
HAL Id: hal-01166872
https://hal.science/hal-01166872v1

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Single Precision Natural Logarithm Architecture for
Hard Floating-Point and DSP-Enabled FPGAs

Martin Langhammer, Bogdan Pasca

To cite this version:
Martin Langhammer, Bogdan Pasca. Single Precision Natural Logarithm Architecture for Hard
Floating-Point and DSP-Enabled FPGAs. [Research Report] Altera. 2015, pp.7. �hal-01166872�

https://hal.science/hal-01166872v1
https://hal.archives-ouvertes.fr

Single Precision Natural Logarithm Architecture for

Hard Floating-Point and DSP-Enabled FPGAs

Martin Langhammer, Bogdan Pasca

Altera European Technology Centre, UK

Abstract—Elementary function design has recently been added
yet another level of flexibility with the integration of single
precision addition and multiplication into the Arria10 DSP
block architecture. Implementation techniques developed having
floating-point operations support in mind are only available for
microprocessors and lead to slow and high-cost implementation
when naively ported to FPGA architecture. In this article we show
how the new features can be used in conjunction with the existing
resources in the design of the natural logarithm elementary
function. Compared to traditional FPGA implementations we
use Taylor expansion based techniques which enable the use of
floating-point adders and multipliers available in DSP blocks for
the polynomial evaluation. We show the various tradeoff points
of the architecture together with expansion-based techniques for
increasing the internal precision in order to produce OpenCL
conforming operators. The presented architecture proposes a
possible resource tradeoff with significantly lower logic reduction
on Arria10 devices.

I. INTRODUCTION

Elementary function design for contemporary FPGAs is a

complex task due to the multitude of implementation tradeoffs

exposed by the architecture features: logic, memory blocks and

fixed-point DSP blocks. For instance digit-recurrence methods

make extensive use of logic resources while polynomial ap-

proximation techniques use memory and DSP blocks; the ratio

between memory and DSP blocks can varied by changing the

approximation polynomial degree. The most recent Arria10

FPGA devices add another architectural feature which can be

used when implementing floating-point elementary functions:

direct silicon support for floating-point addition and multipli-

cation.

Microprocessor implementations of elementary functions

already make use of floating-point arithmetic. Floating-point

units support fast execution of addition and multiplication, and

use these basic operations in software routines for implement-

ing more complex elementary functions. For most functions

the software routine contains multiple branches of execution,

depending on the range of the input. Within these branches

various techniques for approximating the function are used:

some branches use high degree polynomial evaluation (may go

up to degree 20 or 30), rational polynomial approximations,

Taylor expansions, digit-recurrence methods, quadratic con-

vergence methods etc. The arithmetic used internally is higher

precision, for instance double precision elementary functions

use double-double and triple-double implementations [1].

Porting these implementations directly to the FPGA archi-

tecture by means of high-level synthesis tools is inefficient.

The disjoint nature of execution branches potentially allows

for resource sharing, however the different algorithms used

within the branches makes sharing difficult. Within branches,

the high degree polynomial evaluations require a significant

number of additions and multiplications for high-throughput

implementations. Efficient FPGA implementations need to

make use the entire mix of FPGA features. For instance, the

high-degree polynomial evaluations may be replaced by piece-

wise polynomial approximations where numerous low-degree

polynomials are used to provide an equivalent approximation

quality. The coefficients for these low-degree polynomials

would be stored in the memory blocks, available in thousands

on modern FPGA devices. Other bit-fiddling techniques, costly

in microprocessors but virtually free in FPGAs, can be used

during the range reduction and reconstruction stages.

In this article we show how the new floating-point resources

available in the DSP block may be used to further improve the

FPGA-specific implementation of the single-precision natural

logarithm.

II. BACKGROUND

A. Floating-Point

Let x be the floating point input such that:

x = (−1)s2eM

where s denotes the sign of the number – with values ∈ {0,1},

e denotes the exponent and M denotes the mantissa. The

IEEE-754 standard for floating-point arithmetic [2] uses a

normalized mantissa with m ∈ [1,2). Since the leading bit

of the binary mantissa representation will be a constant one,

it is omitted in the representation. Consequently we use the

following notation:

x = (−1)s2e1. f

where f denotes the fraction of the floating-point number. The

number of bits used to represent the exponent and fraction

give the different floating-point formats presented by standard

– Table I. When dealing with floating-point arithmetic a useful

tool when managing errors is the the notion of ulp, which is,

as defined by Harrison [3] the distance between two adjacent

floating-point numbers.

