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MAXIMAL REPRESENTATIONS OF UNIFORM COMPLEX
HYPERBOLIC LATTICES

VINCENT KOZIARZ AND JULIEN MAUBON

Abstract. Let ρ be a maximal representation of a uniform lattice Γ ⊂ SU(n, 1), n ≥ 2,
in a classical Lie group of Hermitian type H. We prove that necessarily H = SU(p, q) with
p ≥ qn and there exists a holomorphic or antiholomorphic ρ-equivariant map from complex
hyperbolic space to the symmetric space associated to SU(p, q). This map is moreover a
totally geodesic homothetic embedding. In particular, up to a representation in a compact
subgroup of SU(p, q), the representation ρ extends to a representation of SU(n, 1) in SU(p, q).
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1. Introduction

Lattices in noncompact simple Lie groups can be regrouped in two broad classes: those
which are superrigid and those which are not. A lattice Γ in a simple noncompact Lie
group G is superrigid (over R or C) if for all simple noncompact Lie group H with trivial
center, every homomorphism Γ → H with Zariski-dense image extends to a homomorphism
G → H. Lattices in simple Lie groups of real rank at least 2, such as SL(n,Z) in SL(n,R)
for n ≥ 3, as well as lattices in the real rank 1 Lie groups Sp(n, 1) and F−20

4 , are superrigid
by [Mar91, Cor92, GS92]. This implies that these lattices are all arithmetic. On the other
hand, lattices in the remaining simple Lie groups of real rank 1, SO(n, 1) and SU(n, 1), are
not superrigid in general. In particular, the study of their representations does not reduce to
the study of the representations of the Lie group they live in. There are however important
differences between real hyperbolic lattices, i.e. lattices in SO(n, 1), and complex hyperbolic
lattices, i.e. lattices in SU(n, 1). Real hyperbolic objects are softer and more flexible than
their complex counterparts. From the perspective of representations of lattices, for example,
it is sometimes possible to deform non trivially lattices of SO(n, 1) in SO(m, 1), m > n ≥ 3,
see e.g. [JM87]. The analogous statement does not hold for lattices in SU(n, 1), n ≥ 2:
W. Goldman and J. Millson [GM87] proved that if Γ ∈ SU(n, 1), n ≥ 2, is a uniform lattice
and if ρ : Γ → SU(m, 1), m ≥ n, is the composition of the inclusion Γ ↪→ SU(n, 1) with
the natural embedding SU(n, 1) ↪→ SU(m, 1), then ρ, although not necessarily infinitesimally
rigid, is locally rigid. From a maybe more subjective point of view, non arithmetic lattices in
SO(n, 1) can be constructed for all n [GPS88] but there are no similar constructions in the
complex case and examples of non arithmetic lattices in SU(n, 1) are very difficult to come
by (and none are known for n ≥ 4).

We will be interested here in global rigidity results for representations of complex hyperbolic
lattices in semisimple Lie groups of Hermitian type with no compact factors which generalize
the local rigidity we just mentioned. Recall that a Lie group H is of Hermitian type if its
associated symmetric space is a Hermitian symmetric space. The classical noncompact groups
of Hermitian type are SU(p, q) with p ≥ q ≥ 1, SO0(p, 2) with p ≥ 3, Sp(m,R) with m ≥ 2
and SO?(2m) with m ≥ 4.

Let Γ be a lattice in SU(n, 1). The group Γ acts on complex hyperbolic n-space
Hn

C = SU(n, 1)/S(U(n) × U(1)). The space Hn
C is the rank 1 Hermitian symmetric space

of non compact type and of complex dimension n. From a Riemannian point of view, it is
up to isometry the unique complete simply connected Kähler manifold of constant negative
holomorphic sectional curvature. The SU(n, 1)-invariant metric on Hn

C will be normalized
so that its holomorphic sectional curvature is −1. As a bounded symmetric domain, Hn

C is
biholomorphic to the unit ball in Cn.

For simplicity in this introduction, and because this is needed in our main result, the lattice
Γ is assumed to be uniform (and torsion free) unless otherwise specified, so that the quotient
X := Γ\Hn

C is a closed manifold.
Let also H be a semisimple Lie group of Hermitian type without compact factors, Y the

symmetric space associated toH and ρ a representation of Γ inH, i.e. a group homomorphism
ρ : Γ→ H. There is a natural way to measure the “complex size” of the representation ρ by
using the invariant Kähler forms of the involved symmetric spaces. The Toledo invariant of
ρ is defined as follows.

τ(ρ) = 1
n!

∫
X
f?ωY ∧ ωn−1,
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where f : Hn
C → Y is any ρ-equivariant map, ω is the Kähler form of X coming from the

invariant Kähler form of Hn
C, ωY is the H-invariant Kähler form of Y normalized so that its

holomorphic sectional curvatures are in [−1,−1/rkY], and f?ωY is understood as a 2-form on
X.

It should be noted that ρ-equivariant maps Hn
C → Y always exist, because Y is contractible,

and that any two such maps are equivariantly homotopic, so that the Toledo invariant depends
only on ρ, not on the choice of f . In fact, it depends only on the connected component of
Hom(Γ, H) containing ρ, because it can be seen as a characteristic class of the flat bundle on
X associated to ρ. The definition of the Toledo invariant can be extended to non uniform
lattices with a bit more work.

A fundamental fact about the Toledo invariant that was established in full generality by
M. Burger and A. Iozzi in [BI07] is that it satisfies the following Milnor-Wood type inequality:

|τ(ρ)| ≤ rk(Y) vol(X).

This allows to single out a special class of representations, namely those for which this in-
equality is an equality. These are the maximal representations we are interested in.

The Toledo invariant was first considered for representations of surface groups, i.e. when
Γ is the fundamental group of a closed Riemann surface, which can be seen as a uniform
lattice in SU(1, 1). It appeared for the first time in D. Toledo’s 1979 paper [Tol79] and
more explicitly in [Tol89], where the Milnor-Wood inequality was proved for n = 1 and
rkY = 1, namely when H = SU(m, 1) for some m ≥ 1. Toledo proved that maximal
representations are faithful with discrete image, and stabilize a complex line in complex
hyperbolic m-space, thus generalizing a theorem of Goldman for H = SL(2,R) [Gol80,Gol88].
Analogous results in the non uniform case were proved in [BI07,KM08a]. L. Hernandez showed
in [Her91] that maximal representations of surface groups in H = SU(p, 2), p ≥ 2, are also
discrete and faithful and stabilize a symmetric subspace associated to the subgroup SU(2, 2)
in Y. Maximal representations of surface groups are now known to be reductive, discrete and
faithful, to stabilize a maximal tube type subdomain in Y, and in general to carry interesting
geometric structures, see e.g. [BIW10,GW12]. They are nevertheless quite flexible. They can
for example always be deformed to representations that are Zariski-dense in the subgroup
corresponding to the tube type subdomain they stabilize [BIW10].

On the other hand, as indicated by the local rigidity result of [GM87], maximal represen-
tations of higher dimensional complex hyperbolic lattices, that is, lattices in SU(n, 1) for n
greater than 1, are expected to be much more rigid.

This was confirmed for rank 1 targets by K. Corlette in [Cor88] (the statement was given
for representations maximizing the so-called volume instead of the Toledo invariant but the
proof for the Toledo invariant is essentially the same). Corlette proved that if ρ is a volume-
maximal representation of a uniform lattice Γ ⊂ SU(n, 1), n ≥ 2, in H = SU(m, 1), then there
exists a ρ-equivariant holomorphic totally geodesic embedding Hn

C → Hm
C . This answered a

conjecture of Goldman and Millson and implies the local rigidity of [GM87]. This was later
shown to hold also in the case of non uniform lattices [BI08,KM08a].

For n ≥ 2 and higher rank targets, the situation was until now far from being well under-
stood. The case of real rank 2 target Lie groups has been treated in [KM08b] (for uniform lat-
tices), but the proof did not go through to higher ranks. Very recently, M. B. Pozzetti [Poz14]
succeeded in generalizing the approach of [BI08] and proved that for n ≥ 2 there are no Zariski
dense maximal representations of a lattice Γ ⊂ SU(n, 1) in SU(p, q) if p > q > 1. There is
no rank restriction in her result, and it is also valid for non uniform lattices, but as of now
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it seems to depend strongly on having a non tube type target (this is the meaning of the
assumption p 6= q).

In this paper, we prove the expected global rigidity for maximal representations of uniform
lattices of SU(n, 1), n ≥ 2, in all classical Lie groups of Hermitian type:

Theorem 1.1. Let Γ be a uniform (torsion free) lattice in SU(n, 1), n ≥ 2. Let ρ be a group
homomorphism of Γ in a classical noncompact Lie group of Hermitian type H, i.e. H is
either SU(p, q) with p ≥ q ≥ 1, SO0(p, 2) with p ≥ 3, Sp(m,R) with m ≥ 2, or SO?(2m) with
m ≥ 4.

If ρ is maximal, then H = SU(p, q) with p ≥ qn, ρ is reductive and there exists a holomor-
phic or antiholomorphic ρ-equivariant map from Hn

C to the symmetric space Yp,q associated
to SU(p, q).

As a consequence, maximal representations can be described completely:

Corollary 1.2. Let n ≥ 2 and p ≥ qn. Let ρ : Γ→ SU(p, q) be a maximal representation of
a uniform torsion free lattice Γ ⊂ SU(n, 1). Then:

– the ρ-equivariant holomorphic or antiholomorphic map Hn
C → Yp,q whose existence is

guaranteed by Theorem 1.1 is a totally geodesic homothetic embedding;
– the representation ρ is faithful, discrete, and ρ(Γ) stabilizes (and acts cocompactly on) a

totally geodesic copy of Hn
C in Yp,q, of induced holomorphic sectional curvature −1

q ;
– up to passing to a finite index subgroup and conjugacy, the representation ρ is a product

ρdiag×ρcpt, where ρdiag is the restriction to Γ of the standard diagonal embedding SU(n, 1) ↪→
SU(n, 1)q ↪→ SU(p, q), and ρcpt is a representation of Γ in the compact subgroup S(U(1)q ×
U(p− qn)) of SU(p, q).

Because as we said the Toledo invariant is constant on connected components of Hom(Γ, H),
this also implies the local rigidity of maximal representations and in particular we have:

Corollary 1.3. Let n ≥ 2 and p ≥ qn. Then the restriction to a uniform lattice Γ ⊂ SU(n, 1)
of the standard diagonal embedding SU(n, 1) ↪→ SU(n, 1)q ↪→ SU(p, q) is locally rigid.

This last corollary is in fact true without assuming the lattice Γ to be uniform [Poz14,
Corollary 1.5]. It is also probably a special case of the main result of [Kli11], where B. Klingler
gave a general algebraic condition for representations of uniform lattices in SU(n, 1) induced
by representations of SU(n, 1) to be locally rigid.

To prove Theorem 1.1, we work with a reductive representation ρ : Γ→ H (non reductive
representations can be easily ruled out later) and we consider the harmonic Higgs bundle
(E, θ) on the closed complex hyperbolic manifold X = Γ\Hn

C associated to ρ by the work of
K. Corlette [Cor88] and C. Simpson [Sim92]. This Higgs bundle is polystable and has a real
structure which comes from the fact that it is constructed out of a representation in a Lie
group of Hermitian type (and not merely in the general linear group). The Toledo invariant
is interpreted in this setting as the degree of a vector bundle on X. See §3.1 and §4.1.
These facts can be used in some situations to (re)prove the Milnor-Wood inequality and
study maximal representations. This has been widely done for representations of surface
groups, see e.g. [Xia00,MX02,BGPG03,BGPG06], and also, with limited success, for higher
dimensional lattices [KM08b].

