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The development of the Weibel instability during the expansion of a thin plasma foil heated by an intense
laser pulse is investigated, using both analytical models and relativistic particle-in-cell simulations. When the
plasma has initially an anisotropic electron distribution, this electromagnetic instability develops from the
beginning of the expansion. Then it contributes to suppress the anisotropy and eventually saturates. After the
saturation, the strength of the magnetic field decreases because of the plasma expansion until it becomes too
weak to maintain the distribution isotropic. For this time, the anisotropy rises as electrons give progressively
their longitudinal energy to ions, so that a new instability can develop.
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I. INTRODUCTION

When an intense laser pulse impinges on a thin solid tar-
get, it ionizes it within a few optical cycles and forms a
dense plasma with an electron temperature in the 0.1–1 keV
range. The laser pulse then interacts with the plasma around
the critical density surface, where it is reflected, and heats a
population of electrons, up to MeV energies for laser inten-
sities I�2�1019 W cm−2 �m2 �1�. These hot electrons flow
through the target, and a part of them forms electrostatic
sheaths, on both sides of the plasma, which pull ions into the
vacuum and accelerates them, potentially up to several tens
of MeV �2–10�.

This acceleration process is commonly described using
one-dimensional �1D� models of plasma expansion into a
vacuum �11–14�. The assumption of a dependence on a
single spatial dimension is justified as long as the laser focal
spot is sufficiently large. However, it is incorrect to consider
only one component of the electron velocities. Indeed, sev-
eral mechanisms such as elastic Coulomb collisions and
electromagnetic instabilities can induce a coupling between
the transverse and longitudinal components of velocity.
These can strongly affect both the expansion dynamics
�15,16� and the properties of the accelerated ion beams
�17,18�.

In this paper, we assume that the plasma is too hot for
collisions to be efficient �15� and consider the influence of
the Weibel instability on the expansion. The principle of this
electromagnetic instability, which occurs in plasmas with an-
isotropic velocity distributions, is schematized in Fig. 1.
We assume that �ex ,ey ,ez� is a standard basis, and that
the initial electron velocity distribution function is f0�v�
�exp�−vx

2 /vx0
2 −vy

2 /vy0
2 −vz

2 /vz0
2 � with v= �vx ,vy ,vz� and vx0

�vy0=vz0. We also suppose that a perturbation magnetic
field B=B0 cos kxez arises from the noise. In these condi-
tions, the magnetic Lorentz force bends the electron trajec-
tories in the �ex ,ey� plane �see Fig. 1� and forms current
sheets j= jex which enhance the magnetic field �19�. As B
does not perturb the isotropic part of f0 the currents build
always along a hot axis and the instability develops only in
anisotropic plasmas.

Such plasmas are naturally obtained when thin foils are
irradiated by intense laser pulses. Indeed hot electrons gain
most of their energy through collisionless mechanisms �e.g.,
resonant absorption �20�, Brunel absorption �21�, and j�B
heating �22�� which depend on the polarization of the laser
and heat the plasma in a preferred direction. Because of this
anisotropy which can be very strong, the Weibel instability is
triggered from the beginning of the expansion �see the
growth of the mean magnetic energy by hot electron in Fig.
2�. As electrons give progressively their longitudinal mo-
menta to ions through the ambipolar field, and transfer a part
of it to the transverse directions through the magnetic Lor-
entz force, the anisotropy is eventually suppressed �at t
�6 fs in Fig. 2�. However, the mean-square longitudinal
momentum p�

2 is still decreasing because electrons continue
to lose energy to ions. As the amplitude of the magnetic field
is too low to keep the plasma isotropic, p�

2 becomes lower
than the mean-square transverse momentum p�

2 . In other
words the plasma becomes again anisotropic, so that a new
instability can develop �for t�9 fs in Fig. 2� �16�. Note that
during this second growth the former hot axis ex is a cold
axis.

