
HAL Id: hal-01166913
https://hal.science/hal-01166913

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context-Aware Processing of Continuous
Location-Dependent Queries in Indoor Environments

Imad Afyouni, Sergio Ilarri, Cyril Ray, Christophe Claramunt

To cite this version:
Imad Afyouni, Sergio Ilarri, Cyril Ray, Christophe Claramunt. Context-Aware Processing of Contin-
uous Location-Dependent Queries in Indoor Environments. JAISE - Journal of Ambient Intelligence
and Smart Environments, 2013, 5 (1), pp.65-88. �10.3233/AIS-120186�. �hal-01166913�

https://hal.science/hal-01166913
https://hal.archives-ouvertes.fr

Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9622

To cite this version :

Imad AFYOUNI, Sergio ILARRI, Cyril RAY, Christophe CLARAMUNT - Context-Aware
Processing of Continuous Location-Dependent Queries in Indoor Environments - Journal of
Ambient Intelligence and Smart Environments - Vol. 5, n°1, p.65-88 - 2013

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/9622
mailto:archiveouverte@ensam.eu

1

Context-Aware Modelling of Continuous
Location-Dependent Queries in Indoor
Environments
Imad Afyouni a,Sergio Ilarri b, Cyril Ray a and Christophe Claramunt a

a Naval Academy Research Institute, 29240 Brest Cedex 9, France
E-mail: {imad.afyouni,cyril.ray,christophe.claramunt}@ecole-navale.fr
b Department of Computer Science and Systems Engineering, University of Zaragoza, Maria de Luna 1,
50018 Zaragoza, Spain
E-mail: silarri@unizar.es

Abstract
Emerging and continuing advances in ambient systems and localization techniques have brought novel opportunities
to develop context-aware navigation services in indoor environments. Diverse kinds of services delivered to the users
can be provided by enabling real-time integration of contextual dimensions. In particular, continuous location-
dependent queries can be considered as key elements for the development of different categories of context-aware
services. However, most work on location-dependent query processing has been mainly oriented towards outdoor
environments. This paper introduces a generic architecture for continuous location-dependent and navigation-
related queries in indoor environments. A multi-level model of space is designed by taking into account contextual
information and the hierarchical layout of an indoor environment. The semantics of a query language for continuous
location-dependent queries are introduced, along with some motivating sample queries.

Keywords: Context-aware services, location-dependent queries, indoor spatial data model, query language,
continuous processing architecture

1. Introduction

Location-based services [43] have recently at-
tracted extensive research attention, as their de-
velopment is expected to have a significant im-
pact for end users in both indoor and outdoor
environments. Such services should offer custo-
mized access to information by taking into ac-
count the location of mobile users. More gene-
rally, context-aware systems exploit contextual di-
mensions such as user-centred dimensions (e.g.,
user profile, user’s physical/cognitive capabilities),
environmental context (e.g., location, light, etc.),
temporal context, and the context of execution
(e.g., network connectivity, nearby resources, etc.).

This allows to anticipate user’s needs and to cus-
tomize the user’s experience [5,9,14].

A successful integration of indoor spaces (e.g.,
houses, commercial malls, etc.) and context-aware
systems still requires the development of dyna-
mic and flexible spatial models that provide ap-
propriate services to mobile users acting in the en-
vironment. In a previous work [2], we introduced
a context-dependent multi-granular spatial model
that embeds different levels of granularity and re-
presents: (i) all the features that populate an in-
door environment, where a feature can refer to ei-
ther a person (i.e., a mobile user or any other social

2

entity of interest1) or an object of interest (e.g.,
sensors, exits, tables, continuous phenomena such
as a fire, etc.); (ii) their spatial properties (e.g.,
location and extent); and (iii) the behaviours that
emerge from them (i.e., how these objects can in-
teract and communicate within the environment).
It should be noted that an object of interest (OOI)
may or may not have communication capabilities,
be mobile or static, physical or virtual, and attrac-
tive or repellent (i.e., depending on whether the
user may want to reach it or to avoid it, respecti-
vely)2.
A wide range of location-aware services can be

applied to indoor environments. The main goal of
these services is to provide the user with the ability
to interact with his/her physical surroundings in
order to achieve some objectives. Location-aware
and user-centred services can be distinguished ac-
cording to two modes of data access: pull mode
and pushmode. These access modes have been stu-
died in the field of distributed and mobile data-
bases [39,49]. For indoor context-aware services,
they can be summarized as follows:

– Pull-based location-aware services comprise
explicit requests triggered by the user with
the aim of “pulling” some location-dependent
information from the service provider. As an
example, a user in a building may submit a
request to locate the nearest exit.

– Conversely, push-based services imply com-
munications initiated by the service provider
without having been explicitly requested by
the user. The service provider takes into ac-
count the location information of subscribed
users to trigger alerts or contextual adverti-
sing and push the information to the user’s
device. As an example, one can imagine a user
who is subscribed to a service that automati-
cally alerts him/her when one of his/her col-
leagues is nearby.

Location-dependent queries [27,58] are typical
examples of pull-based services needed in context-
aware systems, as well as a key building block to
detect situations of interest for push-based ser-

1Human beings that are located in the vicinity and are
of interest to the query are referred to as social entities.

2The distinction between attractive and repellent events
is similar to the one suggested in [16] regarding attraction
and repulsion events.

vices. The location-dependent character of these
queries means that any change of the locations of
objects that are involved in the query may signi-
ficantly affect the answer. For example, if a user
wants to find out his/her friends within a range
of 100 meters while navigating a shopping centre,
the answer depends on both the user’s current po-
sition and the location of the nearest friends. This
type of query is particularly challenging because,
in most cases, the user and entities relevant for
the query (e.g., the friends of the user) are mo-
ving. Location-dependent queries have been sur-
veyed in [27]; some particularly relevant queries in
an indoor context are briefly described:

1. Position queries determine the locations of mo-
bile and static objects, and are processed accor-
ding to either a geometric or symbolic model of
space (cf., [3]). Location-dependent queries cannot
be carried out without up-to-date information on
the locations of objects of interest [7].
2. Navigation queries encompass all the queries
that directly help the users to find and reach
points of interest by providing them with naviga-
tional information while optimizing some criteria
such as the total traversed distance or travel time.
Examples of such queries are: (i) discovering opti-
mal paths to a nearest point of interest (e.g., land-
mark, place, etc.), (ii) planning a path to a desti-
nation, etc.
3. Range queries are used to find and retrieve in-
formation about objects of interest or places wi-
thin a user-specified range or area [52,57]. Those
queries support navigation by continuously up-
dating relevant details according to users’ move-
ments. Ranges may be characterized by a circular
or rectangular-shaped window in which objects of
interest must be located. In addition, range que-
ries may be static or dynamic according to whe-
ther or not the query point is in a static location.
Similarly, a range query can be applied on static
or dynamic data, depending on whether the target
objects are moving or not.
4. k nearest neighbour (kNN) queries search for
the k closest qualifying objects to the moving user
with respect to his/her current location [46,58]. As
opposed to range queries, kNN queries are range-
independent, except in the case of constrained nea-
rest neighbour queries [20], where the search is
constrained to a given region. The user initiates
a request by specifying some characteristics about

3

objects of interest, so that the k closest objects
whose specifications meet these characteristics are
retrieved (e.g., the closest available colour printer
or the k nearest friends).

Appropriate management of static and dynamic
data is a key issue for processing these queries,
since the result of a query is only valid for a par-
ticular location of the query issuer and for cer-
tain locations of the objects of interest. As those
queries are time-sensitive and location-dependent,
they may be valid only for a given period of time
and within a given area (i.e., data returned are
only spatio-temporally valid). So, they must be
processed as continuous queries [47], which means
that the system should continually keep the ans-
wers up-to-date, until the query is explicitly can-
celled by the user. However, regularly updating
those query answers may imply significant commu-
nication overhead and additional processing cost
at the server side. Several approaches to alleviate
this problem have been proposed. For example, the
concept of validity region, introduced in [58], deter-
mines a safe area around the initial user location in
which the result of the query is always valid. Many
variants of continuous location-dependent queries
are summarized in [27]. Although many research
studies have discussed location-dependent queries
and location-based services, a few works have dis-
cussed the problem of incorporating contextual di-
mensions, particularly those related to the user-
centric and environmental context, into query pro-
cessing. Indeed, this may significantly affect the
answer to a query even if the locations of the query
issuer and other involved objects have not chan-
ged.
The research presented in this paper studies

location- and context-aware services and que-
ries in indoor environments, with a special focus
on navigation-related queries (i.e., mainly path
search, range, and nearest neighbour queries). A
unique combination of challenges arises, as the
proposal must be able to represent different kinds
of location-dependent queries in a flexible man-
ner, and to take into account additional context
information, time-dependency, and the hierarchi-
cal layout of the indoor environment. The remain-
der of the paper is organised as follows. Section 2
introduces a hierarchical indoor data model, and
emphasizes its interest for location-aware queries
and services. Section 3 firstly presents an archi-

tecture for continuous query processing, and dis-
cusses the integration of the indoor data model
with a decentralized query processing and data
management architecture. Secondly, a query lan-
guage that models continuous location-dependent
queries in an indoor environment is proposed. Sec-
tion 4 reviews related works, while Section 5 draws
some conclusions and outlines further work.

2. Modelling Approach

Indoor spatial models have been studied and de-
veloped in many areas, ranging from mobile ro-
bot mapping to Geographic Information Systems
(GIS) and ubiquitous computing [1,50]. In a pre-
vious work, preliminary requirements for the deve-
lopment of indoor spatial models have been intro-
duced from a context-aware system perspective [3].
Those are classified into two categories: service-
oriented and efficiency-related requirements. Ba-
sed on these requirements, a modelling approach
of an indoor-oriented system that takes into ac-
count different levels of spatial granularity is intro-
duced. The modelling approach developed in this
paper is an extension of our preliminary work re-
ported in [2], and introduces a multi-granular spa-
tial representation of an indoor system that can
be integrated into a context-aware system archi-
tecture. This model represents: (i) all the features
that populate the environment, (ii) their spatial
properties, and (iii) the behaviours or actions that
emerge from them (see Fig. 1). The model is hie-
rarchically organised and can be viewed as a tree
structure in which location information is repre-
sented at different levels of abstraction. This hie-
rarchical design can support a large spectrum of
applications that can be developed at different le-
vels of abstraction, and offers a promising solution
to alleviate performance and scalability issues in
location-dependent query processing.

Let us formally present the main concepts
of the indoor data model. This multi-granular
context-dependent model represents an indoor en-
vironment with three complementary components
〈S,F ,A〉, where:

– The spatial component S =
⋃

i=1...|S| Si is
made of a set of layers (Si) hierarchically or-
ganised and representing the indoor space,
and thus defining the multi-granular spatial
structure of the model.

4

Indoor spatial model

Figure 1. Indoor spatial model as a basic component for
the design of context-aware information systems

– The feature component F =
⋃

(P, OOI) en-
compasses the features (i.e., persons (P) and
objects of interest (OOI)) located in the en-
vironment.