The main novelty here is the study of the interplay between the Higgs bundle point of view
and the geometry and dynamics of the tautological foliation T on the projectivized tangent
bundle PTX of the complex hyperbolic manifold X.
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There is a well-defined notion of complex geodesics in complex hyperbolic space Hn
C. This

implies that PTX carries a smooth complex 1-dimensional foliation T by lifts of tangent spaces
of (local) complex geodesics, see §2.1. The tangential subbundle L of the tangent bundle of
PTX , i.e. the subbundle of tangent vectors tangent to the leaves of the foliation, identifies
naturally with the tautological line bundle OPTX (−1) on PTX . The tautological foliation is
endowed with a homogeneous transverse structure, where the SU(n, 1)-homogeneous space in
question is the space G of complex geodesics of Hn

C. This space supports an invariant indefinite
but non degenerate Kähler metric, hence an invariant volume form which defines a transverse
measure for the foliation T , cf. §2.2. There is therefore a closed current of integration along
the leaves of the foliation T on PTX and, as explained in §2.3, this current can be used to
compute the Toledo invariant of the representation ρ.

The idea is then to pull-back the Higgs bundle (E, θ) to a Higgs bundle (Ẽ, θ̃) over the
projectivized tangent bundle PTX and to study the behavior of this new Higgs bundle with
respect to the tautological foliation T . This is the content of §3.2. We define the foliated
degree of a coherent sheaf on PTX by integrating its first Chern class along the leaves of T .
We call a subsheaf of O(Ẽ) a leafwise Higgs subsheaf of Ẽ if it is invariant by the Higgs
field θ̃ in the directions tangent to the leaves. With these definitions we introduce notions
of leafwise semistability and leafwise polystability and we prove that they are satisfied by the
Higgs bundle (Ẽ, θ̃).

This allows to give in §4.2.1 a new proof of the Milnor-Wood inequality for reductive
representations of uniform lattices and to gain a lot of information in the maximal case.
To conclude one needs a dynamical argument to understand closures of projections to X of
subsets of PTX which are saturated under the tautological foliation. This is done using results
of M. Ratner on unipotent flows, see §2.4 and §4.2.3.

The interpretation of the Toledo invariant as a “foliated Toledo number” is sketched by
M. Burger and A. Iozzi in [BI08, p. 183], where it is attributed to F. Labourie. This point of
view is indeed strongly related with their approach, and the one of M. B. Pozzetti, where one
wants to prove that when a representation is maximal, there exists an equivariant measur-
able map between the Shilov boundaries that preserves a special incidence geometry. In the
complex hyperbolic case, this incidence geometry is the geometry of chains, i.e. of boundaries
at infinity of complex geodesics. Tautological foliations on the projectivized tangent bundle
of manifolds carrying a holomorphic projective structure (in particular complex hyperbolic
manifolds) are also discussed and used by N. Mok in [Mok05]. Some time ago, without at first
grasping the foliated side of the story, the authors of the present paper made some quickly
unsuccessful attempts at working with Higgs bundles on the projectivized tangent bundle.
Reading F. Labourie’s suggestion in [BI08] and N. Mok’s article [Mok05] encouraged them to
try again.

Acknowledgements We are very grateful to Matei Toma for the time he accepted to spend
discussing various topics, and in particular for his help concerning complex analytic aspects
of foliations. We also thank Jean-François Quint and Benoît Claudon for useful conversations
around the subject of this paper.

2. The tautological foliation on the projectivized tangent bundle of
complex hyperbolic manifolds

Complex hyperbolic n-space Hn
C is the set of negative lines in Cn+1 for a Hermitian form

h of signature (n, 1). It is an open set in the projective space CPn.
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The Lie group SU(n, 1) = SU(Cn+1, h) is the subgroup of SL(n+1,C) consisting of elements
preserving the Hermitian form h. As a group of matrices, in a basis (e1, . . . , en, en+1) of Cn+1

where the matrix of h is the diagonal matrix In,1 = diag(1, . . . , 1,−1),
SU(n, 1) = {M ∈ SL(n+ 1,C) |M?In,1M = In,1},

where M? denotes the conjugate transpose of M .
The group SU(n, 1) acts transitively on Hn

C. The stabilizer of a point is a maximal compact
subgroup of SU(n, 1) and is conjugated to U(n) = S(U(n)×U(1)). This gives a realization of
Hn

C as the Hermitian symmetric space SU(n, 1)/S(U(n)×U(1)).
Complex hyperbolic space also admits a realization as a bounded symmetric domain: it is

biholomorphic to the unit ball in Cn.
We equip the Lie algebra su(n, 1) of SU(n, 1) with the Killing form b(A,B) = 2 tr (AB),

normalized so that the holomorphic sectional curvature of the invariant Kähler metric ω it
induces on Hn

C is −1.
An n-dimensional complex hyperbolic manifoldX is the quotient of Hn

C by a discrete torsion
free subgroup Γ of SU(n, 1).

2.1. Complex geodesics and the tautological foliation.
There are two kinds of real 2-dimensional totally geodesic subspaces of Hn

C: totally real
copies of the Poincaré disc, of induced sectional curvature −1/4, and their complex coun-
terparts, the complex geodesics, which are complex copies of the Poincaré disc, of induced
sectional curvature −1. The complex geodesics of Hn

C ⊂ CPn are just the intersections of Hn
C

with the complex lines CP1 ⊂ CPn. Given a point in Hn
C and a complex tangent line at this

point, there is a unique complex geodesic through that point tangent to the complex line.
Let THnC → Hn

C be the holomorphic tangent bundle of Hn
C and consider the projectivized

tangent bundle π : PTHnC → Hn
C of Hn

C. It is a holomorphic bundle and the fiber over a point
x ∈ Hn

C is the projective space of lines in the tangent space THnC ,x.
We can pull-back the tangent bundle THnC → Hn

C to PTHnC to obtain a vector bundle π?THnC →
PTHnC . There is a natural line subbundle of π?THnC , the tautological line bundle OPTHnC

(−1):

OPTHnC
(−1)ξ = {u ∈ THnC ,π(ξ) | u ∈ ξ}.

The complex geodesics on Hn
C define a foliation T on PTHnC in the following way: if ξ is a

point in PTHnC , there is a unique complex geodesic C in Hn
C through π(ξ) and tangent to the

line ξ ⊂ THnC ,π(ξ). The holomorphic tangent bundle TC of C defines a complex line in THnC ,x
for each x ∈ C, hence a holomorphic curve Lξ in PTHnC . By definition, Lξ is the leaf through
ξ of the foliation T on PTHnC .

Of course this foliation defines a holomorphic line subbundle L of TPTHnC : the fiber Lξ of L at
ξ ∈ PTHnC is the holomorphic tangent space at ξ of the leaf Lξ. By construction the differential
π? of π at ξ maps Lξ to the line ξ ⊂ THnC ,π(ξ). This also means that when considered as a
morphism from TPTHnC

to π?THnC , π? realizes an isomorphism between the line subbundle L of
TPTHnC

and the tautological line subbundle OPTHnC
(−1) of π?THnC . Therefore we will call T the

tautological foliation.
If Γ is a discrete torsion free subgroup in SU(n, 1) and X = Γ\Hn

C the corresponding
complex hyperbolic manifold, all the objects that have just been defined descend to X, and
will be denoted by the same letters: there is a tautological foliation T on the projectivized
tangent bundle π : PTX → X whose leaves are locally given by the tangent spaces to (local)
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complex geodesics. This defines a line subbundle L of TPTX isomorphic to the tautological
line subbundle OPTX (−1) of π?TX → PTX .

2.2. The transverse structure of the foliation.

Let us now consider the projectivized tangent bundle PTHnC of Hn
C and its tautological

foliation from the homogeneous point of view.
As we said, complex geodesics in Hn

C are intersections of complex lines in CPn with Hn
C,

meaning that they are precisely the complex 2-planes in Cn+1 on which the Hermitian form
h restricts to a Hermitian form of signature (1, 1). Therefore, as a homogeneous space, the
space G of complex geodesics of Hn

C is the homogeneous space SU(n, 1)/S(U(n−1)×U(1, 1)).
On the other hand, a point in the projectivized tangent bundle PTHnC of Hn

C is given by
two h-orthogonal complex lines in Cn+1 spanning a complex geodesic. Hence PTHnC is the
quotient SU(n, 1)/S(U(n− 1)×U(1)×U(1)). The central fiber of the holomorphic projection
π : PTHnC → Hn

C is U(n)/U(n− 1)×U(1) = CPn−1 as it should.
Of course there is a map from PTHnC to G associating to a point in the projectivized tangent

bundle the complex geodesic it defines. This gives another holomorphic fibration π′ : PTHnC →
G. The central fiber U(1, 1)/U(1) × U(1) is isometric to the Poincaré disc and the fibers of
the fibration π′ are precisely the leaves of the tautological foliation on PTHnC .

For a general complex hyperbolic manifold X, the tautological foliation T on PTX is not
given by a holomorphic fibration as in the case of Hn

C. But T inherits a transverse structure of
G-homogeneous foliation, see [God91, Proposition 3.3, p. 165]. To understand this transverse
structure, we need to describe the geometry of the space of complex geodesics G. We will see
that G is equipped with a G-invariant indefinite Kähler form, which gives a G-invariant volume
form, hence an invariant measure µ, which defines a transverse measure for the foliation T
on PTX , and hence a closed current of integration along the leaves of T .

In order to lighten the notations, we set GC = SL(n+ 1,C), G = SU(n, 1), K = S(U(n)×
U(1)), V = S(U(n − 1) × U(1) × U(1)), V ′ = S(U(n − 1) × U(1, 1)), and we denote their
respective Lie algebras by gC, g, k, v, v′.

We also denote by Q, Q′, Q′′ the parabolic subgroups of GC stabilizing the flags
(〈e1, . . . , en−1〉 ⊂ 〈e1, . . . , en〉 ⊂ Cn+1), (〈e1, . . . , en−1〉 ⊂ Cn+1) and (〈e1, . . . , en〉 ⊂ Cn+1)
respectively. Here and in the rest of the paper, whenever v1, . . . , vk are elements of a vec-
tor space, 〈v1, . . . , vk〉 denotes their linear span. The Lie algebra of Q will be denoted by
the corresponding fraktur letter. Then PTHnC = G/V is the open G-orbit of eQ in GC/Q,
G = G/V ′ is the open G-orbit of eQ′ in GC/Q

′ and Hn
C = G/K is the open G-orbit of eQ′′ in

GC/Q
′′ = CPn.