In this paper, these two stages are analyzed in detail. First,
the relevant dispersion relations are derived and discussed in
Sec. II. Then the expansion is analyzed using two-
dimensional particle-in-cell �PIC� simulations in Sec. III.
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j<0v x

v y
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FIG. 1. �Color online� Principle of the Weibel instability. A per-
turbation magnetic field B drives a current j, which enhances the
original field. The arrows schematize the trajectories of the elec-
trons which form the current sheets.
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II. DISPERSION RELATIONS

In this section we establish dispersion relations for the
Weibel instability in different conditions. We first assume in
Sec. II A that all electrons have been accelerated to multi-
keV energies, so that the hot directions can be described by a
single temperature, and consider successively the cases p�

2

� p�
2 and p�

2� p�
2 . Then we discuss in Sec. II B the more

realistic situation where only a part of the plasma electrons
has been heated to high energies.

A. Single population plasma

1. Cold transverse temperature

We assume here that the electron velocities are nonrela-
tivistic and that the distribution function is of the form

f �0��v� � exp�− �v��2/v�0
2 − v�

2/v�0
2 � with v�0 � v�0 = vh0.

We look for transverse magnetic modes with wave vector k
parallel to ey and nonzero field components �Ex ,Ey ,Bz�. We
express f �0� in the Cartesian basis �ex ,ey ,ez�, where ez is
chosen to be a cold direction, and where the hot direction lies
in the �ex ,ey� plane such that the second cold direction makes
an angle 	 with respect to k �Fig. 3�a��:

f �0��v� � exp�− �vx + �vy�2/v0
2 − vy

2/ve
2 − vz

2/v�0
2 � , �1�

with

ve
2 = vh0

2 �A sin2 	 + 1�/�A + 1� ,

v0
2 = vh0

2 /�A sin2 	 + 1� ,

� = A cos 	 sin 	/�A sin2 	 + 1� ,

A = �v�0/v�0�2 − 1.

In this basis, the current j lies in the �ex ,ey� plane �it always
builds in a hot direction� and B is along the ez axis �it is
parallel to k� j�.

To derive a dispersion relation for the unstable modes, we
linearize the Maxwell and Vlasov equations for perturbations
�f �1� ,E ,B��exp�i�ky−
t�� as follows:

Bz = − �k/
�Ex, �2�

ic2kBz = jx/�0 − i
Ex, �3�

0 = jy/�0 − i
Ey , �4�

− i
	1 −
vyk




 f �1� =

e

me
��Ex + vyBz�

� f �0�

�vx

+ �Ey − vxBz�
� f �0�

�vy
� , �5�

where �0 is the vacuum permittivity, e is the electron charge,
and me is the electron mass. Combining Eqs. �2� and �3�, and
averaging −evx over f �1�, gives

i
jx

�0
= �c2k2 − 
2�Ex = 
p

2 d3vvx�Ex
� f �0�

�vx

+

Ey + vxkEx


 − vyk

� f �0�

�vy
� , �6�

where 
p=nee
2 /me�0 is the electron plasma frequency. Simi-

larly, combining Eqs. �2� and �4� and averaging −evy over
f �1� leads to

i
jy

�0
= − 
2Ey = 
p

2 d3v
vy


 − vyk
�
Ey + vxkEx�

� f �0�

�vy
.

�7�

Then, using integration by parts, Eqs. �6� and �7� become

− � vxk


�
 − vyk�2�Ey = � c2k2 − 
2


p
2 + 1 + � vx

2k2

�
 − vyk�2��Ex,

�8�

�
2


p
2 − � 
2

�
 − vyk�2��Ey = � vxk


�
 − vyk�2�Ex, �9�
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FIG. 2. �Color online� Energy transfers during the expansion of
a plasma slab into a vacuum, in log-log scale. The initial density
and thickness of the slab are, respectively, ne=5�1023 cm−3 and
L=150 nm. At t=0 the plasma is nonmagnetized �Em�0�=0�, and
the mean-square longitudinal and transverse momenta are, respec-
tively, p�

2 /2me=1.5 MeV and p�
2 /2me=1 keV. These results origi-

nate from a two-dimensional particle-in-cell simulation with peri-
odic conditions in the transverse direction, and a transverse width of
180 nm.

