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In this paper we consider second order fully nonlinear operators with an additive superlinear gradient term. Like in the pioneering paper of Brezis for the semilinear case, we obtain the existence of entire viscosity solutions, defined in all the space, without assuming global bounds. A uniqueness result is also obtained for special gradient terms, subject to a convexity/concavity type assumption where superlinearity is essential and has to be handled in a different way from the linear case.

Introduction

We are interested in existence and uniqueness of solutions in R n of fully nonlinear second order uniformly elliptic equations having superlinear growth in u and Du. Solutions in the whole space are said to be entire. In the pioneering work [START_REF] Brezis | Semilinear equations in R n without conditions at infinity[END_REF], Brezis considered the semilinear elliptic problem ∆u -|u| s-1 u = f (x), s > 1, (1.1) showing that it is well-posed in D ′ (R n ) without prescribing conditions at infinity for the data f and u. The existence of a unique solutions u ∈ L s loc (R n ) is proved assuming only f ∈ L 1 loc (R n ). Moreover u ≥ 0 a.e. if f ≤ 0 a.e. in R n . This result was extended by Esteban, Felmer and Quaas [START_REF] Esteban | Superlinear elliptic equations for fully nonlinear operators without growth restrictions for the data[END_REF] for the larger class of fully nonlinear uniformly elliptic problems

F (D 2 u) -|u| s-1 u = f (x) in R n (1.2)
where f ∈ L n loc (R n ) and the solution u is intended in the L n -viscosity sense. In [START_REF] Galise | Viscosity Solutions of Uniformly Elliptic Equations without Boundary and Growth Conditions at Infinity[END_REF] Galise and Vitolo generalized the previous results for operators depending also on x and on the gradient. Following the original ideas of Brezis, combined with viscosity type arguments, they proved in particular the existence of entire solutions of the uniformly elliptic equation F (x, D 2 u) + H(Du) -|u| s-1 u = f (x), (1.3) where F (x, •) is merely a measurable functions, the Hamiltonian H : R n → R depends in a Lipschitz way on the gradient variable, s is any real number strictly larger than 1 and f ∈ L n loc (R n ). Concerning the uniqueness it is a remarkable fact that if the principal part F is independent on x, the well-posedness of (1.3) is ensured assuming only the continuity of the datum f , while in the general case further assumptions are needed in order to control the oscillation in the x-variable and the regularity of the solutions. In a recent paper [START_REF] Alarcon | Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity[END_REF] Alarcon, Garcia Melian and Quaas proved various results of existence and uniqueness of distributional solutions of equation (1.1) in Sobolev spaces in the case of an additive gradient term with superlinear growth.

Here we propose to study the well-posedness in the whole space for F (x, D 2 u) + H(x, Du) -|u| s-1 u = f (x), (1.4) where H(•, Du) may have a superlinear growth in the first derivative.

In (1.4), we will assume the following. The second order term F is (λ, Λ)-uniformly elliptic and F (x, 0) = 0 a.e. in R n , (1.5) see (2.2) for a definition. As regard H : R n × R n → R, we will assume

H(x, 0) = 0 a.e. in R n (1.6)
and there exist γ 1 , γ m > 0, m > 1 such that

|H(x, p) -H(x, q)| ≤ γ 1 + γ m (|p| m-1 + |q| m-1 ) |p -q| (1.7)
for p, q ∈ R n and a.e. x ∈ R n . Note that it is always possible to assume (1.6) and F (x, 0) = 0 by replacing f (x) with f (x) -H(x, 0) -F (x, 0). Making these assumptions we have in mind as prototype the equation

P + λ,Λ (D 2 u) ± c 1 |Du| + c m |Du| m -|u| s-1 u = f (x), (1.8) 
where c 1 , c m ∈ R and P + λ,Λ is the Pucci extremal operator, see next Section for definitions. Concerning the uniqueness part, we focus our attention on the case c m > 0 or c m < 0, referring to [START_REF] Galise | Viscosity Solutions of Uniformly Elliptic Equations without Boundary and Growth Conditions at Infinity[END_REF] for the case c m = 0. Due to the assumptions, in particular (1.14), it is worth noticing that the proof of the case c m > 0 is different from the case c m = 0, and the latter case, corresponding to (1.3) with a Lipschitz continuous Hamiltonian, cannot be obtained from our treatment of the case c m > 0 by continuity, as c m → 0.

Our existence result is the following

Theorem 1.1. Let m ∈ [1, 2] and s > m. Suppose that (1.5)-(1.6)-(1.7) hold true. If f ∈ L n loc (R n ), then the equation (1.4
) has an L n -entire viscosity solution.

When reinforcing (1.5)-(1.6)-(1.7), we are able to prove uniqueness of the solutions. First of all we suppose that x → F (x, X) is continuous for any X ∈ S n .