We have the following matrix expressions:

k =
{(

A 0
0 a

)
, A ∈ u(n), a ∈ C, a+ trA = 0

}
,

v =


 A 0 0

0 a 0
0 0 b

 , A ∈ u(n− 1), a, b ∈ C, a+ b+ trA = 0

 .
v′ =

{(
A 0
0 B

)
, A ∈ u(n− 1), B ∈ u(1, 1), trA+ trB = 0

}
.
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The real tangent space of PTHnC at eV is naturally identified with

m =

ξ =

 0 ξ3 ξ2
−ξ?3 0 ξ1
ξ?2 ξ?1 0

 , ξ1 ∈ C, ξ2, ξ3 ∈ Cn−1

 .
The holomorphic tangent space of PTHnC at eV is g/q and the (1, 0)-part of the complexified
tangent space is

m1,0 =


 0 ξ3 ξ2

0 0 ξ1
0 0 0

 , ξ1 ∈ C, ξ2, ξ3 ∈ Cn−1

 ,
so that the invariant complex structure is given at eV by

J

 0 ξ3 ξ2
−ξ?3 0 ξ1
ξ?2 ξ?1 0

 =

 0
√
−1ξ3

√
−1ξ2√

−1ξ?3 0
√
−1ξ1

−
√
−1ξ?2 −

√
−1ξ?1 0

 .
Define the subspaces

m1 =


 0 0 0

0 0 ξ1
0 ξ?1 0

 , ξ1 ∈ C

 ,
m2 =


 0 0 ξ2

0 0 0
ξ?2 0 0

 , ξ2 ∈ Cn−1


and

m3 =


 0 ξ3 0
−ξ?3 0 0

0 0 0

 , ξ3 ∈ Cn−1


of m and the corresponding subspaces m1,0

1 , m1,0
2 , m1,0

3 of m1,0. It is plain that k⊕ (m1 ⊕m2)
is a Cartan decomposition of g. The subspaces m1, m2 and m3 are invariant under the
adjoint action of V on m, and therefore define C∞ subbundles of the real tangent bundle of
PTHnC . The subspaces q ⊕ m1,0

1 and q ⊕ m1,0
3 are invariant under the adjoint action of Q and

therefore define holomorphic subbundles of the holomorphic tangent bundle of PTHnC . These
holomorphic subbundles correspond respectively to the holomorphic tangent bundle of the
fibers of the fibrations π′ : PTHnC → G and π : PTHnC → Hn

C.
Let ω1, ω2, ω3 be the skew-symmetric bilinear forms on m given by

ωj(ξ, η) = 2
√
−1(η?j ξj − ξ?j ηj),

for ξ, η ∈ m. These forms are invariant by V hence they define G-invariant 2-forms on
PTHnC = G/V which will be denoted by the same letters.

It is easily checked that the bilinear form ω1 + ω2 on m1 ⊕ m2 is invariant by K, hence
that it defines a G-invariant 2-form ω on Hn

C = G/K. The form ω is closed (because it is an
invariant 2-form on a symmetric space) and it is precisely the invariant Kähler form on Hn

C,
normalized so as to have constant holomorphic sectional curvature −1. It is also given by
ω(ξ, η) = b(ζ, [ξ, η]) = b(ad(ζ)ξ, η) for ξ, η ∈ m1 ⊕ m2, where b is the Killing form on g and
ζ is the element of the 1-dimensional center of k such that ad(ζ) gives the invariant complex
structure of Hn

C:

ζ =
( √

−1
n+1 1n 0

0 −n
√
−1

n+1

)
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Here and in the rest of the paper, if k is an integer, 1k denotes the identity matrix of size k.
The homogeneous space G of complex geodesics of Hn

C is also a complex manifold and it
admits a G-invariant non degenerate but indefinite Kähler form ωG (its signature is (n −
1, n − 1)). Indeed, one checks that the bilinear form ω2 − ω3 on m2 ⊕ m3 is invariant by
V ′ = S(U(n − 1) × U(1, 1)) and hence defines a G-invariant form ωG on G = G/V ′. Again,
this form can be computed as ωG(ξ, η) = b(ζ ′, [ξ, η]) = b(ad(ζ ′)ξ, η) for ξ, η ∈ m2 ⊕m3, where

ζ ′ =
( 2

√
−1

n+1 1n−1 0
0 − (n−1)

√
−1

n+1 12

)
is the element of the 1-dimensional center of v′ such that ad(ζ ′) gives the invariant complex
structure of G. This expression of ωG implies in particular that it is closed. The indefinite
Kähler form ωG defines a G-invariant volume form hence a G-invariant measure on G. This
measure is by construction a transverse measure for the tautological foliation on PTX [God91,
§3.2 i) p. 355].

The forms ωj allow also to compute the curvature form of the dual OPTHnC
(1) of the tauto-

logical line bundle over PTHnC endowed with the natural metric induced from the one of THnC
(see e.g. [CW03, (3.7)]). This is a positive (1,1)-form which we take as the Kähler form ωPTX
on PTX . One finds

ωPTX =
√
−1Θ(OPTHnC

(1)) = ω1 + 1
2(ω2 + ω3) = (ω1 + ω2)− 1

2 (ω2 − ω3) = π?ω − 1
2 π
′?ωG .

(Note that we normalized the metric on THnC in order to have constant holomorphic sectional
curvature −1 and that ω3 restricted to a fiber of π is 2ωFS in [CW03].)

If X is a complex hyperbolic manifold of the form Γ\Hn
C, the G-invariant 2-forms ω1, ω2

and ω3 descend to forms on PTX which will be denoted by the same letters. The G-invariant
Kähler form ω on Hn

C descends to a Kähler form on X, also denoted ω. Again, ω1 + ω2 is
the pull-back π?ω and ω1 + 1

2(ω2 +ω3) is the curvature form of OPTX (1), which is isomorphic
to the dual L∨ of the tangent bundle L to the tautological foliation T on PTX . The 2-form
ω2 − ω3 is a closed form on PTX .

2.3. Integration along the leaves.

Assume from now on that Γ is uniform, so that X = Γ\Hn
C is a closed complex hyperbolic

manifold. Let
Ω := (−1)n−1

vol(CPn−1)
(ω2 − ω3)2n−2 = (−1)n−1

vol(CPn−1)
π′?ω2n−2

G

be the form on PTX defined by the pull-back to PTHnC of the G-invariant volume form ω2n−2
G

(suitably normalized) on the space of complex geodesics G. It is a closed semi-positive (2n−
2, 2n− 2)-form of rank 4n− 4 on PTX . It defines a closed semi-positive (1, 1)-current on PTX
by the formula

α 7−→
∫
T
α := 1

(2n− 2)!

∫
PTX

α ∧ Ω,

for α a (1, 1)-form on PTX . This is the current of integration along the leaves of the foliation T
associated to the transverse measure µ (again suitably normalized) coming from the invariant
volume form on G. An alternate definition of this current, which explains its name, is as
follows [God91, §3.5, p. 357]. Take a covering (Ui)i∈I of PTX by regular open sets for the
foliation T , and a partition of unity (χi)i∈I subordinated to it. Let Ti be the space of plaques
of Ui and call again µ the measure on Ti given by the transverse measure. For a 2-form α on
PTX , the forms χiα are compactly supported in the open sets Ui and by integrating χiα on
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the plaques of Ui, we obtain a compactly supported function on the space Ti which we can
then integrate against the measure µ to get∫

T
α =

∑
i∈I

∫
Ti

(∫
t
χi α

)
dµ(t).

The following easy but fundamental lemma will allow us to compute Toledo invariants of
representations and degrees of vector bundles on X by integration along the leaves of T .

Lemma 2.1. Let β be a 2-form on X, then
1
n!

∫
X
β ∧ ωn−1 =

∫
T
π?β.

Proof. Let α be a 2-form on PTX . Then,∫
PTX

α ∧ ωn−1
2 ∧ ωn−1

3 = 1
2

∫
PTX
〈α, ω1〉ω1 ∧ ωn−1

2 ∧ ωn−1
3

= 1
2n

∫
PTX
〈α, ω1〉 (π?ω)n ∧ ωn−1

3

= 1
2n

∫
X

(∫
π−1(x)

〈α, ω1〉ωn−1
3

)
ωn.

If now β is a 2-form on X, one has∫
π−1(x)

〈π?β, ω1〉
ωn−1

3
(n− 1)! = vol(CPn−1)

n
〈β, ω〉x.

Hence ∫
PTX

π?β ∧ ωn−1
2 ∧ ωn−1

3 = (n− 1)! vol(CPn−1)
2n2

∫
X
〈β, ω〉ωn

= (n− 1)!2 vol(CPn−1) 1
n!

∫
X
β ∧ ωn−1,

so that
1
n!

∫
X
β ∧ ωn−1 = 1

vol(CPn−1)

∫
PTX

π?β ∧ ωn−1
2

(n− 1)! ∧
ωn−1

3
(n− 1)!

= (−1)n−1

vol(CPn−1)

∫
PTX

π?β ∧ (ω2 − ω3)2n−2

(2n− 2)! .

�

If ρ is a representation of our lattice Γ ⊂ SU(n, 1) in the automorphism group of a Hermitian
symmetric space Y, recall from the introduction that the Toledo invariant of ρ is defined by

τ(ρ) = 1
n!

∫
X
f?ωY ∧ ωn−1,

where f : Hn
C → Y is any ρ-equivariant map, and ωY is the invariant Kähler form of Y,

normalized so that the holomorphic sectional curvature of Y lies in [−1,−1/rkY]. Here, using
the ρ-equivariance of f and the invariance of ωY , f?ωY is seen as a form on X = Γ\Hn

C.
We therefore have

τ(ρ) =
∫
T
π?f?ωY .
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2.4. A consequence of Ratner’s theorem on orbit closures.

We state here a fundamental property of the leaves of the tautological foliation which
follows from the resolution by M. Ratner of Raghunathan’s conjecture on orbit closures.

Let L be a leaf of the tautological foliation T on PTX = Γ\G/V . It is of the form
Γ\ΓUL gLV/V for some gL ∈ G and a group UL locally isomorphic to SU(1, 1). Because UL is
generated by unipotent elements, it follows from the work of Ratner [Rat91a] that the closure
of the orbit Γe · UL in Γ\G is homogeneous, namely that there exists a closed subgroup SL
of G such that UL ⊂ SL and Γe · UL = Γe · SL. This implies that Γ ∩ SL is a lattice in
SL [Rag, Theorem 1.13] and that SL is a reductive group with compact center, for example
because rkRG = 1 [Sha91].

By [Pay99], the fact that rkRUL = rkRG implies that the Lie algebra of SL is stable
by the Cartan involution of G given by the point gLK of Hn

C = G/K, so that the orbit
ỸL := SL · gLK of gLK under SL in Hn

C is a totally geodesic submanifold and YL := Γ\ΓỸL
is a closed immersed totally geodesic submanifold of X = Γ\G/K. This submanifold is the
closure of the projection π(L) of L in X.

Summing up, we have:

Proposition 2.2. Let L be a leaf of the tautological foliation T on PTX . The closure π(L)
of the image of L by the projection π : PTX → X is a closed immersed totally geodesic
submanifold of X.

3. Higgs bundles on complex hyperbolic manifolds

3.1. Harmonic Higgs bundles.

A representation ρ of the fundamental group Γ of a compact manifold X to in a real
algebraic semisimple Lie group without compact factors H ⊂ SL(N,C) is reductive if the
Zariski closure of ρ(Γ) in H is a reductive group.

K. Corlette [Cor88] proved that if ρ : π1(X) → H is reductive, then there exists a ρ-
equivariant harmonic map f from the universal cover X̃ of X to the symmetric space Y
associated to H.