– The action component A =
⋃

(FA, SA) re-
presents actions that are either predefined
and triggered automatically by the system in
form of informative, context-aware messages
(SA), or generated by a given feature acting
in the environment (FA).

These three components are hereafter discussed in
more detail.

2.1. Spatial Component

A spatial component S contains a set of spatial
layers hierarchically organized. The illustration in
Fig. 2 describes a part of a scenario where a user
navigates inside a three-story laboratory building.
The ground floor of the building comprises two
teaching labs and some administrative staff offices.
Offices of the Linguistics Department are located
on the fist floor. Specifically, Fig. 2 illustrates the
second floor of the building where the Computer
Science Department is located. The core layer (S1)
is firstly presented. Then, other coarser layers that
can be incorporated into the hierarchical data mo-
del are discussed.

2.1.1. Core Spatial Layer
The core layer S1 (referred to as Smicro) of

the indoor data model is made of a fine-grained,

context-dependent graph Gmicro = (Vmicro, Emicro,
Wlength,Wtime) embedded within a spatial grid
and which covers the indoor space3 (Fig. 2).
Consequently, vertices of the base graph represent
cells within the grid, and connections between cells
are materialized by edges.

In the definition of Smicro, Vmicro = {vi} is
the set of vertices and Emicro ⊆ Vmicro × Vmicro

is the set of edges. For each edge e = (vi, vj)
∈ Emicro, there exist two time-dependent cost
functions ωli,j(t) ∈ Wlength and ωti,j(t) ∈ Wtime

that compute the length and travel-time from vi

to vj , respectively, if traversal is started at instant
t. Besides time, this model also takes into account
other contextual dimensions such as user profiles
and real-time events, to further associate impe-
dances with edge weights. User profiles are hand-
led by considering generic graphs that are derived
from the base graph Gmicro and which correspond
to predefined categories of users. Effects of real-
time events on edge weights will be discussed later
in Section 2.2.3.

Figure 2. A fine-grained graph of a floor plan: first level of
the hierarchical spatial data model

Each node v ∈ Vmicro has a set of attributes
that describe its physical location or state (i.e.,

3The motivation behind the use of a fine-grained graph as
the core spatial layer is provided in more detail in previous
work [2,32].

5

whether it is accessible or not). A node v is for-
mally defined by the tuple 〈vid, xv, yv, sv, Lv, Av〉.
vid is the node identifier, (xv, yv) denotes the geo-
metric location of v according to a reference sys-
tem, and sv ∈ {free, occupied} determines whether
or not the node v is physically occupied by an ob-
ject at that moment. We assume that nodes which
are occupied by static objects are inaccessible
for path planning. Let Σlabel = {Σfine−grained ∪
Σroom∪Σfloor∪Σbuilding} be a set of labels or sym-
bolic values that consists of all the identifiers of the
topological hierarchy (i.e., local identifiers of nodes
at the fine-grained level, as well as room, floor,
and building identifiers) for a given space. Hence,
Lv ⊂ Σlabel = {local-id, room-id, floor-id, building-
id} is a set of labels assigned to v, where local-id
denotes its local identifier at the fine-grained level,
and the others are associated according to their
belonging to the topological hierarchy. We assume
at this level that v belongs to one and only one
room, and one building. In contrast, floor-id is a
subset of the set of floor identifiers since, for ins-
tance, a node located on a staircase may belong
to several floors. Finally, Av ⊂ A is the set of trig-
gered actions, i.e., contextual messages or notifi-
cations that are predefined and can be executed
according to some contextual constraints (e.g., to
remind a user navigating a shopping centre to buy
some food or fruit stock when he/she is located
next to a supermarket).
An edge e ∈ Emicro is defined by a tuple
〈(vi, vj), Le, ωli,j(t), ωti,j(t)〉, where vi,vj ∈Vmicro,
vi 6= vj , and Le ⊂ Σlabel is a subset of the set of
labels (e might have multiple labels when it inter-
sects several spatial units -e.g., rooms-). ωli,j(t)
and ωti,j(t) are time-dependent functions associa-
ted with the traversal of e. The traversal of some
edges may be constrained by a temporal interval
defined at the application level, and within which
the traversal is possible; otherwise the correspon-
ding edge cannot be traversed. These functions are
defined as follows:

ωli,j(t) =

Ed(vi, vj) if t ∈ [tstart, tend]

∞ otherwise
where Ed(vi, vj) is the Euclidean distance between
vi and vj , and tstart and tend are defined at the
application level (for example, [08 : 00, 17 : 00] can
be specified for an office building).

ωti,j(t) =

 f (ωli,j(t)) if t ∈ [tstart, tend]

∞ otherwise
where f (ωli,j(t)) is a length-dependent time func-
tion that further associates impedances to com-
pute the travel time between vi and vj .
Consequently, the network distance and the travel
time from vs to vd are computed as indicated in
Definitions 1 and 2, respectively.

Definition 1 Fine-grained and time-dependent net-
work distance: Let p = {vstart=v1 → v2 →
. . . → vk=vgoal} be a path that contains a se-
quence of nodes vi ∈ Vmicro, i=1, . . . , k. The
fine-grained network distance of p is given by
lengthstart,goal(tstart) =

∑k−1
i=1 ωli,i+1(ti), where

ti = ti−1 + ωti−1,i(ti−1) represents the estima-
ted time instant at node vi, ∀ i=2, . . . , k, and
t1 = tstart.

Definition 2 Fine-grained and time-dependent tra-
vel time: Let p = {vstart=v1 → v2 → . . . →
vk=vgoal} be a path that contains a sequence of
nodes vi ∈ Vmicro, i=1, . . . , k. The fine-grained
travel time of p is given by timestart,goal(tstart) =∑k−1

i=1 ωti,i+1(ti), where ti = ti−1 + ωti−1,i(ti−1)
represents the estimated time instant at node vi,
∀ i=2, . . . , k, and t1 = tstart.

The core spatial layer is built in an offline phase
and a subsequent online phase is in charge of upda-
ting potential changes and time-dependent data.
For instance, in the offline phase, nodes that are
covered by static objects (e.g., a wall, a table, etc.)
are marked as occupied whereas the rest are consi-
dered initially free. Furthermore, the state of a
node depends also on the user profile, since dif-
ferent kinds of users may have a completely dif-
ferent set of accessible nodes (e.g., a certain node
may be apparently free but correspond to a room
that can only be entered with a key card). This
can also be statically managed with the use of a
user access model, as discussed in Section 2.2.2.

2.1.2. Coarser Spatial Layers
A node v at a coarser layer Si ∈ {S2, . . . ,S|S|}

is defined as an aggregation of a subgraph of the
finer graph, and is denoted by 〈Lv, Av〉, where
Lv ⊂ Σlabel is the set of labels assigned to v, which
is adapted accordingly to fit the corresponding le-
vel of abstraction, and Av ⊂ A comprises the set
of triggered actions that are predefined at the cor-

6

responding node. Cost functions are derived and
processed based on the edge weights of the fine-
grained level. In the following, the relevant layers
considered in the data model are described, along
with an explanation of how these layers can be
derived.

Exit hierarchy. An exit is an important element
of the data model used for query processing,
through which a user can leave or enter a place
(e.g., doorways or staircases). An exit is represen-
ted as an abstract node that belongs to two dif-
ferent spatial units, and is derived by aggregating
boundary nodes of both units whose adjacent node
lists contain at least one neighbour that belongs to
the other spatial unit (Fig. 3). By means of these
exits, optimal network distances and travel times
between relevant pairs of exits are pre-processed
and cached in order to reduce on-the-fly compu-
tation of hierarchical path searches. An exit e′ is
relevant for a given exit e if and only if e′ is di-
rectly reachable from e (i.e., there is an accessible
passageway for pedestrians from e to e′ which does
not involve any other exit). An exit hierarchy is
constructed at a higher level of abstraction, which
allows computing optimal distances between loca-
tions to be used later for processing diverse kinds
of queries.

FloorExit01

e9

e6

e4

e1

e5 e2 e3

e7 e8

e10

e11 e12 e13 e14

FloorExit02

hierarchical link (parent-child)
horizontal link (directly accessible)

Figure 3. Part of the exit hierarchy4derived from the fine–
grained graph (Floor-01, Building-1)

More formally, let r, r′ ∈ Σlabel be the la-
bels of two connected rooms, the exit represen-
ting the doorway between r and r′ is given by:
er,r′ = {vi, vj ∈ Vmicro | ∃e ∈ Emicro, e =
(vi, vj) ∧ r ∈ e.Le ∧ r′ ∈ e.Le}. Regarding its be-
longing to the topological hierarchy, an exit is
also characterised by: Ler,r′ ={local-id, {r, r′},
floor-id, building-id}. FloorExit01 is an example

of an exit depicted in Fig. 3, which belongs to two
structural units: Stair01 and HW03 (see Fig. 4).
Therefore, LF loorExit01 = {FloorExit-01, {Stair01,
HW03}, Floor-01, Building-1}. In a similar way,
one can derive the abstract nodes of the second
layer representing all exits on a given floor. An
abstract edge (er,r′ , er′,r′′) in the exit hierarchy
is a path made of a sequence of nodes and edges
of the fine-grained level that compose the optimal
network distance from a node vstart ∈ er,r′ to a
node vgoal ∈ er′,r′′ . An edge of the exit hierar-
chy is referred to as exit-path and is denoted by
〈source_exit_id, target_exit_id, length, time〉.
The optimal network distance and travel time are
computed by applying lengthstart,goal(tstart) and
timestart,goal(tstart), and the resulting values are
associated with each edge of the exit hierarchy,
thus forming the second layer of the data model.

Moreover, exits are organised in a hierarchical
manner since a flat graph does not reflect their
significance from a semantic navigation point of
view [23]. As illustrated in Fig. 3, this hierarchi-
cal structure allows to distinguish between a room
exit and a floor exit, which is represented at a hi-
gher level of abstraction due to its importance, so
that a direct path from a current position to the
nearest floor/building exit can be easily determi-
ned. Other edges between exits of the same level
are also materialized according to their connecti-
vity (horizontal links illustrated as dashed lines in
Fig. 3)5. Consequently, the final representation of
this layer preserves the connectivity between di-
rectly accessible exits while emphasizing their im-
portance for navigation purposes. A generalisation
of this hierarchy that covers a multi-storey buil-
ding is used for path planning. Consequently, an
exit of a ground floor has a building exit as a pa-
rent node, and a first-floor exit as a child node
since both are parts of a staircase.

It should be emphasized that exit-paths in this
hierarchy are assumed to be undirected. However,
this model can be adapted for specific scenarios
where a one-way access to several areas is requi-
red. This can be done by either replicating edges
in the opposite direction or associating a property
to each edge that adds impedances to the path

4The hierarchy is not fully illustrated in Fig. 3, since the
right part rooted at F loorExit02 is developed similarly.

5For clarity’s sake, not all the edges that depict connec-
tivity between exits are shown in Fig. 3.

7

weight depending on the travel direction. Adjust-
ments of the query processing algorithms will be
needed accordingly.

