributions in dynamic fragmenta-

tion. Int. J. Fract. 163, 85�99.

Grady, D., Benson, D., 1983. Fragmentation of metal rings by electromag-

netic loading. Exp. Mech. 12, 393�400.

Grady, D., Kipp, M., 1980. Continuum modeling of explosive fracture in oil

shale. Int. J. Rock Min. Sci. & Geomech. Abstr. 17, 147�157.

Grady, D., Kipp, M., 1985. Geometric statistics and dynamic fragmentation.

J. Appl. Phys. 58, 1210�1222.

31



Gulino, R., Phoenix, S., 1991. Weibull strength statistics for graphite �bres

measured from the break progression in a model graphite/glass/epoxy mi-

crocomposite. J. Mater. Sci. 26, 3107�3118.

Guy, N., Seyedi, D., Hild, F., 2012. A probabilistic nonlocal model for crack

initiation and propagation in heterogeneous brittle materials. Int. J. Num.

Meth. Eng. 90, 1053�1072.

Gy, R., Guillemet, C., 1992. Characterization of a mode of rupture of glass

at 610°C. Taylor & Francis, London (UK).

Henstenburg, R., Phoenix, S., 1989. Interfacial shear strength studies using

the single-�lament-composite test. part ii: A probability model and monte

carlo simulations. Polym. Comp. 10, 389�406.

Hild, F., Billardon, R., Marquis, D., 1992. Hétérogénéité des contraintes et

rupture des matériaux fragiles. C. R. Acad. Sci. Paris t. 315, 1293�1298.

Hild, F., Brajer, X., Denoual, C., Forquin, P., 2003. On the probabilistic-

deterministic transition involved in a fragmentation process of brittle ma-

terials. Comput. Struct. 81, 1241�1253.

Hild, F., Domergue, J., Evans, A., Leckie, F., 1994. Tensile and �exural

ultimate strength of �ber-reinforced ceramic-matrix composites. Int. J.

Solids Struct. 31, 1035�1045.

32



Hild, F., Marquis, D., 1992. A statistical approach to the rupture of brittle

materials. Eur. J. Mech., A/Solids 11, 753�765.

Hopkins, H., 1960. Dynamic expansion of spherical cavities in metals. North-

Holland, Amsterdam (the Netherlands). volume 1. pp. 84�164.

Hornemann, U., Kaltho�, J., Rothenhäusler, H., Senf, H., Winkler, S., 1984.

Experimental Investigation of Wave and Fracture Propagation in Glass

- Slabs Loaded by Steel Cylinders at High Impact Velocities. Technical

Report EMI report E 4/84, Weil am Rhein (Germany).

Hui, C., Phoenix, S., Ibnabdeljalil, M., Smith, R., 1995. An exact closed form

solution for fragmentation of weibull �bers in a single �lament composite

with applications to �ber-reinforced ceramics. J. Mech. Phys. Solids 43,

1551�1585.

Hunter, S., Crozier, R., 1968. Similarity solution for the rapid uniform ex-

pansion of a spherical cavity in a compressible elastic-plastic solid. Quart.

J. Mech. Appl. Math. 21, 467�486.

Jeulin, D., Jeulin, P., 1981. Synthesis of rough surfaces by random morpho-

logical functions, in: 3rd European Symposium of Stereology, pp. 239�246.

Johnson, J., 1983. Ductile fracture of rapidly expanding rings. J. Appl. Mech.

50, 593�600.

33



Johnson, W., Mehl, R., 1939. Reaction kinetics in processes of nucleation

and growth. Trans. Am. Inst. Min. Metall. Eng. 135, 416�458.

Kanel, G., Razorenov, S., Bogatch, A., Utkin, A., Grady, D., 1997. Simu-

lation of spall fracture of aluminum and magnesium over a wide range of

load duration and temperature. Int. J. Impact Eng. 20, 467�478.

Kolmogorov, A., 1937. On the statistical theory of metal crystallization.

Kluwer Academic Publishers, Dordrecht (the Netherlands). volume II. pp.

pp. 188�192 (English translation).

Kutter, H., Fairhurst, C., 1971. On the fracture process in blasting. Int. J.

Rock Mech. Min. Sci. 8, 181�202.

Lemaitre, J., 1992. A Course on Damage Mechanics. Springer-Verlag, Berlin

(Germany).

Lineau, C., 1936. Random fracture of a brittle solid. J. Franklin Inst. 221,

485�494.

Malésys, N., Seyedi, M., Vincent, L., Hild, F., 2006. On the formation of

crack networks in high cycle fatigue. C. R. Mécanique 334, 419�424.

Malésys, N., Vincent, L., Hild, F., 2009. A probabilistic model to predict

the formation and propagation of crack networks in thermal fatigue. Int.