When the manifold X is Kähler, with Kähler form ω, it follows from a Bochner formula
due to J. H. Sampson [Sam78] and Y.-T. Siu [Siu80], that the harmonic map f is moreover
pluriharmonic, and that the image of the (1, 0)-part d1,0f : T 1,0Hn

C → TCY of its complexified
differential is Abelian (as a subspace of the complexification of the Lie algebra of H). This
has been shown by C. Simpson [Sim88,Sim92] to give a harmonic Higgs bundle (E, θ) on X.

Assume in this section that H = SL(N,C). The bundle E, as a C∞-bundle, is just the
flat complex vector bundle of rank N associated to the representation ρ. The Higgs field
θ is a (1, 0)-form with values in End(E), which can be seen as the (1, 0)-part d1,0f of the
complexified differential of the harmonic map f . It satisfies [θ, θ] = 0. The harmonic map can
also be thought of as defining a Hermitian metric on E, called the harmonic metric, which
has the following properties. If D is the flat connection on E and ∇ the component of D
which preserves this metric, then (∇′′)2 = 0 and ∇′′θ = 0, so that ∇′′ defines a holomorphic
structure on E for which θ is holomorphic. Moreover D, ∇ and θ are related by

D = ∇+ θ + θ?,

where θ? is the adjoint of θ w.r.t. the harmonic metric. This, together with the Chern-Weil
formula, implies that (E, θ) is a polystable Higgs bundle on X, see [Sim88] and the proof of
Proposition 3.1 below. This means for one thing that (E, θ) is a semistable Higgs bundle,
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namely that if F ⊂ OX(E) is a Higgs subsheaf of E, i.e. a subsheaf such that θ(F) ⊂ F⊗Ω1
X ,

then
degF := 1

n!

∫
X
c1(F) ∧ ωn−1 ≤ degE = 0.

(The last equality holds because E is flat). A semistable Higgs bundle (E, θ) is polystable if
additionally whenever F is a Higgs subsheaf of degree equal to degE, then F is the sheaf of
sections of a holomorphic vector subbundle F of E stable by θ and the orthogonal complement
F⊥ of F w.r.t the harmonic metric is also a holomorphic subbundle of E stable by θ, so that
we have a Higgs bundle orthogonal decomposition

(E, θ) = (F, θ|F )⊕ (F⊥, θ|F⊥).

3.2. Foliated notions of stability on complex hyperbolic manifolds.
Let (E, θ) be a harmonic Higgs bundle on a closed complex hyperbolic manifoldX. We may

pull it back by π : PTX → X to get a Higgs bundle (Ẽ, θ̃) = (π?E, π?θ) over the projectivized
tangent bundle PTX . We lift everything (harmonic metric, flat connection, Chern connection,
etc.) to (Ẽ, θ̃) and we denote all the lifted objects with a “∼”, e.g. we have

D̃ = ∇̃+ θ̃ + θ̃?.

Our goal in this section is to understand the behaviour of the Higgs bundle (Ẽ, θ̃) with
respect to the tautological foliation T on PTX . We begin by defining adapted notions of Higgs
subsheaves, degree, and stability.

We restrict the Higgs field θ̃ ∈ H0(PTX ,End (Ẽ) ⊗ Ω1
PTX ) to the tangent bundle L of the

leaves of the foliation T . This gives a new notion of invariance for subsheaves F ⊂ OPTX (Ẽ):
such a subsheaf F is invariant along the leaves or is a leafwise Higgs subsheaf if θ̃ maps F ⊗L
to F . (We use the same letter to denote the line bundle L and the invertible sheaf of its
sections.)

The foliated degree degT F of a coherent sheaf F on PTX is defined by integration along
the leaves as follows:

degT F =
∫
T
c1(F) = 1

(2n− 2)!

∫
PTX

c1(F) ∧ Ω.

Lemma 2.1 readily implies that if F is a coherent sheaf on X, then degT π?F = degF .
The next result shows that the Higgs bundle (Ẽ, θ̃) over PTX enjoys some stability prop-

erties along the leaves of the tautological foliation T . Before giving the statement, we recall
a definition: a subset A ⊂ PTX is T -saturated if it is a union of leaves of the foliation T , i.e.
for all ξ ∈ A, the leaf Lξ of the foliation T through ξ is included in A. Obviously if A is
T -saturated then so is PTX\A.
Proposition 3.1. Let F ⊂ OPTX (Ẽ) be a leafwise Higgs subsheaf of (Ẽ, θ̃) such that
OPTX (Ẽ)/F is torsion-free. Then

(1) (Semistability along the leaves) degT F ≤ 0;
(2) (Polystability along the leaves) if degT F = 0, there exist a T -saturated analytic

subset S0 of PTX of codimension at least 2 and a holomorphic subbundle F of Ẽ
defined on PTX\S0, such that F is the sheaf of sections of F on PTX\S0. Moreover
if F⊥ is the orthogonal complement of F w.r.t. the pull-back on Ẽ of the harmonic
metric, then θ̃(F⊥⊗L) ⊂ F⊥ and the C∞-decomposition Ẽ = F ⊕F⊥ is holomorphic
along the leaves of the foliation T , i.e. for any leaf L of T such that L ⊂ PTX\S0,
Ẽ|L = F|L ⊕ F⊥|L is a holomorphic orthogonal direct sum on L.
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Proof. We first prove the semistability along the leaves. It will follow from the Chern-Weil
formula.

Because OPTX (Ẽ)/F is torsion-free, there exist an analytic subset S ⊂ PTX of codimension
at least 2, and a holomorphic subbundle F of Ẽ defined outside of S, such that F is the sheaf
of sections of F on PTX\S. On PTX\S, we can decompose the flat connection D̃ with respect
to the orthogonal decomposition Ẽ = F ⊕ F⊥ where the background metric is the pull-back
of the harmonic metric. Denoting by σ ∈ C∞1,0(PTX\S,Hom(F, F⊥)) the second fundamental
form of F , we get:

D̃ =
(
∇̃F −σ?
σ ∇̃F⊥

)
+
(
θ̃1 θ̃2
θ̃3 θ̃4

)
+
(
θ̃?1 θ̃?3
θ̃?2 θ̃?4

)
.

Since D̃2 = 0, we have (∇̃F + θ̃1 + θ̃?1)2 = −(θ̃2 + θ̃?3 − σ?) ∧ (θ̃3 + θ̃?2 + σ).
Now, the curvature ΘF of the connection ∇̃F + θ̃1 + θ̃?1 can be used to compute a represen-

tative of the first Chern class of F on PTX\S, namely c1(F ) =
√
−1

2π tr ΘF , and we get

tr ΘF ∧ Ω = tr (−θ̃2 ∧ θ̃?2 + σ? ∧ σ − θ̃?3 ∧ θ̃3 − θ̃?3 ∧ σ + σ? ∧ θ3) ∧ Ω
= tr (−θ̃2 ∧ θ̃?2 + σ? ∧ σ) ∧ Ω.

Indeed, if [η] ∈ PTX and if (η, ξ1, . . . , ξ2n−2) is an orthonormal basis of the tangent space of
PTX at [η] (with respect to ωPTX ) and (dz, dw1, . . . , dw2n−2) is the dual basis, then θ̃3(η) = 0
since F is invariant along the leaves. Hence θ̃3 can be written

∑
1≤j≤2n−2 θ

j
3 dwj . Since

Ω = (2n − 2)!
√
−12n−2

dw1 ∧ dw̄1 ∧ · · · ∧ dw2n−2 ∧ dw̄2n−2, we get that tr (θ̃?3 ∧ θ̃3) ∧ Ω =
tr (θ̃?3 ∧ σ) ∧ Ω = tr (σ? ∧ θ̃3) ∧ Ω = 0.

Hence
√
−1

2π tr ΘF ∧Ω = aω2n−1
PTX with a : PTX\S → R a nonpositive function. This finishes

the proof of (1), because integrating
√
−1

2π tr ΘF ∧ Ω on PTX\S indeed computes the foliated
degree of F by the Chern-Weil Formula, see [Sim88, Lemma 3.2] and [Sib13, Theorem 2.23
& Lemma 4.6].

Now let us prove (2). We will follow the well-known proof that Einstein-Hermitian vector
bundles are polystable in the usual sense, see [Kob87]. Assume that degT (F) = 0 for the
subsheaf F of the proof of Assertion (1). Then tr (−θ̃2 ∧ θ̃?2 + σ? ∧ σ) ∧Ω = 0 on PTX\S and
this implies that for all η ∈ L|PTX\S , θ̃2(η) = 0 and σ(η) = 0. This means on the first hand
that θ̃(F⊥ ⊗ L) ⊂ F⊥ and on the second hand that if L is a leaf of T , then on L ∩ (PTX\S),
F is a parallel subbundle of Ẽ. As in the proof of [Kob87, Theorem 5.8.3], we deduce that
the C∞-decomposition Ẽ = F ⊕F⊥ is holomorphic when restricted to L∩ (PTX\S). We will
say that the decomposition, where it is defined, is holomorphic along the leaves of T .

Let S0 = {ξ ∈ S such that Lξ ⊂ S}. This set is clearly T -saturated, and it is an analytic
subset of codimension at least 2 in PTX . Indeed, on a regular open set U ' C2n−1 for
the foliation T , we may assume that the leaves of T are the fibers of a linear projection
p : C2n−1 → C2n−2. Then S0 = {ξ ∈ S such that dim p−1(p(ξ)) ≥ 1} and hence is analytic
by [Fis76, p. 137].

We will prove that the holomorphic subbundle F which is defined outside S can be extended
to a holomorphic subbundle defined on PTX\S0, and that the decomposition Ẽ = F ⊕ F⊥,
which is C∞ and holomorphic along the leaves outside S, can also be extended to a decom-
position on PTX\S0, with the same regularity. This will be a consequence of the following
variation on the second Riemann extension theorem:

Lemma 3.2. Let V be a 1-dimensional linear subspace in Cd. For z ∈ Cd, let `z be the affine
line z + V . Let Y be an analytic subset of Cd, of codimension at least 2. Let ϕ : Cd\Y → C
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be a C∞ map. Assume that ϕ is holomorphic in the V -direction, meaning that for every
z ∈ Cd\Y , the restriction of ϕ to a neighborhood of z in `z is holomorphic. Let y be a point
of Y which is an isolated point of Y ∩ `y. Then there exist a neighborhood U of y in Cd and
a C∞ map Φ : U → C, holomorphic in the V -direction, such that Φ = ϕ on U\Y .