Location hierarchy. Incorporating information
about exits into the topological hierarchy enables
the modelling of optimal paths at an abstract
layer. Those are used to facilitate hierarchical path
searches and to alleviate performance issues raised
while traversing the fine-grained graph. Although
connectivity relationships between those structu-
ral units can be computed from the exit hierarchy,
an adjacency relationship, for instance, needs to
be associated to each unit in a separate abstrac-
tion layer. Therefore, such topological semantics
are not explicitly materialised in the exit hierar-
chy, even though information representing their
belonging to the topological hierarchy has been
incorporated. Consequently, a location hierarchy
that is based on a connectivity graph, which re-
presents rooms as nodes and doorways as edges,
can be derived as an additional layer in order to
preserve topological relationships (Fig. 4).

Stair01

HW03

HW02

MR01 HW01

R01

BT01

BT02 R17 R16

R15

HW04

R02 R03 BT01 R13 R14

Stair02

Figure 4. Part of the location hierarchy derived from the
fine-grained graph; “HW” stands for Hallway, “MR” for
Meeting Room, “R” for Room, and “BT” for Bathroom

A room in the location hierarchy is characterized
by 〈room_id, room_type,Adj_room_list, Lr, Ar〉,
where room_type describes whether this unit
is a room, a meeting room, a hallway, etc.,
Adj_room_list denotes the list of identifiers of
the adjacent units, and Lr, Ar are introduced in a
similar way as in the fine-grained level. Such a lo-
cation hierarchy can be directly derived from the
fine-grained layer, but can also be generated from
the exit hierarchy since information about the be-

longing of exits to their respective structural units
is stored. A staircase that connects a given floor to
another is represented as a room that belongs to
the two corresponding floors, and which is boun-
ded by two floor exits. On the other hand, an ele-
vator is represented in a similar way to stairs. A
multi-floor elevator consists of several stages that
correspond to the number of floors of the building.
Each stage of the elevator is modelled as a room
that belongs to the two corresponding floors and
bounded by exits/entrances to/from the corres-
ponding floors.

From the fine-grained graph, a typical clustering
process results in an abstract layer as illustrated in
Fig. 4. Graph partitioning is thus carried out based
on the set of room labels associated to the nodes of
the base graph. Consequently, this process consists
of: (1) extracting and aggregating nodes whose
room labels are identical to form the new abstract
nodes of the location hierarchy; and (2) creating
abstract edges between connected structural units,
thus favouring topology-based queries. These steps
are as follows:

– Step 1. Based on the set of room labels, the
fine-grained graph is partitioned into sub-
graphs. Let ϕ =

⋃
i=1...|Σroom| ϕ`i

be the set
of subgraphs of Smicro such that `i ∈ Σroom,
and where ∀i ∈ {1, . . . , |Σroom|}, ϕ`i =
(V`i , E`i) ⊂ Smicro is a subgraph extracted
from the fine-grained graph according to node
and edge labels, and where

⋂
`i∈Σroom

V`i
= ∅.

An abstract node that represents each sub-
graph is then created, having `i as its local-id.

– Step 2. The set of outgoing edges between
connected subgraphs is defined by: E`i,`j =
(ϕ`i

, ϕ`j
) ∀i, j ∈ {1, . . . , |Σroom|}, i 6= j.

It should be noted that, for geometric-based
queries (e.g., navigation, range, and nearest
neighbour queries), the exit hierarchy is more
likely considered, as it lends itself to more ac-
curate and more realistic pre-processing tech-
niques. On the other hand, the location hie-
rarchy is more suitable for topology-based
queries (e.g., connectivity, adjacency, etc.) or
when one looks for the optimal path that
contains the smaller number of rooms. The-
refore, there is no need to associate precom-
puted network distances to each edge in the
location hierarchy.

8

Similarly, there exists a relationship between
exit and location hierarchies since exits belong to
structural units. For instance, by retrieving the
list of room labels associated to all exits, one can
derive connected rooms and rebuild the corres-
ponding location hierarchy. Accordingly, switching
between a location hierarchy and an exit hierarchy
is always possible, thus covering a larger range of
queries (Fig. 5). Three spatial layers at two levels
of abstraction (i.e., the fine-grained layer at the
first level, and the exit and location hierarchies at
the second level) are employed and used in this
work. However, the data model can be generalized
to introduce higher levels of abstraction in order
to cover a wider range of applications, and with
more flexibility.

Fine-grained layer

Exit hierarchyLocation hierarchy

deriveaggregate

derive

Figure 5. Links between neighbouring layers of the hierar-
chical data model

2.2. Feature Component

This section firstly presents the feature com-
ponent principles, and secondly highlights the ma-
nagement of user profiles and real-time events.

2.2.1. Principles
A feature component F models persons and ob-

jects of interest in an indoor space. These features
are either attached to the infrastructure (e.g., sta-
tic objects like tables, doors, walls, fixed sensors,
etc.) or dynamic, that is, they evolve in the en-
vironment (e.g., mobile users, continuous pheno-
mena). An entity may be static or dynamic and
is modelled as an object. An object is identified
and characterized by static properties (i.e., at-
tributes) and potentially other dynamic proper-
ties such as the interaction spaces attached to it
[10]. In addition, an object can perform a selected
list of actions that can be triggered according to
some contextual constraints which are application-
dependent.
Formally, a feature f ∈ F =

⋃
(P,OOI) is de-

fined by a tuple 〈Id, Ct, S, FD, A, IS〉, where: Id is
the feature identifier, Ct denotes the feature class
type, S is the set of states a feature can hold, FD

is the set of values that describe f (i.e., typically,
a set of string values), A ⊂ A is the list of context-
dependent actions associated with f, and IS is the
list of interaction spaces associated with the fea-
ture [2,10] (explained below). The sets of states
and actions available for a given feature are speci-
fied depending on the feature class type. A feature
class type Ct is associated with a pair 〈S, A〉 where
S =

⋃
i=1...|S| si and A denote the set of states and

actions, respectively. As an example, a user u ∈ P
may have some static descriptions about the user
profile and some predefined preferences. Besides,
u can execute an action a ∈ Au at an instant t
when, for instance, he/she is in state s ∈ S and lo-
cated on a node v. In contrast, an object of inter-
est can be characterized by some qualitative and
quantitative descriptions (e.g., its spatial extent),
and boolean parameters that determine whether
the object is able to communicate or not, whether
it is mobile or static, physical or virtual, and at-
tractive or repellent.

Moreover, as indicated above, each feature is
associated with special dynamic properties refer-
red to as interaction spaces (firstly introduced in
[10] and extended in a previous work [2]) that co-
ver some semantic information used for interac-
tion purposes. The component IS is a quadruple
〈ps, os, fs, rs〉 that refers to the physical, opera-
tional, functional, and range space. At the fine-
grained level, the interaction spaces are formally
defined as sets of nodes dynamically updated in
real-time (see Fig. 6):

– The physical space is represented by the set of
nodes covered by the feature at a given time
instant. For a mobile user, the physical space
corresponds to the node where the user is cur-
rently located.

– The functional space denotes the nodes on
which another feature can physically interact
with the considered feature.

– The range space is a specific parameter only
assigned to sensor objects and designates the
set of nodes covered by the sensor (i.e., detec-
table nodes).

Furthermore, the notion of operational space has
been introduced to cover all features of the space
(static and/or moving objects). However, the defi-
nition of the operational space varies significantly
depending on whether this feature is a (pseudo)-

9

static6 or a mobile object. The difference between
the two definitions is emphasized as follows:

– The operational space of a (pseudo-)static ob-
ject can be represented by the union of all the
potential nodes and edges an object may co-
ver when it performs an action in the environ-
ment. For example, the operational space of a
window comprises all the potential nodes this
window may cover when opening and closing.

– The operational space of a mobile user de-
notes the set of nodes accessible to the user at
a given time instant. The operational space of
a mobile user strongly depends on the contex-
tual information gathered. For example, the
user profile directly affects the operational
space according to whether the user is a se-
curity guard, a firefighter, a user with special
needs, a normal user, etc. Time is another im-
portant dimension that might have an impact
when visiting a shopping centre or entering a
laboratory building (i.e., if the current time
is in the morning, at night, during the wee-
kend, etc.). Continuous phenomena such as a
gas leak or a fire that breaks out inside a buil-
ding may also have a significant impact on the
operational space of the user.

Figure 6. Interaction spaces of features evolving or located
in space

It is worth noting that functional, range, and
operational spaces are computed based on a user
request, and are considered as specific conti-

6A door or a window is an example of a pseudo-static
object, since it can either open or close (as illustrated in
Fig. 8), but it cannot move elsewhere.

nuous location-dependent queries. In particular,
the range space of a given mobile sensor is consi-
dered as a typical range query, by taking into ac-
count the sensor range as the maximum threshold
needed by the query. Moreover, a continuous eva-
luation of the operational space for a given user
requires to retrieve all the spatial units accessible
to this user at a given instant; this is typically
done in the case of reachability queries (presented
in Section 3.3.4).

2.2.2. User Profiles
One assumption of this approach is that the user

model, which encapsulates knowledge about the
users’ personal data and preferences, allows clas-
sifying users into groups according to their privi-
leges to access restricted areas. The aim of this
classification is to derive an adaptive representa-
tion of space based on access control information
associated with the user. This filtering process al-
lows to derive adaptive graphs from the generic
base graph by eliminating the set of nodes that
are actually inaccessible for a specific type of user,
thus reducing the amount of data that need to be
processed in real-time for each query and suppor-
ting the retrieval of more accurate answers based
on user profiles. A similar process takes place to
update the time-dependent accessibility of some
nodes, for instance, abstract nodes corresponding
to rooms that are closed at specific times.

Users are therefore classified into three main ca-
tegories: (i) unrestricted user, (ii) restricted user,
and (iii) user with special needs. Additional types
could be obtained by referring to these basic cate-
gories and incorporating further restrictions, thus
yielding different configurations (see Fig. 7).

UserAccessModel

SpecialNeedsUser
Confrest

n

Confrest
1

RestrictedUser
Confrest

n

Confrest
1

UnrestrictedUser

Figure 7. Classification of user profiles based on access
control information

An unrestricted user has full access privileges
and so he/she can navigate the complete map of

10

the building, that is, the generic graph represen-
ting all the floors of the building. A example of
an unrestricted user is a firefighter or a security
guard, who should have a complete knowledge of
all the emergency exits in a building. A restricted
user category includes staff members, guests, and
visitors. Usually, staff users have premium mem-
ber privileges, but with some restricted areas, and
can also have different configurations, whereas vi-
sitors have access to all the public places in a buil-
ding. Users with special needs follow the same rules
as restricted users except that additional penalties
might be added to edge weights so that the most
appropriate routes can be selected (e.g., using the
elevator instead of the stairs for wheelchair users).
Access control information is subject to very few
changes over time, and thus it can be processed
statically.
When there are no clearly defined privileges for

certain areas inferred from a given user model,
which may be due to unavailable information or
lack of attention when deploying a context-aware
system, the closest upper-level category of user
profiles (from the ones discussed above) is consi-
dered. This upper-level category is less restrictive.
Therefore, there might be some inaccessible areas
whose corresponding data could be considered for
query processing. Consequently, the system may
generate some answers which are not well adap-
ted to a specific user, such as a route that passes
through a restricted area.