In this article we focus on an natural logarithm implemen-

tation targeting single-precision.

Table I
FORMATS DEFINED BY THE IEEE-754 STANDARD FOR FLOATING-POINT

ARITHMETIC: WE – NUMBER OF BITS FOR THE EXPONENT; WF – NUMBER

OF BITS FOR THE FRACTION.

Format
Name (IEEE-754) IEEE-754-2008

(wE, wF)

(5,10) half precision binary16
(8,23) single precision binary32
(11,52) double precision binary64

(15,112) quadruple precision binary128

x1[17..0]

y1[18..0]
z1[17..0]

x0[17..0]

y0[18..0]
z0[17..0]

Coeff

Coeff

chainin[63..0]

SUB

coef[2..0]

NEG
ACCU

coef[2..0]

LDCST

In
p

u
t

R
eg

is
te

r
B

an
k

P
ip

el
in

e
R

eg
is

te
r

O
u

tp
u

t
R

eg
is

te
r

B
an

k

chainout[63..0]

R[73..0]

Constant

Figure 1. Arria10 DSP block in dual 19x18-bit fixed-point multiplier mode

B. FPGA

The deployment target for our implementation is a modern

FPGA architecture having silicon support for basic single-

precision floating-point arithmetic – the Arria10 FPGA [4].

The relevant Arria10 features for this work are:

• memory blocks M20K which can be configured in

512x40-bits or 1024x20-bits;

• DSP blocks which can be configured in fixed-point mode

to execute one 27x27-bit multiplication, 2 independent

18x19 multiplications (Figure 1) and one sum-of-two

18x19-bit multiplications;

• the same DSP blocks can be configured in floating-

point mode to execute one single-precision: addition,

multiplication, accumulation, one multiply-add operation

or one multiply-accumulate operation (Figure 2).

III. NATURAL LOGARITHM TECHNIQUES

Computing the natural logarithm for x starts with applying

the logarithm properties on the floating-point representation of

x:

log(x) = log((−1)s2e1. f)

=e log(2)+ log((−1)s1. f)

The natural logarithm is only defined on positive inputs, so

the above formula can be simplified:

log(x) =

{
e log(2)+ log(1. f) s = 0,
NaN s = 1

32 32 32

COut

x y z

r

32

0

CIn

Figure 2. DSP block in floating-point configuration

We will focus in the following on the first branch of

this function. The sum e log(2)+ log(1. f) may be the result

of a massive cancellation when e = −1 and 1. f → 2. In

order to return the sufficient number of meaningful result

bits for a floating-point result the fixed-point precision of

the calculation, together with the accuracy of both terms

needs to significantly increase. Alternatively, if the massive

cancellation is prevented then there will be no loss of accuracy

and hence no need for an extended internal precision. This is

accomplished by means of the following rewrite:

log(x) =

{
e log(2)+ log(1. f) 1. f <

√
2,

(e+ 1) log(2)+ log(1. f
2
) 1. f ≥

√
2

Using this rewrite the previous cancellation triggers the

second branch. When 1. f becomes greater than
√

2 and e=−1

the first term becomes zero and all the accuracy is then

returned by the second term.

The following notation is used:

log(x) = E log(2)+ log(m)

where

E =

{
e 1. f <

√
2,

e+ 1 1. f ≥
√

2
(1)

and

m =

{
1. f 1. f <

√
2,

1. f
2

1. f ≥
√

2
(2)

IV. IMPLEMENTATION

In this section we discuss the various implementation op-

portunities for the natural logarithm on modern FPGAs.

A. Computing log(m)

The second term log(m) with m∈ [
√

2
2
,
√

2) (or ≈ [0.7,1.41)
in decimal) is depicted in Figure 3. The value of log(m) may

be computed using a Taylor series for log(1 + y) where m

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.8 0.9 1 1.1 1.2 1.3 1.4

Figure 3. log(m), m ∈ [
√

2
2
,
√

2)

is sufficiently close to 1 (y sufficiently small). The Taylor

expansion used has the form:

log(1+ y) = y− y2

2
+

y3

3
− y4

4
+ ...

Truncated Taylor series (Taylor expansions where only a

finite number of terms are kept) are used in practice for

computing an approximation of the result. The accuracy of

the approximation depends on the number of terms dropped;

in Taylor expansions the higher order terms have increasingly

lower contributions to the final result.