(We postpone the proof of the lemma to the end of the present proof.)
Let ξ be a point of S\S0, i.e. ξ is an isolated point of S ∩Lξ. We want to show that F and

F⊥ can be extended in a neighborhood of ξ in PTX . Since this is a local problem, we may
assume that we are on C2n−1, that the leaves of the tautological foliation T are the affine
lines of a given direction V ⊂ C2n−1 as in the lemma, and that Ẽ is a trivial bundle. Because
of the regularity properties of F and F⊥, the section φ of Hom(Ẽ, Ẽ) defined over C2n−1\S
and corresponding to the orthogonal projection on F⊥ is given by a matrix of functions (φij)
from C2n−1\S to C which are C∞ and holomorphic in the V -direction. By the above lemma,
φ extends to a section of Hom(Ẽ, Ẽ) defined in a neighborhood of ξ in C2n−1. By the lower
semi-continuity of the rank, if ξ ∈ S\S0, rkφ(ξ) ≤ rk Ẽ − rkF . In the same way, id− φ can
be extended to S\S0 and hence rkφ(ξ) = rk Ẽ − rkF . Hence the subbundles F and F⊥ can
be extended to PTX\S0, as C∞-vector bundles holomorphic along the leaves of T . Since F is
holomorphic and orthogonal to F⊥ on PTX\S, this is also true on PTX\S0. �

Proof of Lemma 3.2. Choose coordinates (z1, . . . , zd) on Cd such that y = 0 and `0 = V =
{z | z1 = · · · = zd−1 = 0}. By assumption 0 is an isolated point of `0 ∩ Y , hence there exists
r > 0 such that the circle {z | z1 = · · · = zd−1 = 0, |zd| = r} does not meet Y . Let ε > 0 be
such that {z | |zi| < ε, ∀1 ≤ i ≤ d − 1, |zd| ∈ (r − ε, r + ε)} ∩ Y = ∅. Then the function Φ
defined by

Φ(z1, . . . , zd) = 1
2π
√
−1

∫
|t|=r

ϕ(z1, . . . , zd−1, t)
t− zd

dt

is C∞ on the polydisc U = ∆(0, ε)d−1 ×∆(0, r). Moreover, for all (z1 . . . , zd−1) ∈ ∆(0, ε)d−1,
the map z 7→ Φ(z1, . . . , zd−1, z) is holomorphic on the disc ∆(0, r).

Let U ′ = {z ∈ U | `z ∩ Y ∩ U = ∅}. Because ϕ is holomorphic in the V -direction, for all z
in U ′, the restriction of Φ to `z ∩ U equals ϕ by the Cauchy formula. Now U ′ is dense in U .
Indeed, let p be the projection Cd → Cd/V . Since 0 ∈ Y is an isolated point of Y ∩p−1(p(0)),
near 0 = p(0) the set p(Y ) is analytic of the same dimension as Y ([Fis76, p. 133]), hence it
has codimension at least 1. Hence Φ = ϕ on U\Y . �

4. Maximal representations in SU(p, q), p ≥ q

4.1. Preliminaries.

We recall here some necessary facts on the symmetric space Yp,q associated to the group
SU(p, q), its holomorphic sectional curvature, and the consequences this has on special holo-
morphic maps Hn

C → Yp,q. We refer to [KM08b, §3.1] for details.

Let E be the vector space Cp+q equipped with a Hermitian form hp,q of signature (p, q),
p ≥ q. The group H = SU(p, q) = SU(E, hp,q) acts transitively on Yp,q, the open subset of
the Grassmann manifold of q-dimensional subspaces of E consisting of q-subspaces on which
hp,q restricts to a negative definite Hermitian form. The stabilizer of such a q-subspace is
a maximal compact subgroup of G and is isomorphic to S(U(p) × U(q)). Hence Yp,q =
SU(p, q)/S(U(p) × U(q)). As a bounded symmetric domain, it is naturally identified with
{Z ∈ Mp,q(C) | 1q − Z?Z > 0} ⊂ Cpq. We normalize the invariant metric so that, if o ∈ Yp,q,
using the standard identification between the holomorphic tangent space of Yp,q at o and



MAXIMAL REPRESENTATIONS OF UNIFORM COMPLEX HYPERBOLIC LATTICES 15

Mp,q(C), the holomorphic sectional curvature for the complex line 〈A〉 generated by a nonzero
A ∈Mp,q(C) is given by

κ(〈A〉) = −
tr
(
(A?A)2)

(tr (A?A))2 .

This formula shows that κ(〈A〉) is pinched between −1 and −1/q and that κ(〈A〉) = −1/q if
and only if the column vectors of A are pairwise orthogonal and have the same norm (for the
standard Hermitian scalar product in Cp).

The Ahlfors-Schwarz-Pick lemma [Roy80] therefore implies that if f : Hn
C → Yp,q is holo-

morphic, then f?ωYp,q ≤ q ω. Moreover, this inequality is an equality only if the induced
holomorphic sectional curvature on the image of f is everywhere maximal, i.e. equal to −1/q,
and we proved the following lemma in [KM08b, §3.1]:

Lemma 4.1. Let f : Hn
C → Yp,q be a holomorphic map such that f?ωYp,q = q ω. Then p ≥ qn

and up to the composition of f by an isometry of Yp,q, f is equal to the following holomorphic
totally geodesic embedding:

fmax : Hn
C 3 z =


z1
z2
...
zn

 7−→ Z =


z11q
z21q
...

zn1q
0p−nq,q

 ∈ Yp,q.

This lemma shows that Corollary 1.2 is indeed a consequence of Theorem 1.1, and that to
prove Theorem 1.1 in the case of representations in SU(p, q), it suffices to prove that if ρ is
maximal, then there exists a ρ-equivariant holomorphic or antiholomorphic map Hn

C → Yp,q.
For if f is holomorphic then the Ahlfors-Schwarz-Pick lemma and the maximality of ρ imply
that f?ωYp,q = q ω, hence by the lemma that p ≥ qn and essentially f = fmax. If f is
antiholomorphic then the maximality of ρ implies f?ωYp,q = −q ω, so that again p ≥ qn and
essentially f = f̄max. The last assertion of Corollary 1.2 follows from the description of the
stabilizer in SU(p, q) of the image of fmax we gave at the end of [KM08b, §3.1].

4.2. Reductive representations.

Let ρ : Γ → SU(p, q) be a reductive representation. We work with the associated Higgs
bundle (E, θ))→ X. We recall that Higgs bundles arising from reductive representations into
real reductive subgroups H of SL(N,C) have an additional structure, that one could call a
real structure, compared to those arising from representations in SL(N,C) without further
restriction, see e.g. [Sim92, p. 90-91] or [Mau15, §3.6].

In particular, as explained for example in [KM08b, §2.4 & §3.2] or [Mau15, §3.6.2 & §3.6.3],
in the case of SU(p, q) ⊂ SL(p + q,C), the associated Higgs bundle E splits holomorphically
as a sum V ⊕W , where V has rank p and W has rank q. This is because it is (as a smooth
bundle) the bundle associated to the standard representation of GL(p + q,C) on E = Cp+q,
but its structure group is the complexification S(GL(p,C)×GL(q,C)) of the maximal compact
subgroup S(U(p) × U(q)) of SU(p, q). Note that deg V + degW = degE = 0. Moreover the
Higgs field seen as a sheaf morphism θ : E⊗TX → E is off-diagonal w.r.t. this decomposition:
it has two components β : W ⊗ TX → V and γ : V ⊗ TX →W .

If f : Hn
C → Yp,q is the ρ-equivariant harmonic map used to construct (E, θ), then as we

said the Higgs field θ can be identified with the (1, 0)-part d1,0f : T 1,0Hn
C → TCYp,q of the

complexified differential of f . If p1,0, resp. p0,1, is the projection TCYp,q → T 1,0Yp,q, resp.
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TCYp,q → T 0,1Yp,q, then β, resp. γ, can be identified with p1,0 ◦d1,0f , resp. p0,1 ◦d1,0f . Hence
the harmonic map f is holomorphic, resp. antiholomorphic, if and only if γ = 0, resp. β = 0.

We lift the Higgs bundle (V ⊕ W,

(
0 β
γ 0

)
) → X to the projectivized tangent bundle

PTX . As before, all lifted objects are denoted with a “∼”. In particular, we shall denote by{
β̃ : W̃ ⊗ L −→ Ṽ
γ̃ : Ṽ ⊗ L −→ W̃

the two components of the lifted Higgs field restricted to the tangent bundle L of the tauto-
logical foliation T on PTX . (We shall denote by the same letter a vector bundle defined on
PTX , or X, and the sheaf of its sections.)

We also need to reformulate the Milnor-Wood inequality satisfied by the Toledo invariant
of ρ in terms of foliated degrees of vector bundles on PTX .

If f : Hn
C → Yp,q is the ρ-equivariant harmonic map, it is easily checked that f?TYp,q '

W ?⊗V , where f?TYp,q is here seen as a bundle on X = Γ\Hn
C. The symmetric space Yp,q is a

Kähler-Einstein manifold, and with our curvature normalization, c1(TYp,q) = − 1
2π

p+q
2 ωYp,q .

Hence the Toledo invariant τ(ρ) is given by

τ(ρ) = − 4π
p+ q

deg f?TYp,q = 4π degW = 4π degT W̃ ,

where the last equality is given by Lemma 2.1.
At the end of §2.2 we saw that c1(L∨) = 1

2π (π?ω − 1
2 (ω2 − ω3)), so that

degT L∨ = 1
2π(2n− 2)!

∫
PTX

π?ω ∧ Ω = 1
2π n!

∫
X
ωn = 1

2π vol(X).

Therefore the Milnor-Wood inequality is equivalent to

|degT W̃ | ≤
q

2 degT L∨

and reductive maximal representations are those for which this inequality is an equality.

The proof of Theorem 1.1 in the case of a reductive representation ρ into SU(p, q) proceeds
in four steps. Recall from the discussion above that all we need to prove is that one of the
components β or γ of the Higgs field vanishes.

The first step is a new proof of the Milnor-Wood inequality, valid for reductive represen-
tations of torsion free uniform lattices of SU(n, 1), n ≥ 1, obtained by considering the lifted
Higgs bundle (Ẽ, θ̃) on PTX . The advantage of going up to the projectivized tangent bundle
is that, thanks to the existence of the line bundle L tangent to the leaves of the tautological
foliation T , and to the semistability results of §3.2, the proof is exactly the same as the known
one for surface groups, i.e. lattices in SU(1, 1), see e.g. [Xia00,MX02,BGPG03].

When the representation is maximal, and say degT W̃ = q
2 degT L∨, our proof of the Milnor-

Wood inequality shows that the subset S of PTX where β̃ : W̃ ⊗ L → W̃ is not injective,
i.e.

S = {(x, [ξ]) ∈ PTX | βx(ξ) : Wx → Vx is not injective},
is small: it is a proper analytic subset of PTX . We want to prove that its projection π(S) to
X is also small.

This is achieved by first proving in the second step that S is included in a proper analytic
subset of PTX which is saturated under the tautological foliation T . This follows again
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from our proof of the inequality, and from the polystability of Ẽ along the leaves of T , see
Proposition 3.1.

In the third step we show that this indeed implies that π(S) is a proper analytic subset
of X. This is where the dynamics of the tautological foliation play their crucial part via
Proposition 2.2.

The fourth part is the conclusion where we prove that the injectivity of βx(ξ) for all
x ∈ X\π(S) and ξ ∈ TX,x\{0} forces γ to vanish, hence the ρ-equivariant harmonic map
to be holomorphic. Here we use again the polystability along the leaves, the integrability
condition [θ, θ] = 0, and our standing assumption that n ≥ 2.

4.2.1. A new proof of the Milnor-Wood inequality.
As explained above, we need to show that

|degT W̃ | ≤
q

2 degT L∨.

We first prove that degT W̃ ≤ q
2 degT L∨.

If β̃ = 0 then W̃ is a leafwise Higgs subsheaf of Ẽ hence by Proposition 3.1 degT W̃ ≤ 0
and we are done.