2.2.3. Real-Time Event Management
The occurrence of real-time events may have a

significant impact on the nodes accessibility. For
example, when considering a fire that is spreading
in the Computer Science Department, fire alarms
are expected to detect this event and communicate
it to the system. With periodical updates perfor-
med automatically, the system is capable of repre-
senting the growing spatial extent of the fire, thus
marking nodes of that physical space as inacces-
sible to users. This subset of nodes will be tem-
porarily blocked when computing the operational
space of the users. Instead, other subsets of nodes
which correspond to emergency exit routes will be
favoured to build the new operational space.
The distinction between attractive and repellent

events is embodied by associating negative or po-
sitive impedance values to edge weights, respecti-
vely. Therefore, unscheduled or unexpected events

are characterized by a triple: event 〈info_source,
event_ps, ±value〉7. Common sources of infor-
mation about events (info_source) include the
system supervisor (if any), users and the social en-
tities situated in the environment, and the com-
municating sensors. Their main task is to gather
information about changes in the environment and
to communicate that information to the system.
The physical space of the event (event_ps) should
also be determined in real-time in order to change
edge weights as well node states accordingly. Fi-
nally, depending on the nature of each event, a
positive or negative value (±value) is assigned to
edge weights, so that adapted paths can be recom-
puted. Therefore, algorithms for handling conti-
nuous location-dependent queries are adapted in
order to deal with these dynamic factors and with
the information uncertainty.

2.3. Action Component

The action component A =
⋃

(FA,SA) mo-
dels the set of actions that are either triggered au-
tomatically by the system (SA) or performed by
a given feature acting in the environment (FA).
System actions (SA) denote context-aware notifi-
cations that are mainly triggered based on users’
locations and implement a publish/subscribe ap-
proach; this means that events are published by
service providers to address their subscribers. This
also includes geocast messaging [6,37], which can
be described as a location-based multicast where
messages are delivered to users located in a spe-
cific area instead of those subscribed to a given
group.

Feature actions (FA) encompass static and mo-
ving object actions, as well as continuous pheno-
menon actions (see Fig. 8). When considering ob-
jects, actions specify whether and how objects of
a given type change their states in order to behave
in a certain way. For instance, objects can adapt
their behaviour and properties according to some
contextual changes in the environment. This mo-
del implicitly builds semantic and topological rela-
tions among the features situated in space, by es-
tablishing relations between interaction spaces of
different features.

7Temporal events are, on the other hand, regularly eva-
luated by means of the time-dependent functions previously
described, and so they do not belong to this category of
evens.

11

Figure 8. A set of actions performed by different types of
features

Actions are context-dependent; this means that,
at a given time instant and for a certain feature,
only a specific list of possible actions is valid,
which can then be performed according to some
execution constraints. For a mobile user, actions
comprise a sequence of movements, interactions
with other neighbouring entities and artefacts, and
requests for some services in order to achieve a
predefined goal (Fig. 8). This approach allows to
represent artefacts of interest located in the envi-
ronment, so that users who are engaged in a cer-
tain activity can gather knowledge and unders-
tand their physical surroundings, as well as recon-
figure and manipulate physical artefacts (e.g., a
chair, a door, a heating, etc.) or virtual artefacts
(e.g., a 2D/3D image of a physical artefact, a digi-
tal user interface, some recommendation/informa-
tion, etc.) in order to produce changes in the envi-
ronment. Moreover, a user can communicate with
any fixed or mobile sensor located in the range
space of a (mobile) sensor integrated in his/her de-
vice or attached to him/her (e.g., a MEMS sensor,
an RFID tag, etc.). When considering continuous
phenomena, their actions can materialize the way
a given phenomenon diffuses in space.
The following sections will more closely consi-

der typical user requests and services by integra-
ting this modelling approach in the general system
architecture for query processing.

3. Continuous Query Processing Architecture
and Motivating Queries

A reasonable assumption of the approach, typi-
cally adopted in other related works, is that mo-
ving objects cooperate with the system by provi-
ding up-to-date location data (and possibly other
information) when needed. Thus, a minimum in-
tervention of a user device is required for query
processing by communicating the location of the
user to the system according to a certain loca-
tion update policy [51]. It is worth noting that
no constraints are imposed on the movements and
directions of the reference and target objects (fol-
lowing the terminology used in [26]). Accordin-
gly, the object that represents the reference for a
location-dependent constraint (i.e., the reference
object) is assumed to be either in a static location
or moving freely in space. Similarly, a location-
dependent query can request information about
static or dynamic data, depending on whether the
target objects (objects of interest to the query)
are moving or not. An additional challenging is-
sue is how to deal with dynamically changing edge
weights, as described earlier. Therefore, a unique
combination of challenges arises, as the proposed
architecture must be able to continuously process
different kinds of location-dependent queries, and
to take into account additional context informa-
tion, such as time-dependency and user profiles, as
well as the hierarchical layout of the indoor envi-
ronment.

This section presents the general architecture
proposed for the continuous processing of several
types of location-dependent queries in indoor en-
vironments. First, the main elements and compo-
nents considered in the architecture are introdu-
ced, and then some distribution issues are discus-
sed. Secondly, a query language, which will be used
to express location-dependent queries, is presen-
ted. Finally, some motivating sample queries are
illustrated.

3.1. Architecture Principles

The general query processing flow is illustrated
in Fig. 9. Navigation-related queries are proces-
sed in accordance with this flow, and are execu-
ted continuously while the request is not explicitly
cancelled by the user. Unlike many query proces-
sing approaches that focus on specific types of que-

12

ries and specific scenarios, this architecture has
the advantage of supporting many different types
of queries without making any restrictive assump-
tion. The features that are managed in the envi-
ronment are: (i) mobile persons, each of them car-
rying a mobile device that allows computing their
current location and communicating with other
entities, and (ii) objects of interest, which contri-
bute to enrich the context of the query and are
used by the user to provide his/her preferences and
constraints (e.g., by using a digital user interface).
These features are managed by a set of fixed ser-
vers, each of them in charge of: (1) maintaining a
part of the hierarchical spatial graph that repre-
sents the environment (i.e., a part of the graph co-
vering a certain spatial area); (2) managing data
and communicating with objects located within its
area; and (3) executing queries or parts of queries
whose data are locally available.

3.1.1. Architecture Overview
The main phases of the query processing archi-

tecture are illustrated in Fig. 9 and can be descri-
bed as follows:

Phase 1 and 2. A user interacts with the system
interface to issue a query. The system transforms
the query expressed in a natural or high-level lan-
guage into an SQL-like format, as proposed in [26].
We assume that an expert user can also directly
issue an SQL-like query based on the syntax des-
cribed in Section 3.2.

Phase 3. Parsing a query implies lexical, syntac-
tic, and semantic analysis of the query expressed
in an SQL-like format in order to derive a valid
internal representation (e.g., a query graph [28]).

Phase 4. A query plan is prepared that is compo-
sed of all the operations that are needed to appro-
priately answer the user request. This not only in-
cludes typical relational operations (e.g., selection,
projection, join, etc.), but also external calls to
specific functions that implement new query ope-
rators that are defined and discussed in the next
section. For optimization purposes, some typical
transformations can take place, such as the re-
moval of redundant predicates, the simplification
of complex expressions, etc. In addition, for each
constraint in the query, the reference object and
its target classes are obtained. Furthermore, infor-
mation regarding the location granules (defined in
[25] and discussed in the next section) of the refe-

rence and target objects is retrieved, if the use of
location granules is specified in the query.

Phase 5. All navigation-related queries that need
to expand routes either towards a specified tar-
get object (e.g., an optimal path search towards a
destination) or in all directions with a maximum
threshold (in the case of range queries), are direc-
ted to the route manager in charge of determining
the candidate routes based on user-defined prefe-
rences and context data (e.g., information about
user profiles and descriptions of objects of inter-
est). The main tasks performed by the route ma-
nager are explained in Section 3.1.2.

Phase 6. Obtaining standard SQL queries from
an SQL-like query is needed, since data elements
are assumed to be stored in relational databases,
which only accept standard SQL. A location-
dependent query is broken up into standard que-
ries and operations that are organised in an execu-
tion plan to optimise system resources. Not all the
operators are necessarily translated to equivalent
standard queries; for instance, operators related to
route computation are directly handled at the al-
gorithmic level. The candidate routes obtained by
applying such operators could, however, be used
as the input data to complete the construction of
some standard queries.

Phase 7. In this phase, candidate routes along
with an execution plan including standard queries
and operations arrive at the query execution en-
gine. Timestamped data about locations of rele-
vant objects as well as other context data are as-
sociated with operations, so that the query engine
can execute these queries appropriately. The conti-
nuous processing of a query means that the execu-
tion of simple queries and operations is kept alive
until receiving an explicit request from the user to
cancel that query. Therefore, the engine must re-
peatedly perform the following tasks: (1) update
simple queries with the locations of relevant ob-
jects and with the new set of relevant routes, if
needed; (2) execute standard queries; (3) correlate
the results of the different subqueries; and finally
(4) present the answer to the user.

3.1.2. Route Management
Two main tasks are performed by the route ma-

nager in order to execute navigation-related que-
ries:

13

User System
interface

SQL-like
query

generation

Query
parsing

Query
analysis

and
rewriting

Is a route
computa-

tion
required?

Route manager
• Refine candidate routes based
on updated edge weights
• Maintain the set of relevant
routes up-to-date

Standard
queries

generation

Query execution engine
• Update queries with the loca-
tions of relevant objects and with
the new set of relevant routes, if
needed
• Execute standard queries
• Correlate results of standard
queries
• Present the answer

Distribution manager

Graph &
context

data

Graph &
context

data

Graph &
context

data

Graph &
context

data

Cancel?

stop

Phase 1

SQL-like query

Phase 2 Phase 3 Phase 4

Phase 5

yes

no

Phase 7 Phase 6

yes

no

Figure 9. Execution of location-dependent queries in indoor environments

Task 1: Obtaining an initial answer. Depending
on whether a target object is specified or not, dif-
ferent strategies are applied. A specified target im-
plies expanding a directed tree routed at the node
where the reference object is located, and orien-
ted towards the target object. For a static shor-
test path problem, this can typically be solved
using Dijkstra’s or A*’s algorithm [18,22]. A more
complex and challenging scenario for estimating
the route cost and computing the optimal path
arises when considering parameters such as dyna-
mic edge weights, a hierarchical graph structure
and, most importantly, the need for an incremen-
tal approach for continuous path search with mo-
ving reference and target objects.

In a range query, a maximum threshold or a ra-
dius is specified instead of a target object. There-
fore, all the qualifying objects located within this
radius are retrieved. A slightly different strategy
consists of expanding all the routes whose network
distance from the source node is less than or equal
to the specified radius. Once again, this typical
problem becomes significantly more complex when
incorporating the aforementioned elements.

We are currently evaluating extensions of classi-
cal path search algorithms that can appropriately
deal with all these challenges [4].