J. Fat. 31, 565�574.

34



Meyers, M., Aimone, C., 1983. Dynamic fracture (spalling) of metals.

Progress Mat. Sci. 28, 1�96.

Molinari, A., Mercier, S., 2001. Micromechanical modeling of porous mate-

rials under dynamic loading. J. Mech. Phys. Solids 49, 1497�1516.

Mott, N., 1947. Fragmentation of shell cases. Proc. Roy. Soc. London A189,

300�308.

Neumeister, J., 1993. A constitutive law for continuous �ber reinforced brittle

matrix composites with �ber fragmentation and stress recovery. J. Mech.

Phys. Solids 41, 1383�1404.

Oakley, D., 1996. An empirical study of the e�ect of stressed area on the

strength of �oat glass surfaces. J. Non-Cryst. Solids 196, 134�138.

Ortiz, M., Molinari, A., 1992. E�ect of strain hardening and rate sensitivity

on the dynamic growth of a void in a plastic material. J. Appl. Mech. 59,

48�53.

Pierce, F., 1926. Tensile tests for cotton yarns, v. the `weakest link' theorems

on the strength of long and of composite specimens. J. Text. Inst. 17,

T355�T368.

Pijaudier-Cabot, G., Bazant, Z., 1987. Nonlocal damage theory. ASCE J.

Eng. Mech. 113, 1512�1533.

35



Rajendran, A., Fyfe, I., 1982. Inertia e�ects on the ductile failure of thin

rings. J. Appl. Mech. 49, 31�36.

Ravi-Chandar, K., Knauss, W.G., 1982. Dynamic crack-tip stresses under

stress wave loading. a comparison of theory and experiment. Int. J. Fract.

20, 209�222.

Ravi-Chandar, K., Knauss, W.G., 1984. An experimental investigation into

dynamic fracture: Iii, steady-state crack propagation and crack branching.

Int. J. Fract. 26, 141�154.

Rinehart, J., 1965. Dynamic fracture strengths of rocks, in: 7th Symp. Rock

Mech.

Riou, P., Denoual, C., Cottenot, C., 1998. Visualization of the damage

evolution in impacted silicon carbide ceramics. Int. J. Impact Eng. 21,

225�235.

Romanchenko, V., Stepanov, G., 1980. Dependence of the critical stresses on

the loading time parameters during spall in copper, aluminum and steel.

J. Appl. Mech. Techn. Phys. 21, 555�561.

Roy, G., 2003. Vers une modélisation approfondie de l'endommagement dy-

namique ductile. Investigation expérimentale d'une nuance de tantale et

développements théoriques. PhD dissertation (in French).

36



Serra, J., 1982. Image Analysis and Mathematical Morphology. Academic

Press, London (UK).

Shockey, D., Curran, D., Seaman, L., Rosenberg, J., Petersen, C., 1974.

Fragmentation of rocks under dynamic loads. Int. J. Rock Mech. Min. Sci.

11, 303�317.

Strassburger, E., Senf, H., 1995. Experimental Investigations of Wave and

Fracture Phenomena in Impacted Ceramics and Glasses. Report ARL-CR-

214. ARL.

Strassburger, E., Senf, H., Rothenhäusler, H., 1994. Fracture propagation

during impact in three types of ceramics. J. Physique IV coll. C8, 653�658.

Thomason, P., 1999. Ductile spallation fracture and the mechanics of void

growth and coalescence under shock-loading conditions. Acta Mater. 47,

3633�3646.

Tong, W., Ravichandran, G., 1995. Inertial e�ects on void growth in porous

viscoplastic materials. J. Appl. Mech. 62, 633�639.

Trumel, H., Hild, F., Roy, G., Pellegrini, Y., Denoual, C., 2009. On proba-

bilistic aspects in the dynamic degradation of ductile materials. J. Mech.

Phys. Solids 57, 1980�1998.

Wang, Z.P., Jiang, Q., 1997. A yield criterion for porous ductile media at

high strain-rate. J. Appl. Mech. 64, 503�509.

37



Weibull, W., 1939. A Statistical Theory of the Strength of Materials. Tech-

nical Report Report 151. Roy. Swed. Inst. Eng. Res.

Weibull, W., 1951. A statistical distribution function of wide applicability.

ASME J. Appl. Mech. 18, 293�297.

Weibull, W., 1952. A survey of `statistical e�ects' in the �eld of material

failure. Appl. Mech. Rev. 5, 449�451.

Wu, X., Ramesh, K., Wright, T., 2003. The dynamic growth of a single void

in a viscoplastic material under transient hydrostatic loading. J. Mech.

Phys. Solids 51, 1�26.