FIG. 3. �Color online� Standard basis used �a� when p�
2� p�

2

�case of Sec. II A 1� and �b� when p�
2� p�

2 �case of Sec. II A 2�.
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where the angular brackets denote the averaging over f �0�.
The dispersion relation is finally obtained by combining Eqs.
�8� and �9�,

c2k2 = 
2 − 
p
2�1 + � vx

2k2

�
 − vyk�2�
− � vxk


�
 − vyk�2�2�	� 
2

�
 − vyk�2� −

2


p
2
� .

�10�

Note that this equation can also be derived using the general
expression of the dielectric tensor established in Ref. �23�.

Purely growing solutions of Eq. �10�, �z�k�=−i
�k�, are
plotted in Fig. 4�a� for different values of 	, A=10, and vh0
=0.2c. This figure shows that the most unstable modes are
obtained for 	=0, that is, when the wave vector lies in the
cold plane. The maximum growth rate is divided by 2 when
	 is increased from 0° to 20°, and is reduced by almost two
orders of magnitude when 	=37.5°.

The largest unstable �or critical� wave number kc is ob-
tained by taking the limit 
→0 in Eq. �10�. This leads to

kc
2c2/
p

2 = v0
2/ve

2 − 1 + �2�/2 − 1�

= A

cos2 	 − sin2 	�1 + A	1 −


2
cos2 	
�

�A sin2 	 + 1�2 .

�11�

For A→0, this equation reduces to kc
2c2 /
p

2

�A�1–2 sin2 	�, which shows that for small A, purely grow-
ing modes are obtained only for 	�45°. Similarly, taking the
limit A→� for 	�0 in Eq. �11� leads to kc

2c2 /
p
2

��� /2�cos2 	−1� /sin2 	. In this case, kc does not depend
on A and is much smaller than for 	=0 where kc

2c2 /
p
2 =A.

All these findings are confirmed in Fig. 5�a� which displays
kc�	� for five different values of A.

Figure 5�b� shows that the maximum growth rate �z
m also

decreases more steeply with 	 for large A. As a result of the
behavior of both kc and �z

m, unstable modes for large A grow
mainly with wave vector in the cold plane. In contrast, for
small A and 	�10°, kc and �z

m depend weakly on 	, so
modes can grow efficiently with 0�	�10°.

2. Hot transverse temperature

We turn now to the case where the electron distribution
function is of the form

f �0��v� � exp�− �v��2/v�0
2 − v�

2/v�0
2 � with v�0 = vh0 � v�0.

This corresponds to the second stage of the plasma expan-
sion in Fig. 2.

We first express f �0� in the standard basis �ex� ,ey� ,ez�� in
which ez� is a hot axis and k=kex�:

f �0��v� � exp�− �vy + �vx�2/v0
2 − vx

2/ve
2 − vz

2/v�0
2 � , �12�

where ve, v0, and � have the same definitions as in Eq. �1�,
except that A= �v�0 /v�0�2−1, and 	 is the angle between the
wave vector k and the cold axis or, equivalently, the angle
between ey� and the hot plane �see Fig. 3�b��. In this situation,
B must lie in the �ey� ,ez�� plane. One possible combination of
nonzero fields is �Ex ,Ey ,Bz�. This case is identical to the one
studied in Sec. II A 1, just exchanging the roles of x and y in
the calculations. A second combination is �Ez ,By�. We note
that in this case, where the cold direction and k are both
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FIG. 4. �Color online� Growth rates of the Weibel instability as
a function of the wave number, for different angles 	 between k and
the cold plane �or axis�, vh0=0.2c, and A=10. The angle 	 is incre-
mented by 7.5° steps. In �a� the current lies in the anisotropic plane
�ex ,ey�, while in �b� it is along the ez axis.
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perpendicular to ez�, an electric field in the ez� direction pro-
duces no current density in the �ex� ,ey�� plane, due to the
reflection symmetry of the distribution function in ez�. Con-
sequently, Ex=Ey =0.