Task 2: Maintaining the answer up-to-date. In-
cremental search algorithms are required in or-
der to execute continuous location-dependent que-
ries, without having to solve each search problem
independently from scratch [45,57]. Incremental
search implies reusing information from previous
searches in order to obtain the current result adap-
tively. In the case of navigation and range queries,
a route planner needs to maintain the set of re-
levant routes up-to-date, especially when dealing
with moving objects. For a navigation query, this
means transforming the search tree to an upda-
ted tree depending on the movements of objects
and other changes in the environment. In a range
query, this implies either expanding new sub-trees
from boundary nodes (i.e., leaves) or eliminating
some of them if the new network distance exceeds
the specified threshold [4].

3.1.3. Distribution Management
Another component that contributes to the pro-

cess of refining candidate routes and to the exe-
cution of queries is the distribution manager. The
architecture for processing continuous location-
dependent queries over a large space should consi-
der scalability and performance requirements.
When considering a large indoor space, a decen-
tralised approach should therefore be proposed to

14

alleviate performance problems when answering
continuous queries and managing the correspon-
ding data about moving objects [21,26]. This ap-
proach makes no assumptions about either the
number (one or many) of computers deployed
in the environment or the geographic area that
should be managed by each computer. Therefore,
decisions about data distribution management can
be taken at the application level.
Let us consider the sample scenario described

in Section 2.1. This three-storey building could be
managed by deploying three servers, one on each
floor, so that a hierarchical graph is created for
each floor and stored in the corresponding server8.
Consequently, (sub)queries and operations whose
data are locally available are computed indepen-
dently and results are communicated to other ser-
vers, if needed, or to the user if no other dependen-
cies exist. Therefore, two challenging tasks must
be performed by the distribution manager in order
to support a distributed query processing:

1. Keeping track of the relevant servers required
to execute a given continuous query. One can ob-
serve that the set of relevant servers changes de-
pending on the locations of the reference and tar-
get objects. In the scenario mentioned above, a
user from the Linguistics Department located on
the first floor may want to reach his/her colleague
currently located on the second floor. This scena-
rio needs the first and second servers to be invol-
ved in the path planning query. If the target col-
league moves down to the ground floor, the distri-
bution manager must detect that the target leaves
the area that is currently being watched and then,
based on the new location of the target, the third
server should be added to the set of relevant ser-
vers.
Therefore, each server is considered to be in charge
of keeping (and providing) information about mo-
ving objects located within a fragment of the hie-
rarchical data model. Then, for a given query in
an indoor environment, a path or a set of paths,
that can change dynamically along time, is com-
puted. In this particular scenario, a path between
the reference object (i.e., the query issuer in this
example) and the target colleague is computed.
On the contrary, in the case of a range query

8Nodes corresponding to a staircase between two floors
could be assigned to the server of either of such floors.

(which requests the objects that satisfy the speci-
fied constraints and are located within a certain
radius from the reference object), the set of all the
potential paths within the radius specified is com-
puted. From this set of paths, the set of relevant
servers for the query is derived. Therefore, queries
that refer to a specific spatial area only require the
service of a small subset of servers.
This optimisation phase has more important ef-
fects in large spaces (e.g., a campus with several
buildings or in scenarios with a high number of
moving objects), where using only the relevant ser-
vers can significantly reduce the query processing
overhead. It should be noted that the information
about the hierarchical graph itself is also distri-
buted9. In that case, some nodes in the subgraph
stored in a server actually represent entry nodes in
another subgraph cached in a different server. Such
nodes store the information needed to contact the
other server.
2. Computing the answer in a distributed environ-
ment. Once the relevant servers have been iden-
tified, each server is queried in parallel to re-
trieve the objects located within the relevant frag-
ments of the graph. This query has to be execu-
ted as a continuous query, as the relevant objects
may move continuously. Moreover, objects’ move-
ments and changes in the environment can lead to
changes in the set of relevant paths, which may
in turn modify the set of relevant servers. There-
fore, the query processing is assumed to be execu-
ted according to a certain refreshment period (as
in other works, such as [26]), since the answer can
change continuously.

Thanks to the distribution management, this
architecture is generic and can be easily adapted
to meet the requirements of a specific scenario. It
works in small scenarios where a single server is
enough as well as in scenarios that require a higher
number of servers.

3.2. A Language for Location-Dependent Queries
in Indoor Environments

As previously mentioned, several types of que-
ries, such as navigation, range, and nearest neigh-

9Nevertheless, it could also be stored in a centralised
manner, as the proposal is general enough to support any
scheme.

15

bour queries, are of interest in an indoor environ-
ment. In order to improve query expressiveness, a
query grammar is introduced to present those que-
ries. This grammar is illustrated in Fig. 10, which
has been extended from a previous work [25] to
support navigation queries (of key importance in
context-aware indoor navigation systems), and to
incorporate some other preferences and semantics
in the query model. For example, this grammar in-
cludes operators (e.g., All-routes) and constraints
(e.g., Stop-vertices) used for navigation queries
and inspired by [11], where the authors have intro-
duced an approach for query processing in multi-
modal transportation systems based on the defini-
tion of a query language that provides users with
the ability to choose between different modes of
transportation and define spatio-temporal restric-
tions and preferences on the resulting path. In the
grammar presented in Fig. 10, non-terminals start
in upper-case and literals are in italics (reserved
words) or in lower-case. The following description
of the query language highlights the main elements
involved in the definition of the queries.
In the general structure of the query lan-

guage, two kinds of queries are identified: the for-
mer typically represents an SQL standard struc-
ture (Standard-query) along with specific kinds of
location-dependent constraints, which are mainly
used to express range and nearest neighbour que-
ries. The latter (Navigation-query) represents na-
vigation queries that incorporate route computa-
tion into the query processing while optimising
distance/time criteria. For a navigation query, the
〈 FROM clause 〉 contains an external call to the
All-routes operator, which has a general syntax as
follows: All-routes(Loc-Ref, Loc-Target). This ope-
rator returns a non-materialised set of tuples re-
presenting valid routes between the current loca-
tions of the reference and target objects. A route is
a sequence of nodes and edges that can belong to
different levels of granularity, which is determined
by taking into account the context-dependent data
integrated into the hierarchical data model. As a
non-materialised table, the set of tuples (routes)
obtained as a result of this operator are genera-
ted at runtime, and used only to execute the cor-
responding query. Each generated route is defined
as: route (route-id, source-vertex-id, target-vertex-
id, 〈v1-id, e1-id, v2-id, e2-id, ..., vk-id〉, length,
time), where route-id is a route identifier automa-
tically assigned by the system when the route is

computed. The Loc-Ref and Loc-Target arguments
may correspond to either a “Vertex-id” or to the
locations of the reference and target objects, res-
pectively, but they can also be interpreted as the
location granules that contain the corresponding
objects, as discussed below. Moreover, Loc-Target
can refer to the class name of objects of interest
(target objects); this is used, for instance, in an
inside constraint to retrieve all the objects of a
given type.

The 〈 WITH Stop-vertices 〉 clause is an op-
tional statement that expresses a user preference
implying that the route must go through some
place(s) that is(are) of interest to the user. Seve-
ral Stop-vertices can be specified within a single
query, and it is assumed that vertices are proces-
sed in the order they appear in the query. Fur-
thermore, two different optimisation criteria are
applied: time and distance, which can be conside-
red based on the time-dependent functions defined
in Section 2.1.1. In the standard structure of the
query, two kinds of location-dependent conditions
can be expressed in the 〈 WHERE clause 〉: in-
side(Radius, Loc-Ref, Loc-Target) and nearest(K,
Loc-Ref, Loc-Target). A constraint inside is ap-
plied when performing a continuous range query
processing, which takes into account the radius as
a maximum threshold to consider, and is used to
build the set of paths (around the reference ob-
ject), whose network distances are less than the
radius. The nearest constraint is expressed to pro-
cess continuous K nearest neighbour queries, by
specifying the class name of objects of interest in
Loc-Target, so that the K objects of interest that
are the closest to the current location of the refe-
rence object are retrieved.

The concept of location granule proposed in [25]
is used. A location granule identifies a set of fine-
grained geographic locations (i.e., geometric coor-
dinates of vertices in the base graph) under a com-
mon name. This is completely consistent with the
hierarchical spatial graph proposed in Section 2.
The use of location granules allows to formulate
queries with a location resolution which is appro-
priate for the intended application. With them,
it is possible to formulate queries using the loca-
tion terminology required by the user (e.g., ver-
tices at the fine-grained level, rooms, floors, buil-
dings, etc.). For example, a user may be interested
in persons that are near the room where another
(moving) object is currently located (see Example

16

General query structure
Query → (Standard-query | Navigation-query)
Standard-query → select (Attr-Projections | ‘*’) from Class-names

(where Conds)?
Navigation-query → select (Attr-Projections | ‘*’) from All-routes-

expression (‘,’ Class-names)* (with Stop-vertices)?
(where Conds)? (optimization-criteria)?

Attr-Projections → Attr-Loc-Select (‘,’ Attr-Loc-Select)*
Attr-Loc-Select → attribute | Loc-Select
attribute → Qualified-attr | Unqualified-attr
Qualified-attr → Class-name ‘.’ Unqualified-attr
Loc-Select → Object-id ‘.’ ‘loc’ | gr ‘(’Map-id ‘,’ Class-name ‘)’

| gr ‘(’Map-id ‘,’ Route-id ‘)’
Class-names → Class-name (‘,’ Class-name)*
All-routes-expression → All-routes ‘(’ Loc-Ref ‘,’ Loc-Target ‘)’
Loc-Ref → Object-id (‘.’ ‘coord’)? | gr ‘(’Map-id ‘,’ Object-id ‘)’

| gr-map ‘(’Map-id ’,’ Gr-id ‘)’ | Vertex-id
Loc-Target → Class-name | Object-id | Vertex-id ‘.’ ‘coord’ | gr

‘(’ Map-id ‘,’ Class-name ‘)’
Stop-vertices → Stop-vertex (‘,’ Stop-vertex)*
Stop-vertex → Vertex-id
optimization-criteria → (minimize | maximize) Measure
Measure → time | distance

Conditions can be standard conditions on attributes or location-dependent conditions
Conds → Cond ((and | or) Cond)*
Cond → (Bool-Cond | LDQ-Cond)
Bool-Cond → attribute Comp Value |

intersect ‘(’ Vertex-set ‘,’ Vertex-set ‘)’ |
Value IN Vertex-id ‘.’ POI

Location-dependent conditions
LDQ-Cond → inside ‘(’ Args-Inside ‘)’ | nearest ‘(’ Args-Nearest

‘)’ | ...
Args-Inside → Radius ‘,’ Loc-Ref ‘,’ Loc-Target
Args-Nearest → K ‘,’ Loc-Ref ‘,’ Loc-Target
Radius → Real Units

Basic grammar productions
String → ([a-z] | [A-Z] | [0-9])+
Real → ([0-9]+) (‘.’ [0-9]+)?
K → [1-9] [0-9]*
Class-name → “ String ” /* Name of a class of objects */
Unqualified-attr → “ String ” /* Name of a class attribute */
Object-id → “ String ” /* Identifier of an object */
Map-id → “ String ” /* Identifier of a granule map */
Gr-id → “ String ” /* Identifier of a granule */
Vertex-id → “ String ” /* Identifier of a vertex */
coord → ‘(’ Real ‘,’ Real ‘)’ /* Two dimensions are assumed */
Units → meters | kilometres | ...
Comp → ‘=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘<>’
Value → ([0-9]+) | “ String "
POI → “ String " /* A point of interest */