(1.9)

Moreover we assume that for R > 0 there exists a modulus of continuity ω R such that .11) and there exist γ 1 , γ m > 0, m > 1 and a modulus of continuity ω : [0, +∞) → [0, +∞) such that

F (x, X) -F (y, Y ) ≤ ω R (|x -y| + ε -1 |x -y| 2 ) (1.10) whenever |x|, |y| < R and X, Y ∈ S n satisfy - 3 ε I 0 0 I ≤ X 0 0 -Y ≤ 3 ε I -I -I I . ( 1 
|H(x, p + q) -H(y, p)| ≤ ω(|x -y|)(|p| m + 1) + γ 1 + γ m (|p| m-1 + |q| m-1 ) |q| (1.12)
for x, y, p, q ∈ R n . Notice that (1.12) implies (1.7), with a different choice of γ m , and combined with (1.6) yields |H(x, p)| ≤ γ(|p| m + 1) with γ = max(γ 1 , γ m ). We also assume

F (x, σX) = σF (x, X) for all σ ∈ (0, 1), x ∈ R n , X ∈ S n , (1.13) 
and a convexity-type assumption on H: there exist c, A > 0 and σ 0 ∈ (0, 1) such that

H(x, p) -σH(x, σ -1 p) ≤ (1 -σ)(-c|p| m + A) for x, p ∈ R n , σ ∈ (σ 0 , 1). (1.14) 
This assumption covers the model case (1. The assumptions (1.12)-(1.14) will be used to deal with the superlinear nonlinearity H(x, Du) when performing a kind of linearization of (1.4) through a technique borrowed by Barles-Koike-Ley-Topp [START_REF] Barles | Regularity Results and Large Time Behavior for Integro-Differential Equations with Coercive Hamiltonians To appear in Calc[END_REF] and Koike-Ley [START_REF] Koike | Comparison principle for unbounded viscosity solutions of degenerate elliptic PDEs with gradient superlinear terms[END_REF], in the proof of the following uniqueness theorem. 

lim sup |x|→∞ f -(x) |x| ρ < ∞ for ρ <    m(s-1) (m-1)s if 1 < m ≤ 2s s+1 2(s-m) s(m-1) if 2s s+1 < m , (1.15) 
then (1.4) admits a unique entire continuous viscosity solution.

The same result holds if -H satisfies (1.14) and (1.15) holds with f + instead of f -.

In particular, we get uniqueness for the solutions of (1.8) when c m (x) is a bounded uniformly continuous function which satisfies either c m (x) ≥ c > 0 (convex Hamiltonian) or c m (x) ≤ -c < 0 (concave Hamiltonian). As far as the growth is concerned, we have uniqueness, for instance if m = 2 and s > 2 provided (1.15) holds for some ρ < 2(s-2) s . The continuity of f ensures that the two notions of L n -viscosity solutions and classical viscosity solutions are equivalent, see [START_REF] Koike | Remarks on viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients[END_REF]. For further comments about the assumptions, see Section 5.

Examples of Hamiltonians satisfying (1.12)-(1.14)

The Hamiltonian H(x, p) = c(x)|p| m + a(x)|p| l satisfies (1.6)-(1.12)-(1.14) if c, a are bounded uniformly continuous in R n , c(x) ≥ c > 0, m > 1 and 0 < l < m. To check the assumptions, we can take any σ 0 ∈ (0, 1) and we use the inequalities 1 -σ -s ≤ -s(1 -σ) and |σ -σ s | ≤ |1 -s|(1 -σ) for all s > 0, σ ∈ (0, 1). For (1.14), we have

H(x, p) -σH(x, σ -1 p) = c(x)(1 -σ 1-m )|p| m + a(x)(1 -σ 1-l )|p| l ≤ (1 -σ) -c(m -1)|p| m + ||a|| ∞ |l -1| σ l 0 |p| l ≤ (1 -σ) - c(m -1) 2 |p| m + C , with C = C(c, ||a|| ∞ , σ 0 , m, l) by using Young inequality ||a|| ∞ |l -1| σ l 0 |p| l ≤ c(m -1) 2 |p| m + C.
To check (1.12), we use the inequality |p

+ q| m -|p| m ≤ C(|p| m-1 + |q| m-1 )|q| for p, q ∈ R n , m > 0 and C = C(m).
The constant C below may vary line to line.

H(x, p + q) -H(y, p) = c(x)(|p + q| m -|p| m ) + a(x)(|p + q| l -|p| l ) + (c(x) -c(y))|p| m + (a(x) -a(y))|p| l ≤ C||c|| ∞ (|p| m-1 + |q| m-1 )|q| + C||a|| ∞ (|p| l-1 + |q| l-1 )|q| + ω(|x -y|)(|p| m + |p| l ) ≤ C(|p| m-1 + |q| m-1 + 1)|q| + ω(|x -y|)(|p| m + 1),
by using Young inequality and where ω is a modulus of continuity for a, c.