As in Sec. II A 1 we begin by writing the linearized Max-
well and Vlasov equations,

By = − �k/
�Ez, �13�

ic2kBy = jz/�0 − i
Ez, �14�

− i
	1 −
vxk




 f �1� =

e

me
��Ex − vzBy�

� f �0�

�vx

+ �Ez + vxBy�
� f �0�

�vz
� . �15�

Then we combine Eqs. �13� and �14�, and average −evz over
f �1�, to get

i
jz

�0
= �c2k2 − 
2�Ez

= 
p
2 d3v� kvz

2


 − vxk
Ez

� f �0�

�vx
+ vzEz

� f �0�

�vz
� . �16�

We finally apply integration by parts to obtain the following
dispersion relation:

c2k2 = 
2 − 
p
2�1 +

k2

2
� vz

�
 − vxk�2�� �17�

=
2 − 
p
2�1 −

A + 1

A sin2 	 + 1
�1 + �Z����� ,

�18�

where �=
 /kve and Z���=−1/2�dt exp�t−2� / �t−�� is the
plasma dispersion function �24�.

The growth rate �y�k� obtained from Eq. �17� is plotted in
Fig. 4�b�. For 	=0, the growth rates are the same for By and
Bz �Fig. 4�a��. In contrast, for 	�0, �y�k� is larger than
�z�k�. The reason for that is that when B grows along the ey�
axis the currents are purely along a hot direction, which is
not the case when it grows along the ez� axis �except for 	
=0�; currents are thus larger in the first case.

The critical wave number,

kc
2c2/
p

2 =
A cos2 	

A sin2 	 + 1
, �19�

is also larger for By than for Bz �compare Eqs. �11� and �19�
and the two panels of Fig. 4�. Another difference is that
purely growing modes are obtained for all 	�90° when B is
along the ey� axis. In contrast the influence of A on kc is
similar in both cases. Indeed, Eq. �19� shows that kc

2c2
p
2

�A cos2 	 when A→0, and kc
2c2
p

2 �cot2 	 when A→� and
	�0.

3. Discussion for �=0

Sections II A 1 and II A 2 show that, in all cases, the most
unstable mode grows with a wave vector in a cold direction.

It is therefore interesting to study in detail the dispersion
relation for 	=0. Note that even though the most unstable
modes are always obtained for 	=0, for small anisotropy, kc
and �m decrease slowly when 	 is increased �see Fig. 5�.
Modes with 	�0 can therefore develop during the second
stage of the expansion during which the anisotropy is quite
small.

In this section we assume that 	=0 and we derive a
simple expression for �m when the anisotropy is large. Then
we discuss the case of relativistic velocities. The starting
point for this study is the dispersion relation obtained by
taking 	=0 in Eq. �10� or Eq. �17�:

c2k2 = 
2 + 
p
2�A + �A + 1��Z���� , �20�

with �=�A+1
 /kvh0. As mentioned before, the largest un-
stable wave vector in this case is kc=�A
p /c.

(a) Limit for large anisotropy. When A is large, Z��� can
be substituted by its asymptotic expansion for ����1, Z���
�−�−1�1+1 /2�2+3 /4�4� �25�, so that Eq. �20� becomes

c2k2 � − �2 + 
p
2�− 1 +

k2vh0
2

2
�−2 −

3k4vh0
4

4�A + 1�
�−4� .

�21�

Differentiating Eq. �21� with respect to k, we find that for
A�1 the maximum growth rate is

�m � �1 −�6�2 + vh0/c�
A

�1/2 vh0

�2c

p

�
vh0

�2c

p when A → � . �22�

Then, combining Eqs. �21� and �22�, we find the wave num-
ber of the most unstable mode,

km �

p

c
�2 + vh0/c

6
A�1/4

�

p

c
�A

3
�1/4

for vh0 � c .