Assume therefore that β̃ 6= 0 and let N = Ker (β̃ : W̃ ⊗ L → Ṽ ) ⊂ W̃ ⊗ L and I be
the saturation (as a sheaf) of Im (β̃ : W̃ ⊗ L → Ṽ ) ⊂ Ṽ . By construction, N ⊗ L∨ and
W̃ ⊕I are leafwise Higgs subsheaves of Ẽ. Since (Ẽ, θ̃) is semistable along the leaves of T by
Proposition 3.1,

degT N ⊗ L∨ ≤ 0 and degT W̃ + degT I ≤ 0.
Moreover, we have degT (W ⊗ L) ≤ degT N + degT I so that, if we denote by r the rank of
I (i.e. the generic rank of β̃),

degT W̃ + q degT L ≤ degT N + degT I ≤ (q − r) degT L− degT W̃
and hence

degT W̃ ≤
r

2 degT L∨ ≤
q

2 degT L∨

since obviously r ≤ q.
In the same manner, by considering γ̃, we obtain

degT Ṽ = −degT W̃ ≤
q

2 degT L∨

and the Milnor-Wood inequality is proved.

We assume for the next three paragraphs that the representation is maximal, say that
degT W̃ = q

2 degT L∨. Then we see from the proof above that β̃ : W̃ ⊗ L → Ṽ has rank q,
i.e. is injective as a sheaf morphism, hence generically injective as a vector bundle map. Let
us call S the singularity set of β̃, i.e. the analytic subspace of PTX where β̃ is not injective
as a vector bundle map.

4.2.2. T -saturation.
Equality in the Milnor-Wood inequality implies moreover that the foliated degree of W̃ ⊕I,

which is a leafwise Higgs subsheaf of Ẽ, is 0. By Proposition 3.1, there exists a codimension
at least 2 T -saturated subset S0 of PTX and a holomorphic subbundle I of Ṽ , defined outside
of S0, such that on PTX\S0, I is the sheaf of sections of I. Note that the subbundle I has
rank q where it is defined.

Since outside of S0 we have β̃ : W̃ ⊗ L → I and rk I = rk W̃ , the set of points of PTX\S0
where β̃ is not injective is locally given by the vanishing of a single holomorphic function
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and hence has codimension 1 if not empty. This means that the components of S of higher
codimension are included in S0 and hence that β̃ : W̃ ⊗L→ Ṽ is injective, as a vector bundle
map, outside S0 ∪ |∆|, where |∆| is the (possibly empty) divisorial part of S, i.e. the union
of its irreducible components ∆j of codimension 1.

By an argument similar to [Kob87, Chap. V (8.5)], there is a line bundle [∆] on PTX
corresponding to an effective divisor ∆ =

∑
j ai∆j supported on |∆| such that degT det W̃ ≤

degT (det W̃ ) ⊗ [∆] ≤ q
2 degT L∨. Hence degT [∆] =

∑
j aj

∫
∆j

Ω = 0. This means that for
all j, and at each smooth point x of ∆j , there is a tangent vector to ∆j which is also tangent
to the leaf of the foliation T through x. Since the foliation is smooth, this leaf must stay in
∆j . Now in ∆j , the smooth points are dense and the set of points whose leaves stay in ∆j is
closed. Thus ∆j is T -saturated for all j.

The singularity set S of β̃ is therefore included in a T -saturated proper analytic subset of
PTX .

4.2.3. Dynamics of the tautological foliation.

The fact that the leaves of the foliation T come from orbits of groups generated by unipotent
elements allowed to establish in Proposition 2.2 that the closure of the projection to X of
any leaf of T is a closed immersed totally geodesic submanifold of X. This in turn has the
following consequence on projections to X of T -saturated subsets of PTX :

Proposition 4.2. Let Z be a closed T -saturated proper subset of PTX . Then π(Z) is a proper
subset of X.

Proof. The key point is that there is at most a countable number of closed immersed totally
geodesic submanifolds in X which are of the form π(L) for L a leaf of T . This follows
from [Rat91b, Theorem 1.1] but in our case a similar but simpler argument is available.

We use freely the notation of §2.4. We will show that, given a leaf L ⊂ PTX = Γ\G/V of
T , the totally geodesic orbit ỸL = SL · gLK of SL in Hn

C = G/K is entirely determined by
the intersection ΛL of Γ with the closed reductive subgroup SL of G. Since on the one hand
π(L) = Γ\ΓỸL and on the other hand ΛL = Γ∩SL is finitely generated (it is a lattice in SL),
and there are only countably many finite subsets in Γ, this will indeed prove the claim.

We note that there exists a simple (because rkRG = 1) noncompact subgroup HL of SL
such that ỸL = HL · gLK. (In fact HL is necessarily locally isomorphic to SU(k, 1) for some
1 ≤ k ≤ n.)

So let L1 and L2 be two leaves of T . To lighten the notation, for i ∈ {1, 2}, we write Si,
Hi, Ỹi and Λi for SLi , HLi , ỸLi and ΛLi respectively. Assume that Λ1 = Λ2.

By a strengthening of the Borel density theorem, see e.g. [Dan80, Corollary 4.2], since
Λ1 = Γ ∩ S1 is a lattice in S1 and H1 is a simple noncompact subgroup of S1, the Zariski
closure of Λ1 in G contains H1. Now Λ1 = Λ2 ⊂ S2 and hence Λ1 normalizes S2, so that H1
also normalizes S2. Therefore (S1 ∩ S2)\(S1 ∩ S2)H1 is a compact group, since it is closed
in (S1 ∩ S2)\S1 which itself is a quotient of Λ1\S1 which is compact. Thus thus S1 ∩ S2
must contain every simple noncompact subgroup of every Levi subgroup of (S1 ∩ S2)H1. We
deduce that H1 is a subgroup of S2. In the same way, H2 is a subgroup of S1.

If d denotes the distance function on Hn
C, the function x 7→ d(x, Ỹ2) is convex on Ỹ1 because

Hn
C is a CAT(0)-space and Ỹ1 and Ỹ2 are totally geodesic (hence convex and complete). It

is moreover bounded because Ỹ1 is an H1-orbit, Ỹ2 is an S2-orbit and H1 ⊂ S2. Hence it is
constant. It must be identically zero, because if not, the convex hull of two distinct points in
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Ỹ1 and their (distinct) projections in Ỹ2 is Euclidean by the flat quadrilateral theorem [BH99,
p. 181], a contradiction since rkRG = 1. Hence Ỹ1 ⊂ Ỹ2. The same reasoning gives Ỹ2 ⊂ Ỹ1.
This is what we wanted.

To conclude, let Z be a closed T -saturated proper subset of PTX and assume that π(Z) =
X. Then because Z is a union of leaves, X is the union of the projections of the leaves of
Z, hence of their closures. Since there are only countably many such objects, there must be
a leaf L ⊂ Z such that π(L) = X. But this implies that SL = G, so that L = PTX . Hence
Z = PTX , for Z is closed. A contradiction. �

Therefore the projection to X of the set S ⊂ PTX where β̃ is not of maximal rank is a
proper subset of X. In fact, since π is a proper map, it is a proper analytic subset of X.

4.2.4. Conclusion.
Let x ∈ X, x /∈ π(S). This means that for all ξ 6= 0 in TX,x, βx(ξ) : Wx → Vx is injective

and we call Iξ ⊂ Vx its image.
We claim that ∩ξ 6=0Iξ = {0}. Let indeed v be in ∩ξ 6=0Iξ. For η 6= 0 in TX,x, let pη be

the orthogonal projection from Vx to Iη. Then for all ξ in a sufficiently small neighborhood
U of η in TX,x\{0}, pη|Iξ : Iξ → Iη is an isomorphism, so that pη ◦ βx(ξ) : Wx → Iη is
also an isomorphism. Define ϕη : U → Wx by ϕη(ξ) = (pη ◦ βx(ξ))−1(v). Then clearly ϕη
is holomorphic and βx(ξ)ϕη(ξ) = v for all ξ ∈ U . By the injectivity of βx(ξ), the maps
ϕη for η 6= 0 agree where they are simultaneously defined, so we get a holomorphic map
ϕ : TX,x\{0} → Wx such that βx(ξ)ϕ(ξ) = v for all ξ 6= 0. Because n ≥ 2, the map ϕ can
be extended holomorphically to 0 ∈ TX,x and necessarily βx(0)ϕ(0) = v so that v = 0 since
βx : TX,x → Hom(Wx, Vx) is linear.

We may now conclude. The integrability property [θ, θ] = 0 of the Higgs field means that
βx(ξ) ◦ γx(η) = βx(η) ◦ γx(ξ) for all ξ, η ∈ TX,x. Therefore, if v ∈ Ker γx(ξ) for some ξ 6= 0,
then for all η we have βx(ξ)(γx(η)v) = βx(η)(γx(ξ)v) = 0 and hence γx(η)v = 0 since βx(ξ) is
injective. We know from Proposition 3.1 that I⊥ξ ⊂ Vx is invariant by θx(ξ) and hence that
γx(ξ) vanishes on I⊥ξ , for θx(ξ)|Vx = γx(ξ) : Vx → Wx. It follows that for all η and for all
ξ 6= 0, γx(η) is zero on I⊥ξ . Therefore γx = 0 since ∩ξ 6=0Iξ = {0} exactly means that the
subspaces I⊥ξ for ξ 6= 0 generate Vx.

Since this holds outside a proper analytic subset, γ vanishes identically and the ρ-
equivariant harmonic map f is holomorphic.

In the same manner, if degT W̃ = − q
2 degT L∨, β vanishes identically and the ρ-equivariant

harmonic map f is antiholomorphic.
This ends the proof of Theorem 1.1 in the case of reductive representations in SU(p, q).

4.3. Non reductive representations.
We first explain how to semi-simplify a non reductive representation in order to get a

reductive representation with the same Toledo invariant. This is quite standard and follows
from general results but we give some details in the SU(p, q) case for completeness. The
notation in this section may differ from those of the other sections.

Assume that the representation ρ : Γ→ H = SU(Cp+q, hp,q) is not reductive, i.e. that the
Zariski closure ρ(Γ) z of ρ(Γ) in H is not a reductive group, so that its unipotent radical U is
not trivial. Then ρ(Γ) z stabilizes a flag of totally isotropic subspaces 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk
in E = Cp+q (for the Hermitian form hp,q defining H in SL(p + q,C)). Indeed, because U is
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unipotent, F := {x ∈ E | u(x) = x,∀u ∈ U} 6= {0}. Then F⊥ is U -stable and therefore the
totally isotropic subspace F1 := F ∩ F⊥ is not reduced to {0}. Since U is normal in ρ(Γ) z,
the subspaces F , F⊥ and hence F1 are ρ(Γ) z-stable. One completes the flag inductively by
working on F⊥1 /F1. This flag defines a parabolic subgroup of SL(p+ q,C) and its intersection
with H is a parabolic subgroup P of H which contains ρ(Γ) z and whose unipotent radical
contains U .

If we let ri = dimFi − dimFi−1, 1 ≤ i ≤ k, we have that r := r1 + · · · rk ≤ q, and we may
choose a basis of Cp,q in which the matrix C of hp,q is block anti-diagonal with anti-diagonal
blocks given by 1r1 , . . . , 1rk , 1q−r, 1p−q, 1q−r, 1rk , . . . , 1r1 (from the bottom left to the upper
right). Conjugacy by this matrix defines a Cartan involution of H, hence a maximal compact
subgroup L of H, hence a point o in the symmetric space Yp,q.