We may generalize the previous example by considering

H(x, p) = φ(x, |p|)|p| m , with m > 1 and φ(•, r) is bounded uniformly continuous in R n uniformly with respect to r ∈ R + , φ(x, r) ≥ φ 0 > 0, | ∂φ ∂r (x, r)| ≤ C/r and φ(x, r) -φ(x, σ -1 r) ≤ C(1 -σ)
for all σ ∈ (0, 1). Details are left to the reader. Notice that the previous example contains some nonconvex Hamiltonians as

H(x, p) = c(x) (|p| 2 -1) 2 -1 |p| 2 +1
for instance.

Another class of examples is given by

H(x, p) = sup α∈A inf β∈B S αβ (x)p, p m/2 ,
where m > 1, A, B are metric spaces, S αβ : R n → S n is bounded uniformly continuous uniformly with respect to α, β and there exists ν > 0 independent of α, β such that S αβ (x) ≥ νI. To prove (1.14), we notice that H(x, p) ≥ ν m/2 |p| m . Hence,

H(x, p) -σH(x, σ -1 p) = (1 -σ 1-m )H(x, p) ≤ -(1 -σ)ν m/2 |p| m .
For (1.12), we write

H(x, p + q) -H(y, p) ≤ sup α∈A,β∈B { S αβ (x)(p + q), p + q m/2 -S αβ (y)p, p m/2 } = sup α∈A,β∈B { S αβ (x)(p + q), p + q m/2 -S αβ (x)p, p m/2 + S αβ (x)p, p m/2 -S αβ (y)p, p m/2 } ≤ C |p| m-1 + |q| m-1 |q| + ω(|x -y|)|p| m ,
leading to (1.12) for a constant C depending only on m and n.

Preliminaries

We recall the definitions of L p -strong and viscosity solutions for second order elliptic equations

G(x, u, Du, D 2 u) = g(x) in Ω, (2.1) 
where p ≥ n, G : Ω × R × R n × S n → R and g : Ω → R are measurable functions, G is continuous in the last three variables, Ω is a domain (open connected set) and S n denote the linear space of n × n real symmetric matrices equipped with the standard order:

X ≤ Y in S n ⇔ Xp, p ≤ Y p, p ∀p ∈ R n .
The identity matrix will be denoted by I and the trace of X ∈ S n with Tr(X).

We say that G is (λ, Λ)-uniformly elliptic for 0

< λ ≤ Λ if λTr(Y ) ≤ G(x, r, p, X + Y ) -G(x, r, p, X) ≤ ΛTr(Y ) a.e. x ∈ Ω (2.2)
for any (r, p) ∈ R × R n , X, Y ∈ S n with Y ≥ 0, or equivalently

P - λ,Λ (Y -X) ≤ G(x, r, p, Y ) -G(x, r, p, X) ≤ P + λ,Λ (Y -X) a.e. x ∈ Ω (2.3)
for any (r, p) ∈ R × R n and X, Y ∈ S n . Here P ± λ,Λ are the Pucci extremal operator defined in the following way: We say that u is an L p -strong solution if it is both sub and supersolution. 

P + λ,Λ (X) = sup λI≤A≤ΛI Tr(AX), P - λ,Λ (X) = inf λI≤A≤ΛI Tr(AX).
(Ω) such that G(x, u(x), Dϕ(x), D 2 ϕ(x)) -g(x) ≤ -ε a.e. in O, respectively G(x, u(x), Dϕ(x), D 2 ϕ(x)) -g(x) ≥ ε a.e. in O, then u -ϕ cannot have a local maximum, respectively minimum, in O.
Moreover if u is both sub and supersolution then it is an L p -viscosity solution.

From definition 2.2 it is clear that L p -viscosity notion imply the L q one for q ≥ p because of the inclusion W 2,q loc (Ω) ⊆ W 2,p loc (Ω). The test function ϕ are continuous and twice differentiable a.e. [4, Appendix C]. In the linear growth case the set of L p -strong solution is a subset of the L p -viscosity one. Conversely an L p -viscosity solution that lies in W 2,p loc (Ω) is an L p -strong solution. For the proof and a general review of the L p theory of viscosity solution we refer to [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF][START_REF] Crandall | On the equivalence of various weak notions of solutions of elliptic PDEs with measurable ingredients[END_REF]. In the superlinear case L p -strong solutions continue to be L p -viscosity solution as stated in [START_REF] Koike | Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients[END_REF]Theorem 3.1]. Finally, we call continuous viscosity solutions, or C-viscosity solutions, the classical notion of viscosity solutions ( [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Koike | A Beginner's Guide to the Theory of Viscosity Solutions[END_REF]). When the data in the equations are continuous, they are equivalent to L p -viscosity solutions, see [START_REF] Koike | Remarks on viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients[END_REF]. 

F (x, D 2 u) + H(x, Du) -|u| s-1 u = f (x) (2.4) and F (x, D 2 v) + 2 m-1 γ m |Dv| m + γ 1 |Dv| -|v| s-1 v = g(x)
.