�23�

Equation �22� shows that, for large A, �m is almost a
linear function of the hot velocity. It indicates also that �m

saturates when A→�. Further Eq. �23� states that the wave
number of the most unstable mode km increases much more
slowly with A than the critical wave number kc=�A
p /c.
This means that the instability develops mainly with rela-
tively small wave numbers �for A=10 000, km�7.6
p /c,
while kc=100
p /c�. Note that this is not the case for A�1,
where km=kc /�3. In summary for large anisotropy, the
growth rate saturates and the most unstable wave number
increases slowly with A �more slowly that kc�.

(b) Relativistic velocities. For now this study is quite aca-
demic. In an experiment the velocity is generally relativistic
when the anisotropy is very large. It is thus necessary to
analyze how the previous results are modified when vh0→c.
As it is much more complicated to derive a dispersion rela-
tion in this case �26–28�, we limit the present discussion to
an analysis of one spatial and three velocity dimensions
�1D3V� relativistic PIC simulations. In these simulations, the
initial distribution function is f �0��exp�−��x−1� / ���0−1�

THAURY et al. PHYSICAL REVIEW E 82, 026408 �2010�

026408-4



− ��y +�z−2� / ���0−1�� with �x= �1−vx
2 /c2�−1/2 and �0� = �1

−v�0
2 /c2�−1/2 �and so on for �y, �z, and �0��. The wave vector

is necessarily along ey, which is the only spatial dimension in
these 1D simulations, so 	 is forced to zero. Ions are fixed
and the width of the plasma along the ey axis is 42c /
p �see
Sec. III A 1 for supplementary information on the simula-
tions�.

Figure 6 displays the results of simulations performed for
different values of E�0= ���0−1�mc2, and a mean-square
transverse momentum p�0

2 /2me=500 eV. For E�0�50 keV,
the maximum growth rate �m is almost equal to the one
given by Eq. �20�. For larger longitudinal energies, the simu-
lation results start to differ significantly from the classical
model. The growth rate saturates for E�0�1 MeV �v�0
�0.94c� as in the classical limit, but the value reached by �m

is lower in the relativistic regime �0.43
p, instead of
0.71
p�. Note that this value is not modified when p�0

2 is
reduced. The most important difference is however observed
for E�0�5 MeV, where �m exhibits a slow decay.

To explain this behavior, we derive a dispersion relation
for the simplest relativistic distribution function f ����x
−��0���vy���vz�, where ��x� is the Dirac delta function. Us-
ing the general dispersion relation established in Ref. �23�,
we obtain after integration,

c2k2 + �2 + 
p
2��0

−3�1 − c2k2���0
2 − 1��−2� = 0. �24�

Then, differentiating Eq. �24� we find that the maximum
growth rate, for ��0�1, is �r

m=
p /���0. In agreement with
Fig. 6 this growth rate decreases when the longitudinal en-
ergy is raised. Physically, this originates from the relativistic
increase of the mass, which makes electrons harder to move
in the ey direction when ��0 increases. Note that this effect is
also observed analytically when more realistic distribution
functions are used �27�.

To sum up this section, the growth rate of the most un-
stable mode �m increases with A before saturating for very
large anisotropy. This property which has been demonstrated
for nonrelativistic thermal velocities is also verified when vh0
is relativistic. Additional PIC simulations actually show that
for E�0=50 MeV, �m varies by less than 1% when 103�A
�105. In the classical regime �E�0�50 keV�, the maximum
growth rate rises almost linearly with the thermal velocity in

the hot direction. In contrast, in the relativistic regime, �m is
observed to decrease when the longitudinal energy is in-
creased above approximately 5 MeV. As a result, the optimal
growth rate is obtained for E�0�1–5 MeV. This growth rate
can however be much smaller than predicted in Fig. 6 if the
plasma contains a large population of cold electrons.