Let ξ be the endomorphism of E whose matrix in our chosen basis is the block diagonal
matrix diag(k 1r1 , (k − 1) 1r2 , . . . , 1rk , 0q−r, 0p−q, 0q−r,−1rk , . . . ,−(k − 1) 1r2 ,−k 1r1). Then
ξ ∈ q where h = l ⊕ q is the Cartan decomposition of the Lie algebra h of H defined by C.
Using the usual identification of ToYp,q with q, the map c : t 7→ expo(tξ) is a geodesic through o
and the parabolic subgroup P is precisely the stabilizer in H of the endpoint c(+∞) ∈ ∂∞Yp,q
of c. We have the following description of P (see for example [Ebe96, §2.17]):

P = {g ∈ H | lim
t→+∞

exp(−tξ) g exp(tξ) exists} = Lξ.Aξ.Nξ

where Aξ = exp({ζ ∈ q | [ξ, ζ] = 0}), Nξ = {g ∈ P | lim
t→+∞

exp(−tξ) g exp(tξ) = 1} is the
unipotent radical of P , and Lξ = P ∩ L. The resulting decomposition of elements of P is
unique. Moreover if g ∈ Lξ.Aξ then limt→+∞ exp(−tξ) g exp(tξ) = g.

The orbit Lξ.Aξ.o = Aξ.o is the complete totally geodesic submanifold Yc of Yp,q consisting
of geodesics of Yp,q that are parallel to c.

The semi-simplification ρss of ρ is defined by ρss(γ) = limt→+∞ exp(−tξ) ρ(γ) exp(tξ) ∈
Lξ.Aξ for all γ ∈ Γ. The representation ρss belongs to the connected component of ρ in the
space Hom(Γ, H) and is reductive by construction. Thus we can apply the results of §4.2.1
to get the Milnor-Wood bound on τ(ρ) = τ(ρss).

Assume moreover that ρ is maximal, say with τ(ρ) > 0. Hence so is ρss, and by §4.2 we
know that p ≥ nq and that, up to composition with an isometry of Yp,q, the holomorphic map
fmax is ρss-equivariant. Thus we may assume that ρss(Γ) stabilizes the totally geodesic copy
fmax(Hn

C) of Hn
C in Yp,q, and that it acts cocompactly on it.

On the other hand, as was mentioned before, ρss(Γ) stabilizes the totally geodesic subman-
ifold Yc = Aξ.o ⊂ Yp,q. As in the proof of Proposition 4.2, the function

fmax(Hn
C) −→ R
y 7−→ d(y,Yc)

is convex. Since it is bounded because ρss(Γ) acts cocompactly on fmax(Hn
C), it is constant,

say equal to a.
If a = 0, fmax(Hn

C) ⊂ Yc. Let x be a point in Hn
C, y = fmax(x), σ the geodesic parallel

to c such that σ(0) = y. Let now ly ⊕ qy be the Cartan decomposition of h associated to
the point y, so that qy is identified with TyYp,q and let η ∈ qy be the vector corresponding
to σ̇(0). Then the tangent space of Yc at y identifies with {ζ ∈ qy | [η, ζ] = 0}. However,
due to the form of fmax, it is easily checked that no nonzero vectors in qy can commute to
dfmax(TxHn

C) = Tyfmax(Hn
C) ⊂ TyYc as soon as n ≥ 2. Hence a > 0. But in this case the

convex hull in Yp,q of fmax(Hn
C) and of its orthogonal projection to Yc is isometric to the
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product fmax(Hn
C) × [0, a] and this also implies that there is η ∈ qy, η 6= 0, commuting with

Tyfmax(Hn
C), a contradiction.

Therefore, non reductive representations in SU(p, q) cannot be maximal.

5. Representations in classical Hermitian Lie groups other than SU(p, q)

The remaining classical Hermitian Lie groups are SO0(p, 2) with p ≥ 3, Sp(m,R) with
m ≥ 2, and SO?(2m) with m ≥ 4. Their associated symmetric spaces’ ranks are 2, m
and bm/2c respectively. We will prove that a reductive representation of a uniform complex
hyperbolic lattice in one of these groups can never be maximal. Since it is always possible
to semi-simplify a representation as in §4.3 to get a reductive representation with the same
Toledo invariant, this will prove that there are no maximal representations in these groups.
Hence in the following we assume that the representations under consideration are reductive.

5.1. Representations in SO0(p, 2), p ≥ 3.

The case of representations in the groups SO0(p, 2) (p ≥ 3) has already been treated
in [KM08b] where it was shown that such representations satisfy the inequality |τ(ρ)| ≤
n+1
n vol(X). This is stronger than the Milnor-Wood inequality since the rank of the symmetric

space associated to SO0(p, 2) is 2 and n ≥ 2. Hence there are no maximal representations in
this case.

5.2. Representations in Sp(m,R), m ≥ 2.

This group may be described as

Sp(m,R) = {g ∈ SU(m,m) | g>Jm,m g = Jm,m}

where g> is the transpose of the matrix g and Jm,m is the 2m-by-2m matrix

Jm,m =
(

0 1m
−1m 0

)
.

The associated symmetric space is totally geodesically embedded in the symmetric space Ym,m
associated to SU(m,m) as

Y = {Z ∈Mm(C) | 1m − Z?Z > 0 and Z> = Z}

and the holomorphic sectional curvature of the metric on Ym,m restricted to Y is also pinched
between −1 and −1/m, so that the Toledo invariant of a representation ρ with values in
Sp(m,R) is the same as the Toledo invariant of the induced representation into SU(m,m).

The results of §4.2 give the desired bound |τ(ρ)| ≤ m vol(X) and show that equality cannot
be reached.

5.3. Representations in SO?(2m), m ≥ 4.

The assumption m ≥ 4 comes from the fact that for m = 2, SO?(4) is not simple (it is
locally isomorphic to SU(1, 1)×SU(1, 1)), whereas for m = 3, SO?(6) is locally isomorphic to
SU(3, 1) (and therefore in this case there are maximal representations of SU(2, 1) and SU(3, 1)
in this group). Note that for m = 4, SO?(8) is locally isomorphic to SO0(6, 2).

The group SO?(2m) may be described as

SO?(2m) = {g ∈ SU(m,m) | g>J ′m,m g = J ′m,m}
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where J ′m,m is the 2m-by-2m matrix

J ′m,m =
(

0 1m
1m 0

)
.

The associated symmetric space is totally geodesically embedded in Ym,m as

Y = {Z ∈Mm(C) | 1m − Z?Z > 0 and Z> = −Z}.
The holomorphic sectional curvature of the SO?(2m)-invariant metric on Y obtained by re-
striction of the SU(m,m)-invariant metric on Ym,m is pinched between −1/2 and −1/2bm/2c
according to the formula for the holomorphic sectional curvature of Ym,m given in §4.1 and the
first assertion of the following lemma (whose proof is postponed to the end of this paragraph).

Lemma 5.1. Let A ∈Mm(C) be a non trivial skew-symmetric matrix. Then

1
2bm/2c ≤

tr
(
(A?A)2)(

tr (A?A)
)2 ≤ 1

2

and ifm ≥ 4, the dimension of a maximal linear subspace of skew-symmetric matrices realizing
the lower bound is 1.

As a consequence, with our normalization on the curvature, ωY = 2ωYm,m |Y and it is
straightforward to see that the Milnor-Wood inequality for a representation ρ in SO?(2m)
translates to |τ(ρ)| ≤ 2bm/2cvol(X) when the representation is seen as taking values in
SU(m,m).

If m is even, a representation in SO?(2m) is therefore maximal if and only if it is maximal
when seen as a representation in SU(m,m). Section 4.2 hence show that there are no such
representations.

We assume from now on that m is odd.
The equality case of the Ahlfors-Schwarz-Pick lemma [Roy80] and the second assertion of

Lemma 5.1 show that if n ≥ 2 and m ≥ 4, there are no holomorphic map f : Hn
C → Y ⊂ Ym,m

such that f?ωYm,m = 2bm/2cω. Hence the following proposition implies that there are no
maximal representations of a uniform lattice of SU(n, 1), n ≥ 2, in SO?(2m), m odd, unless
m = 3 (in which case as we said there are since SO?(6) is locally isomorphic to SU(3, 1)).

Proposition 5.2. Let ρ be a reductive maximal representation of a uniform lattice Γ ⊂
SU(n, 1) in SO?(2m). Assume that n ≥ 2 and that m ≥ 3 is odd. Then there exists a
ρ-equivariant holomorphic or antiholomorphic map f : Hn

C → Y.

Proof. Here again we work with the Higgs bundle (V ⊕W,β ⊕ γ) associated to the reductive
representation ρ seen as a representation in SU(m,m). However, because ρ takes its values
in SO?(2m) ⊂ SU(m,m), we have an identification of V with W ?, and for all ξ ∈ TX , β(ξ) ∈
Hom(W,W ?), resp. γ(ξ) ∈ Hom(W ?,W ), satisfies β(ξ)> = −β(ξ), resp. γ(ξ)> = −γ(ξ).

Since m is odd and β̃ and γ̃ are skew-symmetric, their generic ranks are bounded above by
m− 1. Thus the proof in §4.2.1 again gives the desired bound |τ(ρ)| ≤ (m− 1) vol(X).

If the representation is maximal, say with degT W̃ > 0, then the generic rank of β̃ : W̃⊗L→
Ṽ on PTX is m − 1. Moreover, if N and I are respectively the kernel and image sheaf of
β̃ : W̃ ⊗L→ Ṽ , by the polystability along the leaves of (Ẽ, θ̃), there is a rank 1 subbundle N
of W̃ and a rank m−1 subbundle I of V , defined outside a codimension at least 2 T -saturated
analytic subset of PTX , such that N ⊗ L∨ and I are the sheaves of sections of N and I. We
have that β̃ vanishes on N ⊗L, and is generically injective on (W̃/N)⊗L, whereas γ̃ vanishes
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on I⊥, and maps I ⊗L to N⊥. Hence we can conclude as in §4.2.2 and §4.2.3 that if we now
set

S = {(x, [ξ]) ∈ PTX | βx(ξ) : Wx/N[ξ] −→ I[ξ] is not injective},
then π(S) is a proper analytic subset of X.

We again work above a single point x ∈ X, x /∈ π(S). The letters ξ, η will denote tangent
vectors at x. If ξ 6= 0, we write Nξ for the 1-dimensional kernel of β(ξ) : Wx → Vx, and Iξ
for its (m − 1)-dimensional image. We denote by N⊥ξ and I⊥ξ their orthogonal complements
w.r.t. the harmonic metric. We recall that Vx is naturally identified with W ?

x and that if B is
a basis of Wx and B? the dual basis of Vx, then the matrices of β(ξ) and γ(ξ) in these bases
are skew-symmetric.

We first prove that for all η, γ(η) vanishes on 〈I⊥ξ , ξ 6= 0〉 and hence maps Vx to ∩ξ 6=0N
⊥
ξ .

Let ξ 6= 0. We know that γ(ξ) vanishes on I⊥ξ by polystability along the leaves. Hence for
all η, β(ξ) ◦ γ(η) = β(η) ◦ γ(ξ) vanishes on I⊥ξ so that γ(η) maps I⊥ξ to Nξ. But γ(η) also
maps Vx to N⊥η so that γ(η)(I⊥ξ ) ⊂ Nξ ∩N⊥η . Therefore for η close to ξ, and hence for all η,
γ(η)(I⊥ξ ) = 0. This implies by skew-symmetry that γ(η)(Vx) ⊂ N⊥ξ , hence our claim.