If v ∈ W 2,p loc (Ω) then the difference w = u -v is an L p -viscosity subsolution of the maximal equation P + λ,Λ (D 2 w) + 2 m-1 γ m |Dw| m + γ 1 |Dw| = f (x) -g(x) in {w > 0}.
Remark 2.1. As it will be clear from the proof, the result continues to hold if m > 2.

Proof. By contradiction assume that there exist ε > 0, ϕ ∈ W 2,p loc ({w > 0}), O ⊂ {w > 0} open such that 

P + λ,Λ (D 2 ϕ(x)) + 2 m-1 γ m |Dϕ(x)| m + γ 1 |Dϕ(x)| -(f (x) -g(x)) ≤ -ε a.e.
F (x, D 2 (v + ϕ)(x)) + H(x, D(v + ϕ)(x)) -|u(x)| s-1 u(x) -f (x) ≤ F (x, D 2 v(x)) + P + λ,Λ (D 2 ϕ(x)) + γ m |D(v + ϕ)(x)| m + γ 1 |D(v + ϕ)(x)| -|u(x)| s-1 u(x) -f (x) ≤ F (x, D 2 v(x)) + 2 m-1 γ m |Dv(x)| m + γ 1 |Dv(x)| + P + λ,Λ (D 2 ϕ(x)) + 2 m-1 γ m |Dϕ(x)| m + γ 1 |Dϕ(x)| -|u(x)| s-1 u(x) -f (x) ≤ |v(x)| s-1 v(x) -|u(x)| s-1 u(x) -ε ≤ -ε a.e. in O
a contradiction because u is a subsolution of (2.4).

A fundamental tool we will use in the sequel is the ABP-estimate for solutions of uniformly elliptic equations. The classical ABP inequality states that in a bounded domain Ω sup

Ω u ≤ sup ∂Ω u + Cdiam(Ω) f - L n (Ω)
for any solution u ∈ C(Ω) of the maximal inequality

P + λ,Λ (D 2 u) + γ|Du| ≥ f (x)
, where C = C(n, λ, Λ, γ diam(Ω)). Such result has been extended in the case m > 1 of superlinear growth in the gradient by Koike-Świȩch [START_REF] Koike | Maximum principle and existence of L p -viscosity solutions for fully nonlinear uniformly elliptic equations with measurable and quadratic terms[END_REF]. In order to get the following ABP-estimates, deduced by [11, Theorems 3.1-3.2], we also need the restriction m ≤ 2.

Theorem 2.1. Let diam(Ω) ≤ 1 and let u ∈ C(Ω) be an L p -viscosity subsolution (resp. supersolution), p ≥ n, of

P + λ,Λ (D 2 u) + γ 1 |Du| + γ|Du| m = f (x) in Ω, resp. P - λ,Λ (D 2 u) -γ 1 |Du| -γ|Du| m = f (x) in Ω , with γ 1 , γ > 0, m ∈ [1, 2] and f ∈ L p (Ω).
There exist two positive constants

δ = δ(m, n, p, γ 1 , γ, λ, Λ) < 1, C = C(m, n, p, γ 1 , γ, λ, Λ) such that if diam(Ω) 2-n p f - L p (Ω) < δ resp. diam(Ω) 2-n p f + L p (Ω) < δ then sup Ω u + ≤ sup ∂Ω u + + C diam(Ω) 2-n p f - L p (Ω) resp. sup Ω u -≤ sup ∂Ω u -+ C diam(Ω) 2-n p f + L p (Ω) ,
where u ± = max(±u, 0).

Proof. It is a straightforward consequence of [11, Theorems 3.1-3.2] by using the interpolation inequality

|Du| m ≤ (2 -m)|Du| + (m -1)|Du| 2 for m ∈ [1, 2].

Uniform Estimates

We denote by B r (x) the open ball centered at x ∈ R n with radius r > 0. When x = 0 we write for simplicity B r . For m ∈ [1, 2] and s > m we consider the Osserman's barrier function

φ R (x) = C R R µ (R 2 -|x| 2 ) µ , |x| < R (3.1)
where the positive constant C R is to be fixed and

µ =        2 s -1 if 1 ≤ m ≤ 2s s + 1 m s -m if 2s s + 1 < m < s. (3.2) 
Lemma 3.1. For any γ 1 , γ ≥ 0 and δ > 0, there exists C R > 0 such that the function φ R defined in (3.1) satisfies the differential inequality

P + λ,Λ (D 2 φ R ) + γ 1 |Dφ R | + γ |Dφ R | m -δφ s R ≤ 0 in B R in the classical sense.
For instance, we may choose