B. Two population plasma

In this section, we analyze the influence on the Weibel
instability of a cold isotropic population in the classical limit.
This case is of particular interest in the context of laser-
plasma interaction, where the laser heats only a part of the
plasma electrons to very high energies. To investigate the
impact of a cold population, we consider distribution func-
tions of the form

f2p
�0��v� = �fh

�0��v� + �1 − ��fc
�0��v� , �25�

with �=nh0 / �nh0+nc0� as the fraction of hot electrons �nh0
and nc0 are, respectively, the hot and cold electron densities�,
fh

�0�= f �0�, and fc
�0��v��exp�−�v�2 /vc0

2 �.
For simplicity we assume that 	=0, so that we can easily

derive from Eq. �17� the dispersion relation for the two popu-
lation plasma,

c2k2 = 
2 + 
ph
2 �A + �A + 1��Z���� +

1 − �

�

ph

2 �cZ��c� ,

�26�

with 
ph
2 =�
p

2 and �c=
 /kvc0. Taking the limit 
=0, we
find that the critical wave number is kc=�A
ph /c. This sug-
gests that the presence of a cold population does not perturb
much the growth of the instability. But Fig. 7�a�, which dis-
plays the growth rate of purely growing modes for different
hot electron fractions, demonstrates that this conclusion is
not correct since � /
ph is observed to decrease with �. Fur-
ther, Fig. 7�b� shows that � /
ph is also reduced when the
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FIG. 6. Growth rates for relativistic thermal velocities. The tri-
angles are the results of 1D3V relativistic PIC simulations per-
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ratio �= �vh0 /vc0�2 is increased, i.e., when the cold electrons
become colder or, equivalently, when the hot electrons be-
come hotter �while A is kept constant�. Finally, we remark
that the wave number of the most unstable mode shifts to
lower value when � rises.

To understand these different effects, we take the limit
vc0→0 in Eq. �26� to obtain another dispersion relation,

c2k2 = 
2 + 
ph
2 �1 − 1/� + A + �A + 1��Z���� . �27�

The purely growing solution of Eq. �27� is plotted in Fig. 7
�dashed line�. We see that the growth rate �m is 200 lower in
this case than in the single population case. Besides, the
critical wave vector,

kc =

ph

c
�A + 1 −

1

�
, �28�

is smaller than in the finite-� case. This means that for very
low cold thermal velocity, the growth rate for �A+1−1 /�
�kmc /
ph��A tends to zero. Thus, the instability is almost
suppressed when ��1 / �A+1�. In other words, cold elec-
trons can stabilize the plasma if their fraction is sufficiently
high.

This is illustrated in Fig. 8�a� which shows that the maxi-
mum growth rate �m decreases strongly with � when �
�1 / �A+1�, even when � is relatively small. It also reveals a
very good agreement between Eq. �26� and 1D PIC simula-
tions with fixed ions, thus validating the theoretical predic-
tions. Further, Fig. 8�a� shows that for ��1 / �A+1� the so-
lution obtained for �→� is very close to the one given by
Eq. �26�. As Fig. 7 proves, in addition, that Eq. �27� provides
a good estimate of �m when ��105, even for ��1 /A, we
can use it—as a first approximation—to study the influence
of the cold population.

To explain the “stabilization” by the cold population, we
rewrite Eq. �27� to make appear the cold plasma frequency

pc

2 = �1−��
p
2,

c2k2 = 
2 − 
pc
2 + 
ph

2 �A + �A + 1��Z���� . �29�

We see that the plasma is stabilized if 
pc
2 �
ph

2 �A+ �A
+1��Z����, that is, if the cold population response to the per-
turbation is much stronger than the one of the hot population.
To elucidate the influence of vc0, we take one more term in
the Taylor expansion of Z��c� in Eq. �26�, replacing 
pc

2 with

pc

2 �1−k2vc0
2 /2�2� in Eq. �29�. Thus we see that a finite ve-

locity vc0 tends to reduce the influence of cold electrons. In
fact the cold return current associated with the 
pc

2 term is
the same whether vc0=0 or vc0�0, but in the latter case
electrons are also subjected to the magnetic Lorentz force
which drives currents in the opposite direction, and hence
reduces the influence of cold electrons. The impact of this
second term increases with vc0.

We study now the influence of the anisotropy parameter.
For �A�1, we find, in the same way that we obtained Eq.
�22�, that the maximum growth rate is

�m � �1 −�6�2 + �vh0/c�
�A

�1/2 vh0

�2c

p �

vh0

�2c

p.

