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Abstract 19 

Child cortical bone tissue is rarely studied because of the difficulty of obtaining samples. Yet the 20 

preparation and ultrasonic characterization of the small samples available, while challenging, is one of 21 

the most promising ways of obtaining information on the mechanical behavior of non-pathological 22 

children’s bone. We investigated children’s cortical bone obtained from chirurgical waste. 22 fibula or 23 

femur samples from 21 children (1-18 years old, mean age: 9.7± 5.8 years old) were compared to 16 24 

fibula samples from 16 elderly patients (50-95 years old, mean age: 76.2 ± 13.5 years old). Stiffness 25 

coefficients were evaluated via an ultrasonic method and anisotropy ratios were calculated as the ratio 26 

of C33/C11, C33/C22 and C11/C22. Stiffness coefficients were highly correlated with age in children 27 

(R>0.56, p<0.01). No significant difference was found between C11 and C22 for either adult or child 28 

bone (p>0.5), nor between C44 and C55 (p>0.5). We observe a transverse isotropy with C33 > C22 = C11 29 

> C44 = C55 > C66. For both groups, we found no correlation between age and anisotropy ratios. This 30 

study offers the first complete analysis of stiffness coefficients in the three orthogonal bone axes in 31 

children, giving some indication of how bone anisotropy is related to age. Future perspectives include 32 

studying the effect of the structure and composition of bone on its mechanical behavior. 33 

 34 

1. Introduction  35 

Bone is a hierarchical and organized structure with properties varying by successive stages from 36 

juvenile to mature state. Numerous studies have aimed to determine the mechanical properties of 37 

cortical bone tissue collected from adult human subjects (Bensamoun et al., 2004; Choi et al., 1990; 38 



Cuppone et al., 2004; Grimal et al., 2009; Ho Ba Tho et al., 1991; Keller et al., 1990; Lotz et al., 1991; 39 

Reilly et al., 1974; Reilly and Burstein, 1975; Smith and Smith, 1976; Zioupos and Currey, 1998). 40 

Ultrasonic waves have frequently been used in the measurement of the elastic properties of adult bone 41 

in vitro (Ashman et al., 1984; Yoon and Katz, 1976; Rho, 1996; Espinoza Orías et al., 2009; Rudy et 42 

al., 2011; Baumann et al., 2012; Bernard et al., 2013). A method based on the measurement of both 43 

longitudinal and shear ultrasonic bulk wave velocities (BWV) allows the determination of numerous 44 

stiffness coefficients of the elasticity tensor Cijkl, on a single specimen (Ashman et al., 1984; Rho, 45 

1996; Espinoza Orías et al., 2009; Rudy et al., 2011; Baumann et al., 2012; Lang, 1969). Cortical bone 46 

is an anisotropic medium due to its highly oriented, mineralized collagen fibril structure, and the 47 

literature on adults contains different assumptions regarding the type of anisotropy of the cortical bone 48 

structure. Some authors (Haïat et al., 2009; Neil Dong and Edward Guo, 2004; Rho, 1996; Yoon and 49 

Katz, 1976) assume that human cortical bone can be considered as transverse isotropic (five 50 

independent elastic coefficients), meaning that bone elastic properties are similar in the transverse 51 

directions (radial and tangential) but are different in the axial direction. Others have made the more 52 

general assumption of orthotropy (Ashman et al., 1984; Hoffmeister et al., 2000; Rho, 1996) (with 53 

three perpendicular planes of symmetry), where nine elastic coefficients are needed to fully 54 

characterize the medium.  55 

Little reference data is available on young bone mechanical behavior, especially on children's 56 

cortical bone. Several papers study mechanical properties of children’s bone by uniaxial bending 57 

(Currey and Butler, 1975; Jans et al., 1998; Davis et al., 2012; Agnew et al., 2013; Berteau et al., 58 