For a given input and output precision p (for single precision

p = 1+24) and a small interval for y (|y|< 2−ymax) the higher

order terms with contributions smaller than the ulp of the

maximum magnitude term can be dropped. In other words

in the expansion below,

log(1+ y) = y(1− y

2
+

y2

3
− y3

4
+ ...

as long as the values of terms such as
y3

4
are smaller than

2−p−2 these values will not contribute to the final result, and

can therefore be truncated.

The current range of m ∈ [
√

2
2
,
√

2) translates into y ∈
[−0.3,0.41]. Due to this wide range of y, the truncated Taylor

series with sufficient accuracy would have tens of terms

(same order as the required precision) which leads to a costly

implementation for a high-throughput FPGA architecture. A

general technique used is to reduce the range of the input so

that the computation is less costly. The final result is obtained

after a reconstruction stage and is based on the computation on

the reduced argument. Conversely, a microprocessor-based im-

plementation would prefer the a high number of floating-point

operations to the branching required by the range reduction.

B. Range Reduction

The range reduction used is a multiplicative one, which

allows us to take advantage of the properties of the logarithm:

log(a/b) = log(a)− log(b)

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.994 0.996 0.998 1 1.002 1.004 1.006

log(1+y)-log(rm)

log(rm)

log(1+y)

Figure 4. log(1+ y)− log(rm) in red; log(1+ y) in blue; − log(rm) in green

where a is desired to have he form 1+ y.

Ideally, we want to represent m = (1+ y)/rmtop where rmtop

is easy to compute and y is small, say |y| ≤ 2−9. For this we

first choose mtop as the most significant 9 bits of m; the inverse

of mtop denoted rmtop can easily be computed via tabulation.

Next, the value of y is simply obtained:

y = mrmtop − 1.

V. IMPLEMENTATION ACCURACY

Our logarithm implementation computes final result as the

sum of three terms:

log(x) = E log(2)+ (log(1+ y)− log(rm)) (3)

which we denote for simplicity by terms Ã, B̃ and C̃. Let us

assume that the three terms are computed in floating-point as

accurately as possible, that is to say, each having a maximum

error of half ulp. We use the following notation where the Ã

variables represent values post rounding, non tilde variables

are mathematical values and δ represents the value of a half

ulp.

Ã = A(1+ δA)

B̃ = B(1+ δB)

C̃ =C(1+ δC)

and:

R = (Ã+(B̃− C̃)(1+ δd))(1+ δs)

= (Ã+(B(1+ δB)−C(1+ δC))(1+ δd))(1+ δs)

= (Ã+(B−C+BδB −CδC))(1+ δd))(1+ δs)

≤ (Ã+(B−C)(1+
BδB −CδC

B−C
)(1+ δd))(1+ δs).

If B−C << max(B,C) the error present in computing B or

C (whichever is larger) will be amplified by this amount.

Figure 4 plots the size of the cancellation between the B

and C terms. As expected, the cancellation occurs when m

is close to 1, either approaching from below or from above

within a 2−9 region. This case is handled separately (in this

case there is no need for range reduction) and allows for the

B-C computation to provably have no major cancellation when

a range reduction stage is required.

Now provided that the 3 terms Ã, B̃ and C̃ are computed

accurately to 1/2 ulp, the formula will allow us to compute a

natural logarithm within 1.5 ulp.

VI. IMPLEMENTATION DISCUSSION

A. Computing term Ã = E log(2)

The product E log(2) can be computed using either a

constant multiplier or a pure tabulation. For a constant mul-

tiplier implementation, due to the binary representation of

the constant (log(2) =0.10110001011100100001011) which

does not seem to present any obvious regularity or simplicity

the KCM constant multiplication algorithm is preferred [5].

The KCM based implementation requires rewriting E as a

sum:

E = 24Ehigh +Elow

with the product:

E log(2) = 24Ehigh log(2)+Elow log(2).

The two terms are obtained by tabulation, and one integer

addition is then used to obtain the final result in fixed-point

format. A floating-point output can be obtained by normalising

this value (left shift of at most 8 positions is required).

A floating-point output can be obtained alternatively using

a tabulation which returns the result directly in floating-point.

The exponent is used to address a table (M20K configured in

256x40-bit mode) which stores all the possible values of the

product. This solution would uses 1 M20K and no ALMs.

Both solutions allow for computing the term with a 1/2 ulp

error bound.

B. Computing term C̃ = log(rmtop)

When tabulating the natural logarithm of the inverse rmtop

we make use of the property that m < 1 only when 1. f >√
2 which is also our branch condition. Therefore, the table

address will hold the branch bit and the top 9 bits of f (hidden

one is not used but accounted for). This allows us to double the

accuracy of the inversion when m < 1 as there is one extra bit

of information used in the input. Since this result is obtained

through tabulation, the accuracy is guaranteed to be within

1/2ulp.