�30�

The maximum growth rate is thus almost unchanged by the
presence of cold electrons if �A is sufficiently large. In con-
trast, when �A�1, �Z����−��A+1�� /kvh0 and Eq. �27�
leads to

�m �
1

�
	2

3

3/2�1 −

1

��A + 1��3/2 vh0

�2c

ph, �31�

which confirms that �m strongly decreases with � when �
→ �A+1�−1, whatever is the anisotropy. To illustrate these
effects, we plotted in Fig. 8�b� �m as a function of � for three
different anisotropy parameters �solid lines�. We observe that
Eqs. �30� and �31� provide a good approximation of �m for,
respectively, large and small �A. For large A, the influence of
cold electrons is very weak if ��1 /A, while the instability
can be suppressed, even for very high anisotropy, if the
plasma is mainly made of cold electrons.

To conclude this section, we address the specific case of a
cold population with a temperature equal to the cold axis
temperature �vc0

2 =vh0
2 / �A+1��. This case may be of impor-

tance in the context of laser heated plasma foils, where such
a distribution is obtained when only a part of the plasma
electrons gains energy from the laser and is accelerated in a
preferential direction. In this situation, �c=� and Eq. �26�
becomes

c2k2 = 
2 − 
pc
2 + 
ph

2 �A� + �A� + 1��Z����

with A� = A + �1 − ��/� . �32�

Comparing Eqs. �29� and �32� reveals that this dispersion
relation is the same as the one obtained for an infinitely cold
population substituting A by A�. Thus, the previous analysis,
and in particular Eqs. �30� and �31�, can be used in this case,
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without approximation, by just replacing A with A�. For in-
stance, we get for small �A

�m �
1

�
	2

3

3/2�1 −

1

�A + 1
�3/2 vh0

�2c

ph. �33�

Note that, in contrast with Eq. �31�, �m�0 for all �A�0.

III. SIMULATIONS OF THE PLASMA EXPANSION

Up to now, we have studied the development of the Wei-
bel instability in a plasma with fixed ions. To take into ac-
count the influence of the expansion, we perform in this sec-
tion two spatial and three velocity dimensions �2D3V� PIC
simulations with mobile ions, and use the results of Sec. II to
analyze the numerical findings. First we present in Sec. III A
simulations with an initial anisotropy and without laser
pulse, and then we discuss in Sec. III B a simulation without
initial anisotropy but with a laser pulse focused on the
plasma slab.

A. Two temperature expanding plasmas

1. Numerical conditions

The PIC code used in this study is relativistic and noncol-
lisional. It involves two spatial �ex and ey� and three velocity
dimensions. The simulation box size is 1000c /
ph
�24c /
ph. The plasma is a foil with an initial thickness
along the ex �longitudinal� axis of L=20c /
ph. The boundary
conditions in the transverse direction are periodic for both
fields and particles. In the longitudinal direction, open
boundaries are used for the fields while electrons are re-
flected. The time step is �t=0.1
p

−1 and the spatial grid sizes
are �x=�y=0.16c /
p. The ion to electron mass ratio is
mi /me=1836, and the ion charge is Z=1.

In this section we consider plasmas with an initial mean-
square longitudinal momentum p�0

2 larger than the transverse
one p�0

2 , and with or without a cold isotropic electron popu-
lation. The transverse and the cold population temperatures
are both of 1 keV, while the ion temperature is 30 eV. To
limit both the computation time and the noise level, we take
in our simulations ��0.1, which is sufficient to analyze the
influence of cold electrons. There are initially �9�106 hot
macroparticles when �=1, and �3�106 when �=0.1.

2. Simulation results

Figures 9 and 10 are the results of 2D3V PIC simulations
performed for different initial hot longitudinal energies Eh0
= ��h0−1�mec

2 and different fractions of hot electrons �.
They display, respectively, the mean-square longitudinal and
transverse momenta and the mean magnetic energy as func-
tions of time �Fig. 9�, and the magnetic field as a function of
space for different times �Fig. 10�.