2013; C. I. Albert et al., 2013; Albert et al., 2014), compression (McPherson et al., 2007; Ohman et al., 59 

2011) or ultrasonic characterization (Berteau et al., 2012, 2013). Some even study mechanical 60 

properties at the tissue level by nanoindentation (Fan et al., 2006; Weber et al., 2006; C. Albert et al., 61 

2013; Imbert et al., 2014). However, most of these studies were conducted on only a few samples, 62 

because of the scarcity of specimens for laboratory testing. Moreover, the representativeness of these 63 

samples is questionable, since they are largely associated with child pathologies. Due to the limited 64 

number of samples available, papers have up to now focused on mechanical properties in only one 65 

axis, generally the axial direction. The notion of anisotropy, particularly transverse isotropy or 66 

orthotropy, has rarely been investigated.  Only one study on this subject reports orthotropy in 67 

children's bone before ossification (McPherson and Kriewall, 1980). In our study, children’s bone 68 

samples were recovered from small chirurgical bone waste, with exclusion criteria; the only way to 69 

obtain non-pathologic bone samples from children. Yet this adds a difficulty: the specimens have been 70 

cut into very small cubes (2mm), smaller than those used in a previous study which tested 5mm 71 

samples on Resonant Ultrasound Spectroscopy (RUS) and obtained promising results (Bernard et al., 72 

2013).  73 

Here, we report measurements of ultrasonic wave velocities (compressional and shear) in the three 74 

orthogonal bone axes (axial, radial and tangential) to obtain the diagonal elements of the stiffness 75 



matrix (C11, C22, etc.). To our knowledge, this study is the first to provide numerous stiffness 76 

coefficients on non-pathologic pediatric cortical bone. The major aim of the study was to obtain 77 

stiffness coefficients of children’s cortical bone samples, and to analyze the anisotropic Hooke's law 78 

enabling us to explore the anisotropic behavior of child cortical bone. Values from children were 79 

compared with those from elderly adult cortical bone samples to evaluate how stiffness evolves with 80 

age. To achieve this objective, we required an experimental protocol specifically for measuring 81 

ultrasonic parameters with very small samples, both compressional and shear; the protocol needed to 82 

be reproducible and robust.  83 

 84 

2. Methods 85 

2.1.  Sample preparation 86 

15 fibula and 7 femur samples from 21 children (1-18 years old, mean age: 9.7± 5.8 years old) 87 

were extracted from chirurgical waste during lower limb lengthening surgery performed in Marseille, 88 

France. Samples were extracted from the lower 1/3 of the bone. The selected population was 89 

composed of walking children not on drugs disturbing their bone metabolism. 90 

16 fibula samples from 16 elderly patients (50-95 years old, mean age: 76.2 ± 13.5 years old) were 91 

extracted from the same anatomic location, but from cadavers at Inserm U1033 and UMR-T 9406 92 

Ifsttar/UCBL (Lyon, France) bone bank. 93 

The fresh material was frozen and stored, the child bone at -80°C (to lessen the impact of collagen 94 

degradation, which will be analyzed in a future study) and the adult bone at -20°C.  The samples were 95 

slowly thawed and then cut with a water-cooled low-speed diamond saw (Buehler Isomet 4000, 96 

Buehler, Lake Bluff, IL, USA) into cubic parallelepipeds (dimensions: 2x2x2mm3; mean= 1.96 ± 97 

0.56mm). The faces of the specimens were oriented according to the radial (axis 1), tangential (axis 2) 98 

and axial (axis 3) directions defined by the anatomic shape of the bone diaphysis (Figure 1). 99 

The greatest challenge here was the very small size of the chirurgical waste bone (less than 1cm in 100 

the axial axis), the radial thickness of the sample being imposed by the cortical thickness taken. The 101 

second difficulty was cutting samples this small with parallel faces. This necessitated an enhanced 102 

mounting protocol for the cutting. The mass density (ρ, g/cm3) was measured with a micrometric 103 

balance equipped with a density kit (Voyager 610, Ohaus Corporation, FlorhamPark, NJ, USA, 104 

measurement uncertainty of 0.001 g/cm3) and the dimensions were measured with a digital caliper 105 