C. Computing term B̃ = log(1+ y)

We target computing y directly in floating-point. The term

m is exact and carries no error into the calculation. The

second term rm is not exact, and carries into the calculation

a maximum error of half ulp. The product mrm will approach

1 by construction, and therefore the final subraction will not

introduce any additional error, but will amplify the existing

error by the cancellation size.

y = mrm(1+ δr)− 1

= mrm − 1+mrmδr

Consider we are working in precision p with an unbounded

exponent range, then δr ≤ 2−p−1. In the above formula we

inject the maximum error value and therefore have:

y = mrm − 1+mrm2−p−1

Consider a cancellation size ψ, then the error in the y term

is:

y ≈ (mrm − 1)(1+
mrm2−p−1

mrm − 1
)

≈ (mrm − 1)(1+
mrm2−p−12ψ

2ψ(mrm − 1)
)

≈ (mrm − 1)(1+ 2−p−1+ψ)

This actually shows that given a ψ-bit cancellation -which

we will get by multiplying m by a roughly ψ-bit accurate ap-

proximation of its inverse - the error resulted when computing

y provided that no rounding error was actually performed on

mrm is roughly 2ψ ulp. The value y is then used to compute a

truncated Taylor expansion for log(1+ y), which is term B in

our result equation. Due to the linearity of the function on the

interval close to 1, the 2ψ ulp error in the input will roughly

translate to a 2ψ ulp error in the output.

log(1+ x) = x− x2/2+ x3/3− x4/4+ ...

log(1+ x(1+ δx)) = x(1+ δx)− x2(1+ δx)
2/2+ ...

This error will be the final error when both terms A and

C will be zero in our equation. This will be the case then

E = 0 for term A and rm = 1.000000000. Fortunately this

case is captured separately by the no range-reduction branch

(triggered when m is within an interval of size 2−9 away from

1).

The 2ψ ulp error is present nonetheless for inputs slightly

larger than 1+ 2−9 and is visible in Figure 4 when terms B̃

and C̃ have roughly the same magnitude and Ã = 0.

Therefore, the accuracy of 1+ p-bits stored in rm is not

sufficient having this ψ bit cancellation. Storing more accuracy

in rm is impossible using the single precision format (that was

chosen to match the hardware support). The requested error

for rp needs to be smaller than 2−p−1−ψ provided that we can

produce the mrm product without rounding errors.

D. Improved accuracy range reduction

We store rm in fixed-point on a precision 1+ p+ψ bits.

The multiplication mrm is a fixed point multiplication with

the result very close to 1; m is multiplied by a 1+ p+ψ bit

accurate inverse computed using only the leading ψ bits of m.

The result will have a deterministic position for the leading

one, but after the subtraction mrm − 1 there is no guarantee

where the leading one is found. Hence, a classical leading

zero counter and left shifter (normalization stage) is needed

for converting this value into floating-point.

In this paper we present a novel way of performing this

calculation efficiently using the available hard floating-point

DSPs. The main goal of this stage is to obtain an accurate

mr = 1.000000000XXXXYYYYYYYYYYYYY

j = 1.000000000XXXX +

i = 1YYYYYYYYYYYYY-

k = 1

Figure 5. Fixed-point product to floating-point decomposition showing i, j

and k mantissa alignments

floating-point value y which can then feed into the Taylor

polynomial evaluation stage.

We accomplish the translation between the fixed-point prod-

uct mrm, via the difference mrm − 1 into floating-point by

exploiting the format of this product: leading ’1’ followed by

a number of zeros followed by information bits.

mr = 1.000000000XXXXYYYYYYYYYYYYY

The idea is to represent the fixed-point product mrm as a

sum of floating-point numbers having a small overlap: mrm =
j + i− k. Once accomplished, the difference mrm − 1 can be

performed using floating-point arithmetic only.

A very efficient way of obtaining floating-point values from

the fixed-point product mrm is to:

• take j as the most significant 24-bits of the product;

• inject a ’1’ having a weight equal to the LSB position of

j and take i as the 24 bits starting with this injected ’1’

and the next 23 bits of the product;

• since an artificial ’1’ was inserted it needs to be subtracted

using k.

The leading ’1’ injected into i is used in order to avoid

the leading-zero counting for obtaining i and obtain directly a

normalized floating-point value.