Figure 10. Query grammar for location-dependent queries in an indoor environment

17

1 in Section 3.3.2). In such a case, the location
granule is set to the room level. The operator gr is
a shorthand for granule and returns the location
granule associated with a certain object according
to a specified granule map (i.e., a named set of
granules).
As depicted in Fig. 10, the location granule ope-

rator can be referenced in the SELECT clause,
the FROM clause and/or the WHERE clause of
a query, depending on whether the granules are
used for the visualisation of the results and/or for
the processing of constraints or routes. For visua-
lisation purpose, a location granule operator can
be used in a Loc-Select projection in the SELECT
clause, according to the request submitted by the
user, to show the result at the desired level of
granularity; for example, SELECT gr(‘room-level’,
Person) can be used to project the rooms where
the persons retrieved by the query are located.
In addition, the gr operator can be applied on a
route, which is the result of a navigation query, to
show the sequence of nodes and edges obtained in
the route at one chosen abstraction level. For ins-
tance, SELECT gr(‘room-level’, Routes.id) could
be used to illustrate the sequence of rooms of the
valid route, which is made of nodes and edges of
different levels (e.g., fine-grained and exit hierar-
chy levels). In this case, nodes and edges of the
resulting route are abstracted to the room level,
and the corresponding nodes of this chosen level
are shown.
On the other hand, the same gr operator can be

specified for processing-oriented uses as a Loc-Ref
and/or Loc-Target argument within the FROM
clause (i.e., in an All-routes-expression), and/or
within the location-dependent query constraints
(i.e., inside and nearest constraints), in reference
to the locations of the reference and target ob-
jects, so that they can be interpreted as granules
according to a given granule map (i.e., a given le-
vel of granularity). For instance, inside(100 me-
ters, gr(‘room-level’, ‘o1’), Person) is a constraint
satisfied by the persons within 100 meters around
the room where object o1 is located (Example
1 in Section 3.3.2); similarly, inside(100 meters,
gr(‘room-level’, ‘room12’), Person) is satisfied by
the persons within 100 meters around room 12
(note that, in contrast to the previous example,
the reference object here is not moving). On the
contrary, inside(100 meters, ‘o1’, Person) would
be used when the desired range is determined

around object o1 itself; it should be clarified that
gr(‘micro-level’, ‘o1’) is equivalent to o1, that is, a
fine-grained granule corresponding to the current
fine-grained location of the object is considered by
default when the gr operator is not explicitly ex-
pressed.

3.3. Location-Dependent Queries in Indoor
Environments

This section presents typical examples of location-
dependent queries. These examples follow the sce-
nario introduced in Section 2.1. In particular, we
consider navigation queries, range queries, nearest
neighbour queries, and also other specific types of
queries.

3.3.1. Navigation Queries
The continuous processing of navigation que-

ries is based on a hierarchical path search that re-
lies on a bottom-up technique with different le-
vels of abstraction (i.e., fine-grained, room, floor,
and building). The hierarchical path search starts
from a user-specified level of granularity, depen-
ding on the location granule specified in the re-
quest and which contains the initial query point.
The main steps of the process can be summarized
as follows:10.

1. Find the optimal path within the initial gra-
nule until reaching the nearest exit.

2. Search at the abstract level (exit hierarchy)
for the optimal path from the exit of the ini-
tial granule to the granule containing the tar-
get object.

3. Find the optimal path within the last gra-
nule to the target object starting from the
corresponding entrance of the granule.

4. Start a continuous path search by taking into
account updated locations of reference and
target objects (considering moving targets).
This implies transforming an initial search
tree rooted at the previous vstart to an up-
dated tree rooted at the current vstart. The
process continues either by expanding new
sub-trees from the leaves towards the target
and/or by removing sub-trees that are no lon-
ger needed.

10Steps 1 to 3 represent the first iteration that performs
the hierarchical path search, while step 4 addresses the
continuous processing of the navigation query.

18

Below are some typical examples of navigation
queries:
1. A user identified by ‘userID’ wants to find the
fastest path from his/her current location to the
meeting room ‘MR01’ of the Computer Science
Department11 that goes through a break-room,
showing the result at the room level:

SELECT gr(‘room - level ’, RO)
FROM Room AS R, Person AS P,
All - routes (gr(‘micro -level ’,P.id),R)

AS RO
WITH Stop - vertices v1
WHERE R.id = ‘MR01 ’ AND P.id =‘ userID ’
AND ‘break -room ’ IN v1.POI
MINIMIZE time(RO)

where time(RO) = timestart→goal(tstart) is the es-
timated time to traverse the path RO from ‘use-
rID’ located at vstart to ‘MR01’. As previously
mentioned, the gr operator used in the SELECT
statement returns an ordered set of nodes of the
optimal route at the room level.
2. Find the shortest route from person ‘userID1’
to person ‘userID2’, showing the results at the
room level:

SELECT gr(‘room -level ’, RO)
FROM Person AS P1 , Person AS P2
All - routes (gr(‘micro -level ’, P1.id),

gr(‘micro -level ’, P2.id)) AS RO
WHERE P1.id = ‘userID1 ’
AND P2.id = ‘userID2 ’
MINIMIZE length (RO)

where length(RO) = lengthstart→goal(tstart) is the
time-dependent network distance from ‘p1’ loca-
ted at vstart to ‘p2’ located at vgoal.
3. Retrieve the time needed by all my colleagues
of the Computer Science Department to reach the
room where I am located:

SELECT MAX(t)
FROM Person As P,
(SELECT RO.time
FROM All - routes (gr(‘micro - level ’,P.id)

, gr(‘room - level ’, ‘myID ’)) AS RO
MINIMIZE time(RO)) AS t
WHERE ‘C.S. Department member ’ IN P.FD

11MR01 is a unique identifier of the structural unit speci-
fied by the user and which belongs to the Computer Science
Department.

A similar query could be “Retrieve the time nee-
ded to evacuate the building”, which could be com-
puted as the estimated time needed for the eva-
cuation of the slowest person in the building.

3.3.2. Range Queries
Range queries are used to retrieve information

about objects or places within a specified range or
area. Some range queries have a static reference
object and others have a moving reference object.
Similarly, the target objects of the queries can
be static or moving. The continuous processing of
range queries consists in hierarchically expanding
all routes whose network distance from the source
node is less than or equal to the specified radius. A
hierarchical network expansion is performed once
for the first iteration so that all visited nodes that
compose the range around the reference object are
stored. To continuously process a range query, the
set of parent nodes is maintained up-to-date when
changing the root of the sub-tree (i.e., when the
reference object moves). Boundary nodes are che-
cked to decide, for each of them, whether to further
expand that node or to perform a reverse search
towards the source to remove nodes that are not
relevant any more. Examples of such queries are:

1. Retrieve the identifiers of persons accessible at
a network distance smaller 100 meters of the room
where object o1 is located:

SELECT Person .id
FROM Person
WHERE inside (100 meters ,

gr(‘room -level ’, ‘o1’), Person)

2. Retrieve all the communicating entities acces-
sible at a network distance smaller than 100 me-
ters of the user identified by ‘userID’ and with a
communication range of at least 200 meters:

SELECT CO.id
FROM Object AS CO
WHERE inside (100 meters ,

gr(‘micro -level ’,‘userID ’), CO)
AND CO. communicate = true
AND CO. commRange >= 200

3. Retrieve all the persons who belong to the
Computer Science Department and that are acces-
sible at a network distance smaller than 100 me-
ters of the user identified by ‘userID’:

19

SELECT P.id
FROM Person AS P
WHERE inside (100 meters ,

gr(‘micro -level ’,‘userID ’), P)
AND ‘C.S. Department member ’ IN P.FD

In the previous query examples, the query issuer
does not play the role of the reference object of
the query, which shows the generality of the types
of queries supported. On the other hand, the re-
ference object can certainly be the query issuer
himself/herself.

3.3.3. K Nearest Neighbour Queries
A (K) nearest neighbour query retrieves the (K)
objects that meet certain specifications and which
are the closest to a certain object or location. As
in the case of other location-dependent queries,
this kind of queries can also be issued by either a
static or a dynamic reference object, and applied
to either static or dynamic data. Let us show some
examples:

1. Find the nearest available bathroom to the user
identified by ‘userID’:

SELECT BR.id
FROM Bathroom AS BR
WHERE nearest (1, gr(‘micro - level ’,

‘userID ’), BR)
AND BR.state = ‘free ’

2. Find the two nearest colour printers to each
member of the C.S. department:

SELECT Pr.id , P.id
FROM Printer AS Pr , Person AS P
WHERE
nearest (2, gr(‘micro - level ’,P.id), Pr)
AND ‘C.S. Department member ’ IN P.FD
AND Pr.type = ‘ColourPrinter ’

3. Retrieve the nearest extinguisher to each per-
son located in buildings where a fire alarm is bee-
ping:

SELECT P.id , Ex.id
FROM Sensor AS Ex ,
(SELECT Person .id
FROM Person , Sensor AS FS
WHERE
inside (0,gr(‘building - level ’,FS.id),P)
AND FS. state = ‘active ’

AND FS.type = ‘Fire - Sensor ’
) AS P
WHERE
nearest (1,gr(‘micro - level ’,EX.id),P)
AND Ex.type = ‘Extinguisher ’

3.3.4. Reachability Queries and Reverse Range
Queries

Finally, examples that show the relevance of
the proposed query language and implicitly em-
bed interaction spaces associated with each ob-
ject are hereafter illustrated. Reachability queries
check for places and/or objects that are reachable
from the current position of the reference object.
Indeed, those queries are implicitly processed as
range queries by assigning a default threshold va-
lue θ to the inside constraint, which is large en-
ough to determine whether the target object/place
is reachable or not.