(Absolute digimatik solar, Mitutoyo, Kanagawa, Japan, measurement error of 0.03 mm). 106 

 107 



 108 
Figure 1: Sketch showing orientation of cortical bone samples prepared to study bone 109 

anisotropy. Figure adapted from (Reilly et al., 1974). 110 
   111 

2.2.  Theoretical approach  112 

In this study, we considered cortical human bone as an elastic unlimited medium (the wavelength is 113 

smaller than the transverse dimension of the sample). Human bones are generally considered to be 114 

orthotropic (Ashman et al., 1984; Yoon and Katz, 1976).  115 

For generally anisotropic media, Hooke’s law is written as follows: 116 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙  𝜀𝑘𝑙 where i, j, k, l ∈  {1,2,3} (1) 

In Equation 1, ij denotes the ij component of the stress tensor, kl represents the components of the 117 

strain infinitesimal tensor and Cijkl is the stiffness tensor. Assuming orthotropic behavior of the bone 118 

requires nine independent elastic coefficients of the stiffness tensor which can be expressed in Voigt 119 

notation as follows: 120 

 

𝐶𝐼𝐽 =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶21 𝐶22 𝐶23 0 0 0
𝐶31 𝐶32 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

 (2) 

We calculated the velocities of pure compressional and shear waves propagating along the three 121 

principal axes, which gave us the diagonal elements of the stiffness matrix. The relationships between 122 

the velocities and elastic coefficients of the material are: 123 

𝐶11 =  𝜌𝑉11
2   

𝐶22 =  𝜌𝑉22
2   

𝐶33 =  𝜌𝑉33
2   

𝐶44 =  𝜌𝑉23
2 = 𝜌𝑉32

2    

𝐶55 =  𝜌𝑉13
2 = 𝜌𝑉31

2    

𝐶66 =  𝜌𝑉12
2 = 𝜌𝑉21

2    

(3) 

Vii :  velocity of a compressional wave propagating in the i direction, with particle motion in the i 124 

direction; 125 

Vij : velocity of a shear wave propagating in the i direction, with particle motion in the j direction;  126 



Anisotropy was measured as the ratio of elastic constants in the axial/radial (C33/C11), in the 127 

axial/tangential (C33/C22) and in the radial/tangential (C11/C22) anatomic specimen axes (Rudy et al., 128 

2011; Baumann et al., 2012). 129 

 130 

2.3.  Ultrasonic measurements 131 

To find the diagonal elements of the stiffness matrix, the velocities of compressional and shear 132 

waves need to be determined. Two mountings, one for compressional waves and the other for shear 133 

waves, were used. For both compressional and shear waves, we assumed a non-dispersive medium and 134 

we determined the wave velocity propagating in the xi direction using a comparison method: 135 

V𝑖𝑗 = 
𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑖

−∆𝑡 + 
𝑙𝑟𝑒𝑓

𝑉𝑟𝑒𝑓

   

𝑉𝑖𝑗  : compressional (i=j) or shear (ij) wave velocity; 136 

𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑖 : thickness of the sample in direction xi ; 137 

∆𝑡: time delay between the first arriving signal travelling in the reference medium and the first 138 

arriving signal propagating through the bone sample; 139 

𝑙𝑟𝑒𝑓 : distance between the two transducers in the reference medium; 140 

𝑉𝑟𝑒𝑓 : ultrasonic wave velocity in the reference medium. 141 

 142 

2.3.1. Compressional wave velocity measurement 143 

The ultrasonic bench consisted of two transducers (VP1093, center frequency 5MHz, CTS Valpey 144 

Corporation, Hopkinton, MA) facing each other with their axes aligned and operating in transmission 145 

mode. The whole device was immersed in water. First, a reference measurement was made in water 146 

without samples (Vref). The bone sample to be tested was then placed over a gelatin block (agar) to 147 

keep it aligned between the transducers (Figure 2). 148 

 149 

Figure 2: Picture of the experimental set-up (left), and example of a reference signal (water) and 

ultrasonic wave through the bone sample. 