C R = max a(1 + γ 1 R) 1 s-1 R µ-2 s-1 , bγ 1 s-m R µ-m s-m (3.3) with a s-1 = 4µδ -1 max {Λ(1 + n + 2µ), 1} and b s-m = 2 m+1 µ m δ -1 . Proof. Put r := |x| and φ R (x) = ϕ(r) = C R R µ (R 2 -r 2 ) -µ . The choice (3.
2) guarantees that µs = max {µ + 2, (µ + 1)m} > 2; (3.4) in this way, since all the curvatures of φ R are positive, a straightforward computation yields

P + λ,Λ (D 2 φ R (x)) + γ 1 |Dφ R (x)| + γ |Dφ R (x)| m -δφ s R (x) = Λ ϕ ′′ + n -1 r ϕ ′ + γ 1 ϕ ′ + γ (ϕ ′ ) m -δϕ s = C R R µ (R 2 -r 2 ) µs 2Λµ R 2 + (1 + 2µ)r 2 R 2 -r 2 µs-µ-2 + 2µ (Λ(n -1) + γ 1 r) R 2 -r 2 µs-µ-1 + 2 m γµ m C m-1 R R (m-1)µ r m R 2 -r 2 µs-(µ+1)m -δC s-1 R R (s-1)µ ≤ C R R µs (R 2 -r 2 ) µs 2Λµ (1 + n + 2µ) R µ(s-1)-2 + 2γ 1 µR µ(s-1)-1 + (2µ) m γC m-1 R R µ(s-m)-m -δC s-1 R . Using (3.3) we conclude 2Λµ (1 + n + 2µ) R µ(s-1)-2 + 2γ 1 µR µ(s-1)-1 + (2µ) m γC m-1 R R µ(s-m)-m -δC s-1 R ≤ δC s-1 R a s-1 (1 + γ 1 R)R µ(s-1)-2 2C s-1 R + b s-m γR µ(s-m)-m 2C s-m R -1 ≤ 0.
Following the same line of proof in [8, Lemma 3.2] we prove the following uniform estimates result in "small" balls. 

= 2 m-1 γ m . If u ∈ C(B 2r ) is an L n -viscosity subsolution of F (x, D 2 u) + H(x, Du) -|u| s-1 u = f (x) in B 2r then sup Br u ≤ C 0 r µ + C r f - L n (B 2r ) , (3.5) 
where

C 0 = C 0 (m, n, s, γ 1 , γ m , Λ), C = C(m, n, γ 1 , γ m , λ, Λ) are positive constants.
Proof. Since φ 2r (x) → ∞ as |x| → 2r, we can find r < r < 2r such that φ 2r ≥ u in B 2r \B r and {u > φ 2r } ⊆ B r . By means of Lemma 3.1, setting γ = 2 m-1 γ m , δ = 1 and R = 2r, we construct the Osserman's barrier function φ 2r , which is an L n -strong supersolution of

F (D 2 φ 2r ) + γ 1 |Dφ 2r | + 2 m-1 γ m |Dφ 2r | m -φ s 2r = 0 in B 2r
and thus the difference w = u -φ 2r satisfies the inequality 

P + λ,Λ (D 2 w) + γ 1 |Dw| + 2 m-1 γ m |Dw| m ≥ f (x) in {w > 0} in L n -
F (x, D 2 u) + H(x, Du) -|u| s-1 u = f (x) in B 2r then sup Br |u| ≤ C 0 r µ + C r f L n (B 2r ) , (3.6) 
with C 0 and C as in (3.5).

Existence

In order to prove Theorem 1.1 we will use the uniform bounds of Section 3.

Proof of Theorem 1. 

B k ⊆ K i=1 B r (x i ) ⊆ K i=1 B 2r (x i ) ⊆ B k+1
and r > 0, for i = 1, . . . , K, small enough as in Lemma 3.3. In this way for any h > k, using (3.6), one has sup

Br(x i ) |u h | ≤ C 0 r µ + C r f L n (B 2r (x i ))
and sup

B k |u h | ≤ max i=1,...,K sup Br(x i ) |u h | ≤ C 1 1 + f L n (B k+1 )
with

C 1 = C 1 (k, m, n, s, γ 1 , γ m , λ, Λ). Using the C α -estimates [14, Theorem 2] u h C α (B k ) ≤ C 2 1 + f L n (B k+1 )
for a positive constant C 2 independent of h > k. By a diagonal process we can extract a subsequence u k h converging locally uniformly to a function u ∈ C(R n ). From the stability result of [START_REF] Sirakov | Solvability of uniformly elliptic fully nonlinear PDE[END_REF]Theorem 4] u in an L n -viscosity solution of (1.4).

Uniqueness

This Section is concerned with the uniqueness of C-viscosity entire solutions. As announced in the Introduction, we assume throughout that the Hamiltonian is actually superlinear, satisfying the convexity type assumption (1.14), and refer to [START_REF] Galise | Viscosity Solutions of Uniformly Elliptic Equations without Boundary and Growth Conditions at Infinity[END_REF] for Lipschitz continuous Hamiltonians.

We start with a few remarks.