1. Reachability queries:

– Is the room where the object ‘objID’ is currently
located accessible to the user identified by ‘use-
rID’? This request should check whether the
room that contains ‘objID’ is within the range
of ‘userID’ having a maximum threshold value
set to θ:

SELECT Room.id
FROM Room
WHERE inside (θ meters ,
gr(‘micro -level ’,‘userID ’),
gr(‘room -level ’, Room))
AND inside (0 meters ,Room.id ,‘ ObjID ’)

– Retrieve all the rooms that are accessible to the
user ‘userID’:

SELECT Room.id
FROM Room
WHERE inside (θ meters ,
gr(‘micro -level ’, ‘userID ’),
gr(‘room -level ’, Room))

– Retrieve all the floors of the building that have
at least one room accessible to the user ‘userID’:

SELECT DISTINCT gr(‘floor -level ’,
Room)

FROM Room
WHERE inside (θ meters ,
gr(‘micro -level ’, ‘userID ’),
gr(‘room -level ’, Room))

20

2. Continuous reverse range queries. Retrieve all
the entities of type ‘Sensor’ that are covering the
user ‘userID’ can be considered as an example of
a continuous reverse range query, according to the
definition provided in [54], since it continuously
checks whether a moving object is inside the range
of some sensor:

SELECT S.id
FROM Sensor AS S, Person AS P
WHERE inside (S.radius , S.id , P)
AND P.id = ‘userID ’

3.4. Discussion

The architecture presented provides a continuous
query processing approach that can be applied on
both static and moving objects, and proposes a ge-
neric execution flow for different kinds of location-
dependent queries in indoor environments. The
query language grammar supports navigation-
related queries and incorporates other preferences
and semantics into the query model. This language
handles the granularity of moving objects’ loca-
tions, thus favouring the hierarchical indoor data
model previously presented.
Although the management of location granules

during query processing introduces a certain ove-
rhead due to some extra geometric computations,
this cost is limited and affordable. Indeed, the
use of location granules together with incremental
processing help reducing the communication ove-
rhead. Moreover, dealing with coarse location gra-
nules reduces the number of location updates that
must be communicated to the mobile device. Si-
milarly, efforts needed to keep track of the cur-
rent positions of the reference and target objects
are also smaller when coarse location granules are
specified in the query constraints.
A stand-alone platform based on an extensible

DBMS (Postgresql [35] with extensions: PostGIS
[38]/Hermes [41], TelegraphCQ [13]) is currently
under development. The main parts that are being
developed in this platform are:

– The data model that represents the hierarchi-
cal network.

– The operators and location-dependent constr-
aints introduced in Section 3.2. Those are
designed as PL/pgSQL functions applied on
user-defined types.

– The algorithms to process continuous location-
dependent queries. A potential use of the Te-
legraphCQ extension is expected for handling
continuous spatial streams as an input to the
algorithms.

This implementation effort supports open source
spatio-temporal databases and data stream mana-
gement systems to handle continuous queries. Mo-
reover, the hierarchical data modelling, i.e, abs-
tract layers generation, is carried out by means
of the supplied spatio-temporal functionality. Fur-
thermore, the extensible query language allows for
developing new data types, functions, and ope-
rators required to express the location-dependent
queries presented in Section 3.2. An experimen-
tal evaluation of these algorithms as well as of
the whole system with respect to the most related
work in the literature will be performed in order
to ensure scalability and efficiency of the proposed
solutions.

4. Related Work

This section presents related work in three dif-
ferent areas: location-dependent query processing,
context-aware indoor navigation, and query lan-
guages for location-dependent queries.

Location-dependent query processing

Most work on location-dependent query proces-
sing has been developed with an outdoor environ-
ment in mind (cf., [27] for a recent survey). Ho-
wever, indoor environments have brought special
features and constraints that should be considered
during query processing. As an example, the Eu-
clidean distance is meaningless to compute routes
in indoor spaces, due to path constraints. There-
fore, approaches for query processing based on the
network distance are preferred and more realistic.
However, existing approaches for network-based
query processing usually assume an outdoor en-
vironment (e.g., [17,30,40,44]), where for example
hierarchical networks do not appear and there are
no accessibility rules based on user profiles.

Nevertheless, recent works have studied location-
dependent queries in indoor environments [55,56,
57]. Specific graph data models that represent
the indoor space have been designed in these ap-

21

proaches, thus allowing a better processing of spe-
cific kinds of queries on top of the generated spatial
network. In [57], the authors have introduced an
approach to support range queries based on a vir-
tual cell-based network generated for each query.
Besides, an extension of this method has been pro-
posed in the same paper to continuously process
range queries whenever the query point moves.
However, this approach is designed to address only
one kind of queries, and is only applied to static
data (i.e., static points of interest). Moreover, for
each query, a new virtual network that connects
the query point to the predetermined points of
interest is required, and additional computations
are also needed to update the network each time
the query point leaves its safe area.
Other solutions for continuous range query pro-

cessing as well as k nearest neighbour query pro-
cessing over moving objects have been provided
in [55] and [56], respectively. Both methods are
developed on top of the same graph data model.
The former deploys a set of sensors to continuously
monitor users movements, thus maintaining the
query result up-to-date, while the latter uses a pro-
bability estimation mechanism to prune unquali-
fied candidates from the candidate set, so that the
most probable k nearest neighbours are retrieved.
The results show that the provided data model is
flexible, since it allows for different kinds of que-
ries to be performed, and the solutions on top of
these foundations are efficient and scalable. Ho-
wever, the model underneath is based on sensor-
range-based positioning techniques, which is not
perfectly suitable for navigation queries that may
require fine-grained location information. Moreo-
ver, other context dimensions such as the time and
user profiles are not considered in the query pro-
cessing. Furthermore, in the case of large indoor
spaces, a generic architecture that allows distribu-
ting and managing data over several pieces of a
database would still be required.

Context-aware indoor navigation

Graph-based data models support practical so-
lutions to compute an optimal and realistic route
to a destination by taking into consideration archi-
tectural constraints and dynamic changes in the
environment [3]. A context-aware navigation task
should comprise a next-step selection algorithm
that keeps continuous track of the user’s location

and tries to adapt possible route deviations. Al-
though very few works have discussed the integra-
tion of such a dynamic mechanism, several studies
have incorporated dynamic changes into querying
tasks by introducing time-dependent and length-
dependent optimal routing in a spatial network
[15,19]. Others have proposed algorithms for shor-
test and fastest path search with improved tra-
cking strategies [8,45,53]. The main focus of these
algorithms is to keep real-time tracking of mo-
ving objects. However, each of them deals with ei-
ther time or distance constraints without incor-
porating other elements such as the user prefe-
rences or events that may significantly influence
the answer. Hierarchical spatial data models have
also been proposed to deal with performance and
scalability issues when performing path searches
over large graphs [12]. A bottom-up path finding
approach [12], similar to the one presented in this
paper, has shown to be up to 10-times faster for a
1% degradation in the path quality.

From a context-aware systems perspective, an
indoor data model should support activity-oriented
interactions by representing artefacts of interest
located in the environment, as well as location-
aware communication (e.g., communication bet-
ween users and sensors, as suggested in [42]).
Unfortunately, most of the existing data models
are not designed for that purpose and thus do
not support interactions with these artefacts and
the tasks they might participate in. Indeed, the
evaluation of mobile indoor navigation systems
presented in [24] shows that most of the exis-
ting systems do not support context-awareness.
There are only a few works that integrate some
context dimensions other than location, especially
the semantics behind the user profiles, and provide
context-dependent adaptation according to these
dimensions [29,33,48]. C-NGINE [29] supports an
ontology-based modelling approach along with a
rule-based reasoning technique to develop a na-
vigation system adapted to the user’s needs and
preferences. The major shortcoming of such a se-
mantic approach is the lack of geometric details
about objects of interest and places represented in
space. On the other hand, OntoNav [48] is based
on a hybrid data model, which combines an indoor
navigation ontology with a geospatial model (i.e.,
GIS layers representing a building blueprints), and
a user model that helps processing path queries
adapted to the user context. CoINS [33] is another

22

indoor navigation system that supports navigation
queries. It integrates a hybrid (i.e., symbolic and
geometric) spatial data model, as well as a user
model with access permissions to enable adaptive
pathfinding. Nevertheless, these three systems aim
at providing a navigation service, and thus they
do not support other location-dependent queries
such as range and nearest neighbour queries. Mo-
reover, none of these systems has proposed a ge-
neral architecture for the continuous processing of
location-dependent queries.

Query languages for location-dependent queries

The query language grammar presented in Sec-
tion 3.2, has been extended from a previous work
[25] and adapted to the context of indoor environ-
ments, by adding support for navigation queries
and incorporating some other preferences and se-
mantics in the query model. To the best of the au-
thors’ knowledge, no other work in the literature
supports enhancing the expressiveness of location-
dependent queries by considering the granularity
of moving objects’ locations. The approach pre-
sented in [25] covers the use of location granules
from both a query processing as well as a result vi-
sualisation points of view. The results shown from
using the location granules in query processing are
considered very satisfactory. Indeed, the experi-
ments show that the advantages of location gra-
nules do not come at the expense of performance.
Moreover, the distributed approach increases the
performance and scalability of the query proces-
sing [26].
Similar semantically enriched query languages

for path planning in outdoor environments have
been proposed in [11,36]. A query model for multi-
modal transportation systems has been presented
in [11], which provides users with the ability to
choose between different modes of transportation
and applies spatio-temporal restrictions adapted
to the user’s preferences. As explained in Section
3.2, some concepts have been adopted from that
query model. Another approach based on fuzzy lo-
gic theory that helps identifying ambiguous and
possibly contradictory preferences have been pro-
posed in [36]. However, the authors do not pro-
vide an architecture for continuous processing of
location-dependent queries.

5. Conclusions and Future Work

The research introduced in this paper pre-
sents an approach to model continuous location-
dependent queries in indoor environments. A ge-
neric architecture for continuous query processing
has been introduced, along with a specific query
language to enhance query expressiveness. This
architecture proposes a generic execution flow ap-
plied to different kinds of location-dependent que-
ries in indoor environments, and allows for mana-
ging data in a distributed manner. This architec-
ture is built on top of a hierarchical and context-
dependent data model, which leads to the consi-
deration of other context dimensions besides the
location of the involved entities, such as time and
user profiles. The main advantage of the indoor
data model relies on its hierarchical and context-
dependent design, which allows adaptive and ap-
propriate processing of location-dependent que-
ries. The query language grammar allows to re-
present a variety of location-dependent queries
and incorporates user preferences and other se-
mantics into the query model. Moreover, the use
of location granules in the query language signi-
ficantly increases the query expressiveness, and is
perfectly consistent with the hierarchical layout of
the environment.

Future work is oriented towards: (1) taking ad-
vantage of this proposal to deal with the conti-
nuous processing behind the operators defined in
Section 3.2 (i.e., the All-routes operator, and the
inside and nearest constraints). Two algorithms
for continuous processing of navigation and range
queries on top of the modelling approach presen-
ted in this paper have already been developed, but
experimental evaluation and comparison with re-
lated works are still under progress; (2) integra-
ting an extended context model that incorporates
users’ activities as well as content generated by
other social entities into location-dependent query
processing; and (3) generalising the hierarchical
data model to higher levels of abstraction (floor
and building levels), thus building a nested-graph
model similar to the Hypernode/Master-node data
model described in [31] and [34], respectively.

Acknowledgements

This research was partially supported by a Short
Term Scientific Mission performed by the first au-

23

thor at the University of Zaragoza and funded by
the COST Action IC0903 on "Knowledge Disco-
very from Moving Objects" (MOVE project). We
would also like to acknowledge the support of the
CICYT project TIN2010-21387-C02-02 and DGA-
FSE.

References

[1] G.D. Abowd and E.D. Mynatt. Charting past,
present, and future research in ubiquitous computing.
ACM Transactions on Computer-Human Interaction,
7(1):29–58, 2000.

[2] I. Afyouni, C. Ray, and C. Claramunt. A fine-grained
context-dependent model for indoor spaces. In Pro-
ceedings of the 2nd ACM SIGSPATIAL International
Workshop on Indoor Spatial Awareness, pages 33–38.
ACM, 2010.