The entire protocol was validated on bovine bone samples. We obtained V11 = 3375 ± 65 m/s, V22 = 150 

3637 ± 91 m/s and V33 = 3999 ± 31 m/s, in agreement with the literature (Lees et al., 1979; Lipson and 151 

Katz, 1984; Lasaygues and Pithioux, 2002). 152 

 153 

2.3.2. Shear wave velocity measurement 154 

Measurements were made with two transverse wave transducers (Panametrics V156, 5MHz, Inc., 155 

Waltham, MA) facing each other with their axes aligned and operating in transmission mode. First, a 156 

reference measurement was made in a 5 mm thick aluminum sample. The bone samples to be tested 157 

were then placed in contact between the transducers (Figure 3). 158 

 159 

 160 

Figure 3: Picture of the experimental set-up (left), and example of a reference signal (aluminum 

sample) and ultrasonic wave through the bone sample. 

 161 

2.4. Statistical analysis 162 

Statistical analysis was performed using the SPSS program (SPSS Statistics 22, IBM, USA). The 163 

Shapiro–Wilk test was used to evaluate the normality of the distribution. A Pearson correlation was 164 

performed for normal distribution and a Spearman correlation was performed for non-normal 165 

distribution. The significance level is p < 0.05. The Wilcoxon rank-sum test was used to determine the 166 

difference between coefficients. 167 

 168 

3. Results  169 

Raw data are presented. All the values of ultrasonic wave velocities are given in Table 1, with mean 170 

and standard deviation for each group. The relationships established above between the velocities and 171 

the stiffness coefficients of the material gave the Cii coefficients summarized in Table 2. The mean 172 

values of elastic coefficients from our study are also compared with values from the literature (Table 173 

2).  174 



The elastic coefficients for adult fibulae are quite similar to those from the literature for femur and 175 

tibiae evaluated with ultrasonic methods (Ashman et al., 1984; Hoffmeister et al., 2000). Values from 176 

the children’s bone, especially the femur, are lower than those from the adults. Due to the mean age 177 

gap of the two groups (resp. 12.9 ± 3.3 y.o for fibula and 3.6 ± 5.3 y.o for femur), we cannot compare 178 

fibula and femur values in these children. A significant correlation was found in the children’s bone 179 

between all the stiffness coefficients and age (R>0.56, p<0.01). Moreover, the stiffness coefficients are 180 

all correlated (R>0.55, p<0.01). In the elderly adult bone, we only found a negative correlation 181 

between C33 and age (R=-0.63, p<0.01). 182 

No significant difference was found between C11 and C22 and between C44 and C55, for either adult or 183 

child bone (p>0.5), which confirms transverse isotropy with C33 > C22 = C11 > C44 = C55 > C66. In both 184 

groups, we found no correlation between age and anisotropy ratios. 185 

Figure 4 shows the evolution of stiffness coefficients with age, revealing that stiffness coefficients 186 

increase in growing bone. Moreover, the effect of main direction is observed, with the axial stiffness 187 

coefficient (C33) 1/3 above radial and tangential values (respectively C11 and C22). 188 

Figure 5 illustrates the evolution of the axial stiffness coefficient (C33) with age. Depending on age 189 

range, the linear interpolation slope changes from positive to negative. A Spearman correlation was 190 

found between age and C33; in the children’s bone, we obtained a positive value (R=0.694, p<0.01) 191 

whereas in the elderly adult bone, we obtained a negative value (R=-0.634, p=0.08). 192 