The condition s ∈ (m, +∞) in Theorem 1.1 is necessary in order to obtain a uniqueness result. In fact the functions

u(x 1 , . . . , x i , . . . , x n ) = α exp(± √ 2x i ) + 1 are solutions in R n of the equation ∆u + 1 2 |Du| 2 -|u|u = -1 for any α ≥ 0. Similarly the functions v = -u satisfy ∆v -1 2 |Dv| 2 -|v|v = 1 in R n .
Assumptions (1.12)-(1.14) are needed to deal with the strong superlinear nonlinearity in the Hamiltonian H when performing a kind of linearization, see Lemma 5.2 in the proof of Theorem 1.2.

The assumption (1.15) gives a limiting growth on the data f. Note that inequality

ρ <    m(s-1) (m-1)s if 1 < m ≤ 2s s+1 2(s-m) s(m-1) if 2s s+1 < m ,
can be rewritten in the more synthetic way

ρ < 2m ′ µs (5.1)
where µ is introduced in (3.2) and m ′ is the conjugate of m defined by

1 m + 1 m ′ = 1.
The following Lemma says how the growth of u ± depends on the growth of f ∓ at infinity.

Lemma 5.1. Under the assumptions of Theorem 1.1, let ρ ≥ 0 and assume

lim sup |x|→∞ f -(x) |x| ρ =: l < ∞. (5.2) 
Then any subsolution of (1.4) satisfies

lim sup |x|→∞ (u + ) s (x) |x| µsρ 2 < ∞.
where µ is defined in (3.2). The same result holds replacing f -by f + , u + by u -and "subsolution" by "supersolution".

Proof. Let ε 0 > 0 be such that

2 2+ρ (l + 1)ω 1 n n ε 2 0 < δ < 1 as required by Theorem 2.1, where ω n is the volume of the unit ball in R n . Set r 0 = ε 0 |x 0 | -ρ 2 .
For |x 0 | big enough, by assumption (5.2) we get

2r 0 f - L n (Br 0 (x 0 )) ≤ 2(l + 1) r 0 |x| ρ L n (Br 0 (x 0 )) ≤ 2 ρ+1 (l + 1)ω 1 n n r ρ+2 0 + ε 2 0 ≤ 2 ρ+2 (l + 1) ω 1 n
n ε 2 0 < δ, by our choice of ε 0 . In this way Theorem 2.1 applies in B r 0 (x 0 ) and Lemma 3.2 yields, for x 0 far away from the origin, the estimate

u(x 0 ) ≤ sup B r 0 2 (x 0 ) u ≤ C 1 r µ 0 + C
with µ given by (3.2), where C 1 = 2 µ C 0 . In this way

(u + ) s (x 0 ) ≤ 2 s-1 C s 1 r µs 0 + C s = 2 s-1 C s 1 ε µs 0 |x 0 | µsρ 2 + C s and lim sup |x|→∞ (u + ) s (x) |x| µsρ 2 ≤ 2 s-1 C s 1 ε µs 0 as claimed.
We prove the second part of the lemma. If u is a supersolution of (1.4), then

the function v = -u is a subsolution in R n of -F (x, -D 2 v) -H(x, -Dv) -|v| s-1 v = -f (x),
where the operators -F (x, -X) and -H(x, -p) turn out to satisfy (1. We now turn to the proof of the uniqueness theorem. We will use the inequality

|u| s-1 u -|v| s-1 v > δ(s)(u -v) s for u > v and s > 1, (5.3) 
where δ(s) is a positive constant.

Proof of Theorem 1.2. By contradiction let us assume that u and v are both viscosity solutions of (1.4) such that

θ := u(x 0 ) -v(x 0 ) > 0, x 0 ∈ R n . (5.4) 
The following lemma performs a kind of linearization of the equation.

Lemma 5.2. Assume that F satisfies (1.9), (1.10), (1.13), (2.3) and H satsifies (1.12), (1.14). For any σ ∈ (0, 1), the function w σ := u -v σ := u -σv is a subsolution in R n of the extremal PDE

P + λ,Λ (D 2 w σ ) + γ 1 |Dw σ | + (1 -σ) 1-m γ|Dw σ | m -|u| s-1 u -|v σ | s-1 v σ + (σ -σ s )|v| s-1 v ≥ (1 -σ)(f (x) -A), (5.5) 
where

γ = γ m + (m -1) m-1 γ m m m m c m-1 (5.6)
and γ 1 , γ m , c, A are the constants appearing in (1.12)- (1.14).

A proof of the lemma is provided in the Appendix.

For σ close to 1 w σ (x 0 ) > θ 2 .