Since n ≥ 2 we may choose two linearly independent tangent vectors ξ and η. The letter
ζ will denote a tangent vector in 〈ξ, η〉. The set {β(ζ), ζ ∈ 〈ξ, η〉} is a 2-dimensional linear
subspace of Hom(Wx, Vx), whose non zero elements are all of rank (m − 1). By [Wes72,
Theorem 3.1], there exist r ≥ 1, and decompositions Wx = W0 ⊕W1 ⊕ · · · ⊕Wr and Vx =
V0 ⊕ V1 ⊕ · · · ⊕ Vr such that

• β(ζ)(W0) = {0}, for all ζ;
• β(ζ)(Wi) ⊂ Vi, for all ζ and all 1 ≤ i ≤ r;
• dimVi = dimWi ± 1 for all 1 ≤ i ≤ r;
• rk β(ζ)|Wi

= min{dimWi, dimVi}, for all ζ 6= 0 and all 1 ≤ i ≤ r.
We remark that since ξ and η are linearly independent, the kernels Nξ and Nη of β(ξ)

and β(η) are distinct, and so are their images Iξ and Iη. Indeed, the equality of the images
is equivalent to the equality of the kernels by skew-symmetry. Therefore if they were equal,
we would get that β(ζ) defines an isomorphism N⊥ξ → Iξ for all ζ 6= 0. This is impossible
for example because since 〈ξ, η〉 is 2-dimensional, ζ 7→ detβ(ζ) cannot vanish only for ζ = 0.
Therefore W0 = {0}. Also, V0 = {0} because if not then necessarily dimV0 = 1 and Iζ =
V1 ⊕ · · · ⊕ Vr for all ζ 6= 0.

Moreover, since dimWx = dimVx, there must be at least one i such that dimVi = dimWi+
1. Say that dimVi = dimWi + 1 for 1 ≤ i ≤ s and dimVi = dimWi − 1 for s + 1 ≤ i ≤ r.
Then for ζ 6= 0, rkβ(ζ) = m − (r − s) = m − s, so that s = 1 and r = 2. Hence we have
Wx = W1 ⊕W2 and Vx = V1 ⊕ V2 with

• β(ζ)(Wi) ⊂ Vi, for all ζ and all 1 ≤ i ≤ 2;
• dimV1 = dimW1 + 1 and dimV2 = dimW2 − 1;
• β(ζ)|W1 : W1 → V1 is one-to-one for all ζ 6= 0;
• β(ζ)|W2 : W2 → V2 is onto for all ζ 6= 0.

We deduce as in §4.2.4 that ∩ζ 6=0β(ζ)W1 = {0}. By duality, the same reasoning also implies
that W2 = 〈Nζ , ζ 6= 0〉.

The first point implies that γ(η) vanishes on V ⊥2 , since it vanishes on each I⊥ζ and

〈I⊥ζ , ζ 6= 0〉 =

⋂
ζ 6=0

Iζ

⊥ =

⋂
ζ 6=0

(V2 ⊕ β(ζ)W1)

⊥ =

V2 ⊕

⋂
ζ 6=0

β(ζ)W1

⊥ = V ⊥2 .
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The second point implies that γ(η)(V2) ⊂W2, and hence that γ(η) vanishes on V2. Indeed,
since β(ξ)|W2 : W2 → V2 is surjective, V2 is generated by vectors of the form β(ξ)w with w ∈
W2 such that β(ζ)w = 0 for some ζ 6= 0. Hence β(ζ) ◦ γ(η) ◦β(ξ)w = β(η) ◦ γ(ξ) ◦β(ζ)w = 0,
so that γ(η) ◦ β(ξ)w ∈ Nζ ⊂ W2. Now we saw that γ(η)(Vx) ⊂ ∩ζ 6=0N

⊥
ζ = W⊥2 . Hence

γ(η)(V2) = {0}.
We conclude that γ = 0 so that the ρ-equivariant harmonic map f is holomorphic.
In the same way, if the representation is maximal and degW < 0, we get that β = 0 so

that the ρ-equivariant harmonic map f is antiholomorphic. �

Proof of Lemma 5.1. Let A be a (non trivial) m-by-m skew-symmetric matrix. Then, by
Youla’s decomposition [You61], there exists a unitary matrix U ∈ U(m) such that U>AU is a

block diagonal matrix with bm/2c skew-symmetric 2-by-2 blocks
(

0 −αi
αi 0

)
, where αi ∈ R,

and one additional zero on the diagonal ifm is odd. Then, as (U>AU)?(U>AU) = U−1A?AU ,
we get

1
2bm/2c ≤

tr
(
(A?A)2)(

tr (A?A)
)2 = 2

∑
α4
i

(2
∑
α2
i )2 ≤

1
2

where the lower bound is attained if and only if all the αi are equal to some α ∈ R? and
in particular A?A is unitary conjugate to α21m if m is even, or to α2diag(1, . . . , 1, 0) if m is
odd).

We will prove the last assertion of the lemma by contradiction. So let now B be another
skew-symmetric matrix, assume that A and B are linearly independent and that each non
trivial matrix in the two-dimensional vector space they generate realizes the lower bound. We
normalize A and B such that tr

(
A?A

)
= tr

(
B?B

)
= 2bm/2c. We can also suppose that A

and B are orthogonal (i.e. tr
(
A?B

)
= 0).

If m is even then clearly we have a contradiction. Indeed, for all λ, µ ∈ C, (λA+µB)?(λA+
µB) is a multiple of 1m, hence λ̄µA?B + λµ̄B?A is also a multiple of 1m, but it is trace free
so A?B must be equal to zero, which is not possible as the column vectors of A (and B)
generate Cm.

From now on, we assume that m is odd. Then for any λ, µ ∈ C, (λ, µ) 6= (0, 0), the matrix

(λA+ µB)?(λA+ µB)− 1
m− 1tr

[
(λA+ µB)?(λA+ µB)

]
1m

has rank 1 and since tr
(
A?B

)
= 0, tr

[
(λA+µB)?(λA+µB)

]
= (m−1)(|λ|2 + |µ|2). In other

words Nλ,µ := Mλ,µ − (|λ|2 + |µ|2)1m has rank 1, where we denoted (λA + µB)?(λA + µB)
by Mλ,µ.

There exists a hyperplane E (resp. F ) in Cm such that the endomorphism of Cm whose
matrix is A?A (resp. B?B) is the identity when restricted to E (resp. F ).

If E = F then upon replacing A and B by U>AU and U>BU for some well chosen
U ∈ U(m), we may assume that the m-th column vectors of A and B are trivial so that the
m-th column and the m-th line ofMλ,µ both are trivial. As Nλ,µ has rank 1, this implies that
for any λ, µ in C, the upper left (m−1)-by-(m−1) block ofMλ,µ is equal to (|λ|2 + |µ|2)1m−1.
As in the case when m is even, the upper left (m−1)-by-(m−1) block of A?B should be equal
to zero and this is impossible because the column vectors of A and B generate hyperplanes
which must intersect non trivially.

Assume now that E ∩ F has codimension 2. We will use the notation 〈x, y〉 = x?y for the
standard Hermitian product on Cm and write |x|2 = x?x. Let us denote by v1, . . . , vm, resp.
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w1, . . . , wm, the column vectors of A, resp. B. Again upon replacing A and B by U>AU and
U>BU for some well chosen U ∈ U(m), one can assume that vm = 0 and that (v1, . . . , vm−1)
and (w1, . . . , wm−2) are orthonormal families. Moreover, wm−1 and wm are linearly dependent
because the bottom right 2-by-2 block of B?B must have determinant 0. Finally we also have
|wm−1|2 + |wm|2 = 1.

The bottom right 2-by-2 block of Nλ,µ is(
|µ|2(|wm−1|2 − 1) + λµ̄〈wm−1, vm−1〉+ λ̄µ〈vm−1, wm−1〉 |µ|2〈wm−1, wm〉+ λ̄µ〈vm−1, wm〉

|µ|2〈wm, wm−1〉+ λµ̄〈wm, vm−1〉 −|λ|2 + |µ|2(|wm|2 − 1)

)

In the determinant of this block, the coefficient of |µ|4 is equal to 0 since

(1− |wm−1|2)(1− |wm|2)− |〈wm, wm−1〉|2 = |wm−1|2|wm|2 − |〈wm, wm−1〉|2

and wm and wm−1 are linearly dependent.
The coefficient of |λ|2|µ|2 is

1− |wm−1|2 − |〈wm, vm−1〉|2

and by Schwarz inequality, it vanishes if and only if wm and vm−1 are proportional since
|wm−1|2 + |〈wm, vm−1〉|2 ≤ |wm−1|2 + |wm|2 = 1. In this case, there exist complex numbers a
and b such that wm−1 = avm−1, wm = bvm−1 and |a|2 + |b|2 = 1. The above determinant is
then equal to −(|λ|2 + |µ|2)(λµ̄ā+ λ̄µa) and vanishes identically if and only if a = 0.

So a = 0 and |b| = 1. This immediately implies that Nλ,µ is block diagonal with a (m− 2)-
by-(m − 2) upper left block and a 2-by-2 bottom right block because A?A et B?B have the
same block decomposition, hence A?B and B?A too, since wm−1 = vm = 0 and wm = bvm−1.
The 2-by-2 bottom right block of Nλ,µ is equal to(

−|µ|2 bλ̄µ
b̄λµ̄ −|λ|2

)

hence has rank 1 for each (λ, µ) 6= (0, 0). As the matrix Nλ,µ has rank 1 for all (λ, µ) 6= (0, 0),
we must have 〈vi, wj〉 = 0 for any 1 ≤ i, j ≤ m − 2. If m ≥ 5, this is impossible since
the two subspaces of codimension 2 generated respectively by the families {vi}1≤i≤m−2 and
{wi}1≤i≤m−2 have a non trivial intersection. �

5.4. Representations in Hermitian groups without exceptional factors.

It is easy to generalize the statement of Theorem 1.1 to the case where the lattice Γ
is assumed uniform but not torsion free, and the target Lie group H is assumed to be a
semisimple Lie group of Hermitian type without compact or exceptional factors. By this we
mean that H is an almost-product of simple noncompact Lie groups of Hermitian type which
are each isogeneous to one of the classical groups we have been considering.

In this case, there is a normal subgroup Γ′ of finite index d in G such that Γ′ is torsion
free and the representation ρ′ = ρ|Γ′ is a product of k representations ρ′i : Γ′ → Hi, where
the Hi’s are classical Hermitian noncompact Lie groups. One defines the Toledo invariant of
ρ to be 1

d τ(ρ′). Since vol(Γ\Hn
C) = 1

d vol(Γ′\Hn
C), the representation ρ is maximal if and only

if the representation ρ′ is. Since τ(ρ′) =
∑k
i=1 τ(ρ′i) and rkRH =

∑k
i=1 rkRHi, ρ′ is maximal

if and only if each ρ′i is. Therefore in this case Hi = SU(pi, qi) with pi ≥ qin for all i and
there is a ρ-equivariant holomorphic or antiholomorphic map from Hn

C to the symmetric space
Y = Πk

i=1Ypi,qi associated to H.
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