Figure 6 represents the evolution of anisotropy ratios with age. In both groups, we found no 193 

correlation between age and anisotropy ratios. 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 



Table 1. Ultrasonic wave velocities (compressional and shear) for all directions 212 

Samples Age 
Mass 

density  
V11 V22 V33 V31 V32 V13 V12 V23 V21 

 
years kg/m

3
 m/s m/s m/s m/s m/s m/s m/s m/s m/s 

 

fibula 1 6 1873 2924 2912 3632 1506 1553 1446 1279 1535 1340 
fibula 2* 10 1864 2972 2537 3596 1603 1701 1525 1306 1598 1378 
fibula 3 10 1398 2406 2449 2920 1309 1347 1435 1339 1248 1460 
fibula 4 10 1768 3170 3137 3994 1621 1608 1628 1354 1613 1379 
fibula 5 10 1690 3181 2836 3358 1462 1409 1459 1361 1501 1202 
fibula 6 12 1735 3033 3069 3873 1615 1591 1549 1355 1547 1431 
fibula 7 13 1664 3053 3155 3491 1351 1514 1471 1319 1526 1243 
fibula 8 14 1598 3194 2728 3320 1314 1348 1462 1165 1280 1199 
fibula 9 14 1790 3228 3031 3964 1520 1616 1352 1478 1444 1269 

fibula 10 15 1848 2985 3183 3918 1608 1599 1628 1369 1664 1295 
fibula 11 15 1798 3099 3166 3666 1548 1551 1540 1347 1584 1365 
fibula 12 16 1882 3199 3100 4057 1662 1612 1737 1436 1557 1329 
fibula 13 17 1617 3455 3566 4012 1525 1616 1583 1364 1666 1396 
fibula 14 18 1764 3071 3103 3918 1641 1684 1489 1440 1651 1351 

Mean 12.9 1734 2930 2903 1466 1507 1475 1324 1500 1303 1466 

SD 3.3 182 292 279 132 121 120 99 116 89 132 

            

femur 1 1 1498 2491 2532 2960 1307 1362 1343 1272 1440 1383 

femur 2 1 1712 2791 2798 3146 1287 1494 1404 1113 1464 1224 

femur 3 1 1365 2515 2616 3206 1314 1319 1217 1209 1393 1250 

femur 4 1 1873 2751 2858 3132 1403 1479 1314 1213 1505 1255 

femur 5 1 1688 2678 2654 3287 1398 1383 1375 1220 1400 1154 

femur 6 5 1798 2892 2658 3642 1298 1341 1477 1475 1378 1147 

femur 7 15 2197 2439 2883 3613 1500 1520 1552 1397 1503 1315 

Mean 3.57 1733 2651 2714 3284 1358 1414 1383 1271 1440 1247 

SD 5.26 268 172 133 255 79 81 109 124 52 84 

            

 