Zel'dovich, Y., Raizer, Y., 2002. Physics of Shock Waves and High-

Temperature Hydrodynamic Phenomena. Dover, New York, NY (USA).

Zhang, H., Ravi-Chandar, K., 2006. On the dynamics of necking and frag-

mentation � i.real-time and post-mortem observations in al 6061-o. Int J

Fract 142, 183�217.

Zhou, F., Molinari, J.F., Ramesh, K., 2005. A cohesive model based frag-

mentation analysis: E�ects of strain rates and initial defects distribution.

Int. J. Solids Struct. 42, 5181�5207.

38



List of Figures

1 Dimensionless densities as functions of dimensionless time t/tc

for the ring expansion simulation. The dashed line corresponds

to the intensity of the Poisson point process, the solid line is

the closed-form solution (19) when m = 10 and α = 0. The

crosses are the results of a Monte Carlo simulation (λcL = 100

and λcδ = 10−3) . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Dimensionless probability density function of the normalized

fragment length. The open circles correspond to the result of

a Monte Carlo simulation, the dashed line is the best �t by

Lineau's law, and the solid line corresponds to Lineau's law

whose parameter λl is equal to the mean density of activated

sites at saturation λact(+∞) . . . . . . . . . . . . . . . . . . . 40

3 Mean ultimate tensile strength normalized by σc as a function

of the dimensionless stress rate σ̇/σ̇c. The open circles corre-

spond to the results of 500 Monte Carlo simulations for each

considered stress rate (Denoual and Hild, 2000). Two frag-

mentation regimes are observed. For low stress rates, single

fragmentation occurs (Equation (6)) while for high stress rates

multiple fragmentations are observed (Equation (22)) . . . . . 41

4 Dimensionless time t90%/tc to reach an obscuration probability

equal to 90% as a function of the Weibull modulus m. Two

di�erent values of the stress sensitivity exponent α are considered 42

39



5 Example of 5-mm thick tantalum sample damaged by symmet-

ric impact at 270 m/s by copper �yer plate (the shock wave

traveled from top to bottom). Region a: rapidly unloaded, b:

biaxially loaded, c: uniaxially loaded. Only the left half of the

target is shown. The right edge of the picture corresponds to

the symmetry axis (Roy, 2003) . . . . . . . . . . . . . . . . . 43

6 Identi�cation of the two exponents m and α for tantalum. (a):

Pore density vs. shock pressure. (b): Critical time vs. stress

rate. (c): Spall strength vs. stress rate. The open circles are

experimental data (Roy, 2003), and the solid lines are results

given by Equation (32) when m = 8 and α = 4.5 . . . . . . . 44

40



10
0

10
−3

10
−2

10
−1

10
0

10
1

Dimensionless time

D
im

en
si

on
le

ss
 d

en
si

ty

λ/λ
c
      

λ
act

/λ
c

num.                   

Figure 1: Dimensionless densities as functions of dimensionless time t/tc for the ring

expansion simulation. The dashed line corresponds to the intensity of the Poisson point

process, the solid line is the closed-form solution (19) when m = 10 and α = 0. The

crosses are the results of a Monte Carlo simulation (λcL = 100 and λcδ = 10−3)
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Figure 2: Dimensionless probability density function of the normalized fragment length.

The open circles correspond to the result of a Monte Carlo simulation, the dashed line is

the best �t by Lineau's law, and the solid line corresponds to Lineau's law whose parameter

λl is equal to the mean density of activated sites at saturation λact(+∞)
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Figure 3: Mean ultimate tensile strength normalized by σc as a function of the dimen-

sionless stress rate σ̇/σ̇c. The open circles correspond to the results of 500 Monte Carlo

simulations for each considered stress rate (Denoual and Hild, 2000). Two fragmentation

regimes are observed. For low stress rates, single fragmentation occurs (Equation (6))

while for high stress rates multiple fragmentations are observed (Equation (22))
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Figure 4: Dimensionless time t90%/tc to reach an obscuration probability equal to 90%

as a function of the Weibull modulus m. Two di�erent values of the stress sensitivity

exponent α are considered
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a                b                                 c

Figure 5: Example of 5-mm thick tantalum sample damaged by symmetric impact at

270 m/s by copper �yer plate (the shock wave traveled from top to bottom). Region a:

rapidly unloaded, b: biaxially loaded, c: uniaxially loaded. Only the left half of the target

is shown. The right edge of the picture corresponds to the symmetry axis (Roy, 2003)
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Figure 6: Identi�cation of the two exponents m and α for tantalum. (a): Pore density

vs. shock pressure. (b): Critical time vs. stress rate. (c): Spall strength vs. stress rate.

The open circles are experimental data (Roy, 2003), and the solid lines are results given

by Equation (32) when m = 8 and α = 4.5
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