Figure 5 shows the fixed-point alignments of the mantissas

of the 3 floating-point values created against the fixed-point

product mrm.

However, the full computation of y further requires sub-

tracting the floating-point value ’1’. The required order of

operations is:

y = mrm − 1

= (j+ i− k)− 1

= (j− 1)− k+ i (4)

One of the 3 floating-point operations in Equation 4 can be

saved by restructuring the calculation as follows:

y = (j− (1+ k))+ i (5)

and observing that the weight difference between ’1’ and

k, which are both constants, allows packing them into one

single floating-point mantissa, without actually preforming a

floating-point addition.

The extra accuracy required for y before feeding into the

polynomial evaluation stage is obtained after the addition of

the i term. The typical values for ψ are 8-11 bits, meaning

that 8-11 bits of m are used to address a table which outputs

a 1+ p+ψ precision value. These values are selected such

1/3

-1/2

1

T
a

y
lo

rE
x

p
a

n
si

o
n

lo
g
(1

+
z)
=

z
−

z 2
+

z2 3
−
..
.

1 1+ ulp

r

1 f 001 f

top(9)

branch

m f xp

f [22]

branch

e
2381

fs e

x

0 0

j ix

M
u
lt

A
d
d

close to 1

fxp(36,34)

×

×

+

×

+

×

−
logy

logry

−

+

+

E log2

Table
logrm

Table
rm

E log2

Table

+

Figure 6. Architecture for the single-precision natural logarithm

to match the characteristics of the embedded memory blocks

M20k.

As previously stated, the value of the product mrm will come

close to 1, most of the time having a value larger than 1.

Since m ≥ mt where mt represent the leading ψ bits of m,

then m× 1/mt will be larger than 1 except when m = mt . In

this exceptional case the value of log(1+ y)− log(rm) will be

returned by the tabulated log(rm) term.

VII. ARCHITECTURE

The architecture of the single precision natural logarithm is

depicted in Figure 6. For simplicity, the floating-point input

x is split into its 3 components, the sign, the exponent and

the fraction. The branch condition (1. f >
√

2) is replaced for

simplicity by 1. f > 1.5. This reduces to using the MSB of the

fraction as the branch condition. The Ã term is obtained on

the left from a table indexed by E (see Equation 1).

The m argument (Equation 2) is calculated by the central

multiplexer by selecting between the f and f ≫ 1 according

to the branch condition. Using the leading 10-bits of m (mtop)

the fixed-point inverse (rmtop) is computed using a table on

an extended precision. A fixed-point multiplier then allows

us to obtain (mrmtop). Next, the floating-point subtracter and

adder implement Equation 4 in order to obtain y. Data is

fed to these units through a network of multiplexers which

allow integrating the case when |m| ≤ 1+2−9 within the same

datapath. When close is high, the subtracter inputs x and the

constant 1, while the adder will simply add zero to this result;

additionally, the third term in Equation 3 will also be set to

zero, since no range reduction is necessary in this case.

The truncated Taylor series is computed using a Horner

scheme in order to minimize resources. Sequences of a multi-

ply/add are mapped to a single floating-point DSP block. The

final value for log(m) is obtained by subtracting log(rmtop)
in floating-point from the Horner evaluation output. The final

result is obtained by summing E log(2) to this value.

VIII. RESULTS

Table II shows the synthesis results for a single-precision

natural logarithm implementation on an Arria10 device. The

results are obtained for an architecture which uses a table

to obtain E log(2), as opposed to a constant multiplier and

normalization unit. This solution was preferred in order to

reduce the logic footprint of the architecture at the expense

of a memory block. We present various flavours of the same

architecture by varying the pipeline depth of the used floating-

point operators: adder/subtracter (a) and multiply-add (ma).

A default value of 4 cycles for both operations is used for

attaining maximum performance for a total latency of 29

cycles; reducing the latency of the adder to 3 cycles reduces the

total latency to 26 cycles at the expense of a lower frequency;

subsequent reduction in the latencies of these basic operators

reduce overall latency at the expense of a lower frequency.

For comparison purposes the table also presents the resource

requirement of a state-of-the-art natural logarithm implemen-

tation based on piecewise polynomial approximation (PA)

available in Altera DSP Builder [6], and with an iterative

implementation [7] available in the open source FloPoCo tool

[8].