Adult 1 
67 1748 4258 3190 3382 1599 1707 1645 1385 1618 1399 

Adult 2 
80 1761 4028 3390 3556 1586 1626 1636 1454 1621 1431 

Adult 3 
95 1623 3862 2672 3465 1728 1684 1676 1298 1545 1344 

Adult 4 
68 1664 4402 3367 3514 1727 1732 1679 1426 1705 1421 

Adult 5 
87 1573 3770 2755 2195 2218 1680 1464 1238 1550 1507 

Adult 6 
83 1798 3818 3412 3169 1575 1658 1690 1386 1600 1412 

Adult 7 
78 1647 3965 3248 2442 1699 1564 1684 1609 1579 1490 

Adult 8 
73 1831 3819 3051 2014 1840 1667 1598 1234 1675 1532 

Adult 9 
73 1855 4011 3332 3375 1660 1627 1661 1394 1662 1404 

Adult 10 
77 2230 3830 3020 3128 1473 1492 1728 1788 1476 1359 



Adult 11 
89 1577 3867 3299 3280 1620 1637 1582 1374 1679 1346 

Adult 12 
50 1775 4071 3414 3508 1645 1713 1714 1398 1691 1381 

Adult 13 
76 1882 4192 3016 3447 1529 1720 1665 1464 1669 1497 

Adult 14 
56 1914 4093 3206 3454 1583 1693 1472 1439 1718 1635 

Adult 15 
91 1498 3906 3166 3068 1368 1602 1617 1434 1559 1328 

Adult 16 
57 1623 4015 3250 3191 1504 1675 1653 1502 1575 1398 

Mean 76.2 1750 3174 3137 3994 1647 1655 1635 1426 1620 1430 

SD 13.5 177 223 486 178 189 63 76 134 69 82 

* Mean value of two fibulae samples from the same child. 213 

 214 
Table 2. Average stiffness coefficients (SD) 215 

 Children 
(n=14) 

Children   
(n=7) 

Adults    
(n=16) 

Hoffmeister 
(Hoffmeister et 

al., 2000) 

Ashman      
(Ashman et al., 

1984) 
 fibula femur fibula tibia femur 
 (GPa) (GPa) (GPa) (GPa) (GPa) 

C11 16.5 (2.70) 12.2 (2.42) 17.7 (2.89) 19.5 (2.0) 18.0 (1.60) 
C22 15.8 (3.24) 12.9 (3.15) 17.7 (5.27) 20.1 (1.9) 20.2 (1.79) 
C33 24.0 (5.15) 19.0 (5.50) 28.0 (3.71) 30.9 (2.1) 27.6 (1.74) 
C44 4.17 (0.800) 3.57 (0.833) 4.69 (0.518) 5.72 (0.49) 6.23 (0.479) 
C55 4.05 (0.746) 3.31 (0.921) 4.72 (0.579) 5.17 (0.57) 5.61 (0.398) 
C66 3.13 (0.373) 2.77 (0.656) 3.60 (0.690) 4.05 (0.54) 4.52 (0.371) 



 216 
Figure 4: Comparison of the mean ( standard deviation) of the stiffness coefficients with age class 217 

 218 

 219 
Figure 5: Axial stiffness coefficient measured on children’s bone samples (squares) and elderly adults’ 220 

bone samples (diamonds).  221 



 222 
Figure 6: Representation of the mean ( standard deviation) of anisotropy ratios by age class. 223 

 224 

4. Discussion 225 

The first aim of the study was to determine and to compare stiffness coefficients in children’s and 226 

elderly adults’ cortical bone samples. The method we used is based on measuring both compressional 227 

and shear ultrasonic bulk wave velocities (BWV) propagating along various directions of a bone 228 

specimen (Lang, 1969). While this method is widely used, it has major drawbacks related to specimen 229 

size and geometry. With a range frequency of 1-2.5 MHz, the specimen must typically be larger than a 230 

few millimeters (5 mm). This is because measured wave velocities must be linked to bulk waves, 231 

which propagate when the wavelength is smaller than the dimension of the specimen (Ashman et al., 232 

1984). In this study, samples were machined from fibulae whose cortical thickness was below 3mm. 233 

By improving the cutting process so as to avoid any lack of parallelism, we finally obtained specimens 234 

of approximately 2x2x2 mm3. For both compressional and shear wave velocity measurements, we 235 

used a frequency of 5 MHz to achieve a wavelength greater than the typical size of bone tissue 236 

heterogeneities (< a few hundred microns) and smaller than the specimen dimensions. Another 237 

limitation of this study was that only elastic constants for the main diagonal of the stiffness tensor 238 

could be evaluated. It takes one or several 45° oblique cuts to retrieve all non-diagonal terms of the 239 

stiffness tensor, which was not technically possible with our specimen size. This prevented conversion 240 

of the elastic stiffness coefficients into engineering coefficients (Young’s moduli, shear moduli and 241 