Applying Lemma 3.1 with γ = (1 -σ) 1-m γ and δ = δ(s) given by (5.3), the function

φ R (x) = C R R µ (R 2 -|x| 2 ) µ , |x 0 | < R, is a solution in B R of P + λ,Λ (D 2 φ R ) + γ 1 |Dφ R | + (1 -σ) 1-m γ |Dφ R | m -δ(s)φ s R ≤ 0 (5.7) for C R = max a(1 + γ 1 R) 1 s-1 R µ-2 s-1 , b(1 -σ) 1-m s-m γ 1 s-m R µ-m s-m .
We set 1 -σ = KR -m ′ for K to be fixed. We have

φ R (x 0 ) = 1 1 -|x 0 | 2 R 2 µ R -µ C R . Noticing that R -µ R 1 s-1 R µ-2 s-1 = R -1 s-1 → 0 as R → +∞ and R -µ (1 -σ) 1-m s-m R µ-m s-m = K 1-m s-m , we obtain lim R→+∞ φ R (x 0 ) = bγ
because of (5.3). Using φ R as test function for w σ at x R in (5.5) and the inequality (5.7) one has

(1 -σ)(f (x R ) -A) ≤ P + λ,Λ (D 2 φ R (x R )) + γ 1 |Dφ R (x R )| + (1 -σ) 1-m γ|Dφ R (x R )| m -|u| s-1 u -|v σ | s-1 v σ (x R ) + (σ -σ s )|v| s-1 v(x R ) ≤ P + λ,Λ (D 2 φ R (x R )) + γ 1 |Dφ R (x R )| + (1 -σ) 1-m γ|Dφ R (x R )| m -δ(s) φ R (x R ) + θ 4 s + (σ -σ s )|v| s-1 v(x R ) ≤ -δ(s) θ 4 s + (σ -σ s )|v| s-1 v(x R ).
(5.9)

The function f -satisfies (1.15) with some ρ < 2m ′ µs < m ′ (see (3.4) and (5.1)). It follows

lim sup R→+∞ -(1 -σ)(f (x R ) -A) ≤ K lim sup R→+∞ (f -(x R ) + A) R m ′ = 0.
On the other hand, using the elementary inequality σ -σ s ≤ (s -1)(1 -σ) for any σ ∈ (0, 1) and applying Lemma 5.1 with u = v and ρ < 2m ′ µs , which implies µsρ 2 < m ′ , we conclude lim sup

R→+∞ (σ -σ s )|v| s-1 v(x R ) ≤ K(s -1) lim sup R→+∞ (v + ) s (x R ) R m ′ = 0
and (5.9) produces a contradiction for R big enough.

We give a sketch of the proof of the case when -H satisfies (1.14) and f + satisfies (1.15). Arguing as above by contradiction, assuming that two solutions u, v satisfies (5.4), we now consider w σ := u σ -v := σu -v for σ ∈ (0, 1). Using (1.12) and the fact that -H satisfies (1.14) one proves in a similar way as above that w σ is a subsolution in R n of

P + λ,Λ (D 2 w σ ) + γ 1 |Dw σ | + (1 -σ) 1-m γ|Dw σ | m -|u σ | s-1 u σ -|v| s-1 v + (σ s -σ)|u| s-1 u ≥ (σ -1)(f (x) + A),
where γ is still defined by (5.6). Setting as above 1-σ = KR -m ′ with K as in (5.8), denoting with x R a maximum point in B R of w σ -φ R and arguing as for (5.9), we obtain

(σ -1)(f (x R ) + A) ≤ -δ θ 4 s + (σ s -σ)|u| s-1 u(x R ).
We obtain a contradiction as above using this time that f + satisfies (1.15) and applying the second part of Lemma 5.1 which gives a limiting growth for u + .

Remark 5.1. When H satisfies (1.6)-(1.7), the subsolutions of (1.4) are bounded from above by requiring the uniform bound of the local

L n -norm of f - sup x∈R n f - L n (B 1 (x)) < ∞.
To see this it is sufficient to fix r small enough in Lemma 3.2 and using (3.5) 

A Appendix

Proof of Lemma 5.2

The proof borrows arguments from [START_REF] Barles | Regularity Results and Large Time Behavior for Integro-Differential Equations with Coercive Hamiltonians To appear in Calc[END_REF][START_REF] Koike | Comparison principle for unbounded viscosity solutions of degenerate elliptic PDEs with gradient superlinear terms[END_REF], we provide it for reader's convenience.