[3] I. Afyouni, C. Ray, and C. Claramunt. Spatial mo-
dels for indoor and context-aware navigation systems:
A survey. Journal of Spatial Information Science,
4(1):85–123, 2012.

[4] I. Afyouni, C. Ray, S. Ilarri, and C. Claramunt. Algo-
rithms for continuous location-dependent and context-
aware queries in indoor environments. In Proceedings
of the 20th ACM SIGSPATIAL International Confe-
rence on Advances in Geographic Information Sys-
tems, 10 pp., accepted. ACM, 2012.

[5] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems. International Journal of Ad
Hoc and Ubiquitous Computing, 2(4):263–277, 2007.

[6] S. Basagni, I. Chlamtac, and V.R. Syrotiuk. Geogra-
phic messaging in wireless ad hoc networks. In Pro-
ceedings of the 49th Vehicular Technology Conference
(VTC), volume 3, pages 1957–1961. IEEE, 1999.

[7] C. Becker and F. Durr. On location models for ubiqui-
tous computing. Personal and Ubiquitous Computing,
9(1):20–31, 2005.

[8] A. Berger, M. Grimmer, and M. Müller-Hannemann.
Fully dynamic speed-up techniques for multi-criteria
shortest path searches in time-dependent networks. In
Proceedings of the 9th International Symposium on
Experimental Algorithms (SEA), pages 35–46. Sprin-
ger, 2010.

[9] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,
D. Nicklas, A. Ranganathan, and D. Riboni. A survey
of context modelling and reasoning techniques. Per-
vasive and Mobile Computing, 6(2):161–180, 2009.

[10] M. Bhatt, F. Dylla, and J. Hois. Spatio-terminological
inference for the design of ambient environments. In
Proceedings of the 9th International Conference on
Spatial Information Theory (COSIT), pages 371–391.
Springer, 2009.

[11] J. Booth, P. Sistla, O. Wolfson, and I.F. Cruz. A
data model for trip planning in multimodal transpor-
tation systems. In Proceedings of the 12th Interna-
tional Conference on Extending Database Technology
(EDBT), pages 994–1005. ACM, 2009.

[12] A. Botea, M. Muller, and J. Schaeffer. Near optimal
hierarchical path-finding. Journal of Game Develop-
ment, 1(1):7–28, 2004.

[13] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J.
Franklin, J.M. Hellerstein, W. Hong, S. Krishnamur-
thy, S.R. Madden, F. Reiss, and M.A. Shah. Telegra-
phcq: Continuous dataflow processing. In Proceedings
of the 2003 ACM SIGMOD International Conference
on Management of Data, pages 668–668. ACM, 2003.

[14] G. Chen and D. Kotz. A survey of context-aware mo-
bile computing research. Technical Report TR2000-
381, Dartmouth College Hanover, NH, USA, 2000.

[15] D. Delling. Time-dependent SHARC-routing. Algo-
rithmica, 60(1):60–94, 2011.

[16] T. Delot, S. Ilarri, N. Cenerario, and T. Hien. Event
sharing in vehicular networks using geographic vectors
and maps. Mobile Information Systems, 7(1):21–44,
2011.

[17] K. Deng, X. Zhou, H.T. Shen, S. Sadiq, and X. Li.
Instance optimal query processing in spatial networks.
The VLDB Journal, 18(3):675–693, 2009.

[18] E.W. Dijkstra. A note on two problems in connexion
with graphs. Numerische mathematik, 1:269–271,
1959.

[19] B. Ding, J.X. Yu, and L. Qin. Finding time-dependent
shortest paths over large graphs. In Proceedings of the
11th International Conference on Extending Database
Technology (EDBT), pages 205–216. ACM, 2008.

[20] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and
A. El Abbadi. Constrained nearest neighbor queries.
In Proceedings of the 7th International Symposium on
Advances in Spatial and Temporal Databases (SSTD),
pages 257–278. Springer, 2001.

[21] B. Gedik and L. Liu. MobiEyes: A distributed loca-
tion monitoring service using moving location queries.
IEEE Transactions on Mobile Computing, 5(10):1384–
1402, 2006.

[22] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal
basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[23] H. Hu and D.L. Lee. Semantic location modeling for
location navigation in mobile environment. In Procee-
ding of the IEEE International Conference on Mobile
Data Management (MDM), pages 52–61. IEEE, 2004.

[24] H. Huang and G. Gartner. A survey of mobile in-
door navigation systems. In Proceedings of the 1st ICA
Symposium on Cartography in Central and Eastern
Europe, pages 305–319. Springer, 2010.

[25] S. Ilarri, C. Bobed, and E. Mena. An approach to pro-
cess continuous location-dependent queries on moving
objects with support for location granules. Journal of
Systems and Software, 84(8):1327–1350, 2011.

[26] S. Ilarri, E. Mena, and A. Illarramendi. Location-
dependent queries in mobile contexts: Distributed pro-
cessing using mobile agents. IEEE Transactions on
Mobile Computing, 5(8):1029–1043, 2006.

[27] S. Ilarri, E. Mena, and A. Illarramendi. Location-
dependent query processing: Where we are and where
we are heading. ACM Computing Surveys, 42(3):1–73,
2010.

24

[28] D. Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys, 32(4):422–469,
2000.

[29] M. Kritsotakis, M. Michou, E. Nikoloudakis, A. Bika-
kis, T. Patkos, G. Antoniou, and D. Plexousakis. De-
sign and implementation of a semantics-based contex-
tual navigation guide for indoor environments. Jour-
nal of Ambient Intelligence and Smart Environments,
1(3):261–285, 2009.

[30] D.L. Lee, M. Zhu, and H. Hu. When location-based
services meet databases. Mobile Information Systems,
1(2):81–90, 2005.

[31] M. Levene and G. Loizou. A graph-based data model
and its ramifications. IEEE Transactions on Know-
ledge and Data Engineering, 7(5):809–823, 1995.

[32] X. Li, C. Claramunt, and C. Ray. A grid graph-based
model for the analysis of 2D indoor spaces. Compu-
ters, Environment and Urban Systems, 34(6):532–540,
2010.

[33] F. Lyardet, D.W. Szeto, and E. Aitenbichler. Context-
aware indoor navigation. In Proceedings of the 2nd
European Conference in Ambient Intelligence (AmI),
pages 290–307. Springer, 2008.

[34] M. Mainguenaud. Modelling of the geographical in-
formation system network component. Internatio-
nal Journal of Geographical Information Systems,
9(6):575–593, 1995.

[35] N. Matthew and R. Stones. Beginning databases with
postgreSQL: From novice to professional. Apress,
2005.

[36] Amine Mokhtari. Système personnalisé de planifica-
tion d’itinéraire : Une approche basée sur la théorie
des ensembles flous. PhD thesis, Université de Rennes
1 - IRISA - France, 2011.

[37] J.C. Navas and T. Imielinski. GeoCast - Geographic
addressing and routing. In Proceedings of the 3rd An-
nual ACM/IEEE International Conference on Mobile
Computing and Networking, pages 66–76. ACM, 1997.

[38] R. Obe and L. Hsu. PostGIS in Action. Manning
Publications Co., 2011.

[39] M.T. Özsu and P. Valduriez. Principles of Distribu-
ted Database Systems, Third Edition, chapter 1 “In-
troduction”, pages 1–40. Springer, 2010.

[40] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao.
Query processing in spatial network databases. In Pro-
ceedings of the 29th International Conference on Very
Large Data Bases (VLDB), pages 802–813. VLDB En-
dowment, 2003.

[41] N. Pelekis, Y. Theodoridis, S. Vosinakis, and T. Pa-
nayiotopoulos. Hermes–a framework for location-
based data management. In Proceedings of the 10th In-
ternational Conference on Extending Database Tech-
nology (EDBT), pages 1130–1134. Springer, 2006.

[42] I. Satoh. A location model for smart environments.
Pervasive and Mobile Computing, 3(2):158–179, 2007.

[43] J.H. Schiller and A. Voisard. Location-Based Services.
Morgan Kaufmann, San Francisco, CA, USA, 2004.

[44] D. Stojanovic, A.N. Papadopoulos, B. Predic,
S. Djordjevic-Kajan, and A. Nanopoulos. Continuous
range monitoring of mobile objects in road networks.

Jounrnal of Data & Knowledge Engineering, 64(1):77–
100, 2008.

[45] X. Sun, W. Yeoh, and S. Koenig. Efficient incremental
search for moving target search. In Proceedings of the
21st International Joint Conference on Artifical In-
telligence (IJCA), pages 615–620. Morgan Kaufmann,
2009.

[46] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest
neighbor search. In Proceedings of the 28th Internatio-
nal Conference on Very Large Data Bases (VLDB),
pages 287–298. VLDB Endowment, 2002.

[47] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Conti-
nuous queries over append-only databases. In Procee-
dings of the ACM SIGMOD International Conference
on Management of Data, pages 321–330. ACM, 1992.

[48] V. Tsetsos, C. Anagnostopoulos, P. Kikiras, and
S. Hadjiefthymiades. Semantically enriched navigation
for indoor environments. International Journal of Web
and Grid Services, 2(4):453–478, 2006.

[49] A.B. Waluyo, B. Srinivasan, and D. Taniar. Research
in mobile database query optimization and processing.
Mobile Information Systems, 1(4):225–252, 2005.

[50] M. Weiser. Some computer science issues in ubiquitous
computing. Communications of the ACM, 36(7):75–
84, 1993.

[51] O. Wolfson, A.P. Sistla, S. Chamberlain, and Y. Yesha.
Updating and querying databases that track mobile
units. Distributed and parallel databases, 7(3):257–
387, 1999.

[52] K.L. Wu, S.K. Chen, and P.S. Yu. Incremental pro-
cessing of continual range queries over moving objects.
IEEE Transactions on Knowledge and Data Enginee-
ring, 18(11):1560–1575, 2006.

[53] M. Xu, Z. Pan, H. Lu, Y. Ye, P. Lv, and A. El Rhalibi.
Moving-target pursuit algorithm using improved tra-
cking strategy. IEEE Transactions on Computational
Intelligence and AI in Games, 2(1):27–39, 2010.

[54] Z. Xu and A. Jacobsen. Adaptive location constraint
processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 581–592. ACM, 2007.

[55] B. Yang, H. Lu, and C.S. Jensen. Scalable continuous
range monitoring of moving objects in symbolic indoor
space. In Proceeding of the 18th Conference on Infor-
mation and Knowledge Management (ICIKM), pages
671–680. ACM, 2009.

[56] B. Yang, H. Lu, and C.S. Jensen. Probabilistic thre-
shold k nearest neighbor queries over moving objects in
symbolic indoor space. In Proceedings of the 13th In-
ternational Conference on Extending Database Tech-
nology (EDBT), pages 335–346. ACM, 2010.

[57] W. Yuan and M. Schneider. Supporting continuous
range queries in indoor space. In Proceedings of the
11th International Conference on Mobile Data Mana-
gement (MDM), pages 209–214. IEEE, 2010.

[58] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D.L. Lee.
Location-based spatial queries. In Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, pages 443–454. ACM, 2003.