Poisson’s ratios). 242 

 The longitudinal stiffness coefficients (C11, C22 and C33) generally found for adult cortical bone 243 

with the ultrasonic method range between 16.8 GPa and 31.7 GPa (Ashman et al., 1984; Bernard et al., 244 

2013; Espinoza Orías et al., 2009; Hoffmeister et al., 2000). However, these values were for femur or 245 

tibia bone; to our knowledge, no value for the fibula is available. These results on adult fibulae 246 

therefore contribute a new batch of data and allow us to compare adults’ and children’s values for the 247 

same bone from the same anatomic location. The results on children’s bone enrich the literature 248 



concerning the mechanical properties of children’s bone. Our findings show that stiffness coefficients 249 

increase with age up to puberty, when they appear to reach adult values (Figure 4). The evolution of 250 

C33 with age shows a linear regression by age group, positive in the children and negative in the adults 251 

(Figure 5). This trend is similar to the evolution of the bone mineral density with age (Bonjour, 1998; 252 

Boot et al., 2010). An in vivo study by Drozdzowska et al. (Drozdzowska and Pluskiewicz, 2003) 253 

assessed the speed of sound (SOS) at the hand phalanx in a population of people aged from 7 to 80. 254 

The authors conclude that the SOS increases linearly to a maximum reached at around 25-30 years 255 

old, after which values decrease more slowly up to the age of 80. These data differ from ours because 256 

the in vivo approach introduces the effect of soft tissue and bone geometry. Moreover, the study was 257 

performed on the hand phalanx, which is not mechanically stressed. Nevertheless, even with the gap in 258 

age coverage between our studies (our population being children of 1-18 and adults of 50-95), our in 259 

vitro results exhibit the same trend as their in vivo study.  260 

The second aim of this study was to analyze the anisotropic behavior of our samples. The results 261 

for all specimens show transverse isotropy for both adult and child bone, and both fibula and femur, at 262 

the location tested. Several studies point to the fact that ultrasonic wave velocity measurement relies 263 

on anatomical location. It has been suggested that ultrasonic wave velocity depends on the 264 

circumferential location (Bensamoun et al., 2004; Rho, 1996). Rudy et al. showed that anisotropy 265 

depends on the location along the bone: their tissue specimens, pooled from multiple donors, exhibited 266 

orthotropy at all locations along the femoral diaphysis and transverse isotropy at mid-diaphysis (Rudy 267 

et al., 2011). In this study, samples were extracted from the lower 1/3 of the bone, which does not 268 

explain the transverse isotropy.  269 

Anisotropy in cortical bone can be explained by multiple factors. Bone material properties depend 270 

on microscopic-scale components such as hydroxyapatite crystals and collagen (Hasegawa et al., 271 

1994; Burr, 2002; Currey, 2003; Follet, 2004; Boivin et al., 2008), and their layout, as confirmed 272 

experimentally in a study showing that ultrasonic velocity is influenced by changes in organic matrix 273 

(Mehta et al., 1998). Katz et al. argued that orthotropic versus transversely isotropic symmetry was 274 

dependent on whether the tissue exhibited a predominately laminar or Haversian microstructure, 275 

respectively (Katz et al., 1984).  According to Baumann et al., transverse isotropy is governed 276 

primarily by apatite crystal orientations while orthotropy is governed primarily by intracortical 277 

porosity (Baumann et al., 2012). While our study did not investigate any of these factors, further 278 

exploration would enrich our knowledge of the anisotropy of bone. 279 

In conclusion, this study contributes a new set of ultrasonic wave velocities and elasticity values for 280 

children’s cortical bone, providing insights into the evolution of stiffness coefficients with age. 281 

Moreover, it offers the first complete analysis of stiffness coefficients in the three orthogonal bone 282 

axes in children, giving some indication of how bone anisotropy is related to age. Future perspectives 283 

include studying the effect of the structure and composition of bone on its mechanical behavior.  284 

 285 
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