For σ ∈ (0, 1), from (1.13), the function v σ := σv is a solution, so a supersolution, of

F (x, D 2 v σ ) + σH(x, Dv σ σ ) -σ 1-s |v σ | s-1 v σ = σf (x) in R n .
We shall show that w σ = u -v σ is a viscosity subsolution of the extremal PDE (5.5). For φ ∈ C 2 (R n ), we suppose that w σ -φ attains a local maximum at x ∈ R n . We may suppose that (w σ -φ)(x) = 0 > (w σ -φ)(x) for x ∈ B r (x) \ {x} with a small r ∈ (0, 1). Let (x ε , y ε ) ∈ B := B r (x)×B r (x) be a maximum point of u(x)-v σ (y)-(2ε) -1 |x-y| 2 -φ(x) over Since we may suppose lim ε→0 (x ε , y ε ) = (x, x), and moreover lim ε→0 (u(x ε ), v σ (y ε )) = (u(x), v σ (x)), it follows that (x ε , y ε ) ∈ int(B) for small ε. Hence, in view of Ishii's lemma (e.g., Theorem 3.2 in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]), setting p ε = ε -1 (x ε -y ε ), we find X ε , Y ε ∈ S n such that (p ε + Dφ(x ε ), X ε + D 2 φ(x ε )) ∈ J 2,+ u(x ε ), (p ε , Y ε ) ∈ J 2,-v σ (y ε ), and (1.11) holds. Thus, from the definition, we have

F (x ε , X ε + D 2 φ(x ε )) + H(x ε , p ε + Dφ(x ε )) -|u(x ε )| s-1 u(x ε ) ≥ f (x ε ) (A.1)
and

F (y ε , Y ε ) + σH(y ε , p ε σ ) -σ 1-s |v σ (y ε )| s-1 v σ (y ε ) ≤ σf (y ε ) (A.2)
From (1.10) and (2.3), we have

F (y ε , Y ε ) ≥ F (x ε , X ε ) -ω r (|x ε -y ε | + |x ε -y ε | 2 ε )
and F (x ε , X ε + D 2 φ(x ε )) -F (x ε , X ε ) ≤ P + λ,Λ (D 2 φ(x ε )).

From (1.12) and (1. 

  8) when H(x, p) = c 1 (x)|p|+c m (x)|p| m with m > 1, c i (x) bounded uniformly continuous in R n and c m (x) ≥ c > 0 for some c > 0. We collect additional examples of Hamiltonians satisfying (1.12)-(1.14) in the subsection 1.1.

Definition 2 . 1 .

 21 A function u ∈ W 2,p loc (Ω) is an L p -strong subsolution, respectively supersolution, of (2.1) if G(x, u(x), Du(x), D 2 u(x)) ≥ g(x) a.e. in Ω, respectively G(x, u(x), Du(x), D 2 u(x)) ≤ g(x) a.e. in Ω .

Lemma 2 . 1 .

 21 Suppose that (1.5)-(1.6)-(1.7) hold true. Let u, v ∈ C(Ω) be respectively L pviscosity sub and supersolution of

  in O and w -ϕ has a local maximum in O. Thus v + ϕ is a test function for u and using the assumptions (1.5)-(1.6)-(1.7)

Lemma 3 . 2 .

 32 Suppose that (1.5)-(1.6)-(1.7) hold true. Let f ∈ L n loc (R n ) and r be a positive number small enough such that Theorem 2.1 holds true in B 2r with p = n and γ

  viscosity sense in view of Lemma 2.1. Using Theorem 2.1 we have u(x) ≤ φ 2r (x) + Cr f - L n (B 2r ) from which (3.5) follows. Reasoning as in Lemma 3.2 on the function v = -u it is easy to prove the next Lemma 3.3. Suppose that (1.5)-(1.6)-(1.7) hold true. Let f and r as in Lemma 3.2. If u ∈ C(B 2r ) is an L n -viscosity solution of

  [START_REF] Sirakov | Solvability of uniformly elliptic fully nonlinear PDE[END_REF], and choosing ε small enough in order that c(1-σ) > ω(|x ε -y ε |), we get H(x ε , p ε + Dφ(x ε )) -σH(y ε , p ε σ ) = H(x ε , p ε + Dφ(x ε )) -H(y ε , p ε ) + H(y ε , p ε ) -σH(y ε , p ε σ ) ≤ ω(|x ε -y ε |)(|p ε | m + 1) + γ 1 + γ m |p ε | m-1 + |Dφ(x ε )| m-1 |Dφ(x ε )| -(1 -σ)(c|p ε | m -A) ≤ sup r≥0 (-(1 -σ)c + ω(|x ε -y ε |))r m m-1 + γ m |Dφ(x ε )|r +γ m |Dφ(x ε )| m + γ 1 |Dφ(x ε )| + (1 -σ)A + ω(|x ε -y ε |) ≤ γ m + (m -1) m-1 γ m m m m ((1 -σ)c -ω(|x ε -y ε |)) m-1 |Dφ(x ε )| m + γ 1 |Dφ(x ε )| + (1 -σ)A + ω(|x ε -y ε |).

  1. By [14, Theorem 1 (i)] we can solve any Dirichlet problem for the equation (1.4) in the ball B k , k ∈ N, with continuous boundary condition. Choose a solution u k for any k. Let {B r (x i )} i=1,...,K be a covering of B k such that

Subtracting (A.1) and (A.2), letting ε → 0 and using that (2ε) -1 |x ε -y ε | 2 → 0 it follows

which proves that w σ is a viscosity subsolution of (5.5) with γ given by (5.6).