The proposed unit provides an alternative solution by trad-

ing in ALMs for embedded embedded resources (DSPs and

M20Ks) compared to the piecewise polynomial approximation

implementation. The trade-off is likely to be beneficial since

new devices are now featuring many thousands of such em-

bedded blocks. Additionally, the lower logic footprint results

in fewer routing wires which relaxes the routing difficulty and

may potentially lead to increased frequencies in chip-filling

designs.

The frequency of our proposed unit varies with the latency

of the used floating-point operators and during compilation

Quartus-II warns about these timing numbers being prelim-

inary. It is expected however that as the tools mature the

proposed unit will show similar high frequencies in stand-

alone IP benchmarking mode, and will better perform in chip-

filling design.

Table II
NATURAL LOGARITHM RESOURCES ON A10, SPEEDGRADE I1. ITERATIVE

IS REPORTED FOR VIRTEX4 (ALMS NUMBER REPRESENTS SLICES, DSP
NUMBER REPRESENTS DSP48S AND M20K NUMBER REPRESENTS

RAMB16.

Arch. Lat. Freq. ALMs LAB DSPs FPDSP M20K

ours (a4 ma4) 29 457 262 57 2 6 3
ours (a3 ma4) 26 326 257 49 2 6 3
ours (a2 ma4) 23 223 263 50 2 6 3
ours (a2 ma3) 20 231 248 50 2 6 3
ours (a1 ma2) 14 187 210 43 2 6 3
PA 21 489 571 79 3 0 3

iterative 17 250 6011 52 0 33

Finally, a closer investigation into the resource breakdown

of our proposed architecture shows that the vast majority of

non-DSP and block-memory resources goes into synchroniza-

tion paths: either registers or MLAB-based delay chains. It

may therefore be beneficial to have a better awareness of these

values when designing the architecture in order to reduce the

number of parallel paths.

The lower latency implementations, since running at less

than half the maximum frequency of the DSP block may

use time-division multiplexing techniques for pumping data

through these blocks at twice the clock speed. This is expected

to reduce the DSP usage by 2 blocks.

Finally, the OpenCL standard also allows for ”native”

elementary function implementations which have much lower

accuracy requirements. Our implementation could use a ”sim-

plified” range reduction which only uses 1 DSP and our Taylor

polynomial may also be more aggressively truncated.

IX. CONCLUSION

In this article we have presented an architecture for the

single-precision natural logarithm targeted at FPGA architec-

tures with hardware support for floating-point addition and

multiplication, such as the Arria10 FPGA. The presented im-

plementation makes efficient use of the entire mix of resources

including the DSP block in fixed-point arithmetic mode,

memory blocks, logic but also the floating-point addition and

multiplication. The accuracy of the proposed implementation

is studied using the worst case cancellation values, and is

shown to be accurate to 3ulp, which is the bound required

for OpenCL conformance [9]. Compared to state-of-the art

implementations targeting FPGAs with no silicon floating-

point support, the proposed implementation offers a different

resource tradeoff, using less logic but more embedded bocks.

Although timing values for the Arria10 device are prelim-

inary and the current values are lower than expected, the

critical paths of this architecture show that high frequencies

(+400MHz) can be expected for this core at comparable

latencies. High-level design tools will need to make efficient

use of the available architectures, in order to balance resource

consumption.

REFERENCES

[1] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast,
C. Q. Lauter, and J.-M. Muller, “CR-LIBM, a library of correctly-

rounded elementary functions in double-precision,” LIP Laboratory, Are-
naire team, Available at https://lipforge.ens-lyon.fr/frs/download.php/99/
crlibm-0.18beta1.pdf, Tech. Rep., Dec. 2006.

[2] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp.
1–58, 29 2008.

[3] J. Harrison, “A machine-checked theory of floating point arithmetic,” in
Theorem Proving in Higher Order Logics, 1999, pp. 113–130.

[4] Arria10 Device Overview, 2014, http://www.altera.com/literature/hb/
arria-10/a10 overview.pdf.

[5] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design
idea winner),” EDN magazine, May 1994.

[6] “DSP Builder – Advanced blockset with timing-driven Simulink
synthesis,” 2011, http://www.altera.com/products/software/products/dsp/
adsp-builder.html.

[7] F. de Dinechin, “A flexible floating-point logarithm for reconfigurable
computers,” Tech. Rep., 2010. [Online]. Available: http://prunel.ccsd.
cnrs.fr/ensl-00506122/

[8] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design and Test, 2011.

[9] Khronos OpenCL Working Group, The OpenCL Specification, version

1.0.29, 8 December 2008. [Online]. Available: http://khronos.org/registry/
cl/specs/opencl-1.0.29.pdf