(a) Nonrelativistic case. In Figs. 9�a� and 10�a�, �=1 and
Eh0=10 keV �A=9�. The magnetic energy is observed to
increase with a growth rate 2�PIC�2�0.055
ph, before
saturating at t�100
ph

−1 �Fig. 9�a��. According to the linear
theory of Sec. II, the maximum growth rate in this nonrela-
tivistic case should be �m=0.053
ph. The theoretical and nu-

merical values are very close, which indicates that the linear
model describes correctly the development of the Weibel in-
stability, even for a two-dimensional expanding plasma. Fig-
ure 10�a� shows the spatial variations of the magnetic field,
when it reaches its maximum at t�100
ph

−1. In agreement
with Sec. II A 1, the wave vector lies in the transverse plane
�	=0�. Further, the value of the most unstable wave number
kPIC

m �1.3
ph /c is also close to the value predicted by the
linear model �km=1.2�, which confirms its accuracy. Note
that at earlier times there are several other unstable modes
which eventually coalesce �29,30�.

Figure 9�a� shows that, due to the magnetic field, elec-
trons transfer a part of their longitudinal momentum to the
transverse direction up to t�1000
ph

−1, where p�
2= p�

2 �A
=0�. At this time, the mean-square transverse momentum
stops rising, while the longitudinal one continues decreasing
because electrons lose their energy to ions. As the magnetic
field at t�1000
ph

−1 is not intense enough to isotropize “in-
stantaneously” the electron distribution, the anisotropy A
� p�

2 / p�
2−1 grows. The maximum anisotropy reached during

this second stage is A�0.12, which is sufficient to drive a
new Weibel instability. Indeed, for A�0.12 we have kc
�0.35
ph /c, while the smallest unstable wave number
which can be sustained by the plasma is k=2 /L
�0.31
ph /c�kc. Note that for simplicity the plasma expan-
sion is neglected in this analysis. A more comprehensive dis-
cussion can be found in Ref. �16�.

As a consequence of this second instability, the magnetic
energy restarts to rise and it reaches a second maximum at
t�2700
ph

−1. The magnetic field at this time is plotted in Fig.
10�a� �right column�. The wave vector of the most unstable
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mode is now along the longitudinal axis �the new cold axis�.
However, because the plasma has been magnetized and be-
cause the anisotropy is weak, the magnetic field is also com-
posed of modes with 	�0 �see Fig. 5�. In other words, the
wave vectors are not all purely longitudinal. Figure 9�a� in-
dicates that for t�2700
ph

−1, the magnetic field is sufficiently
intense to keep p�

2 �t�= p�
2�t�. As a result, the energy gained

by ions is taken equally from the electron thermal energies in
both directions �16�.

To study the influence of a cold population, we ran a
simulation with the same initial hot mean-square momentum
as in Fig. 9�a� but with �=0.1. Figure 9�b� shows that in this
case, the magnetic energy grows much more slowly. Accord-
ing to Eq. �33� we expect �m=0.01
ph

−1. This value is consis-
tent with Fig. 9�b� but only for t�50
ph

−1. As the anisotropy
decreases, the growth rate �PIC

m at latter time is actually much
lower. Figure 10�b� shows that the maximum magnetic field,
obtained at t�600
ph

−1, hardly emerges from the noise level.
As a consequence p�

2 is almost steady during the first stage
of the expansion. Note that p�

2 is lower in Fig. 9�b� than in

Fig. 9�a� because 90% of the electrons are cold.
As electrons give progressively their longitudinal momen-

tum to ions, p�
2 eventually becomes smaller than p�

2 at t
�1200
ph

−1. As in the case without cold electrons, an insta-
bility can thus develop again. The right column of Fig. 10�b�
shows, however, that in contrast with Fig. 10�a�, the wave
vectors are almost perfectly longitudinal during this second
stage. This is probably because the plasma is much less mag-
netized when the field restarts to grow. Despite this differ-
ence, Fig. 9�b� reveals that the expansion is very similar with
and without a cold population, once the instability has devel-
oped for a second time. Indeed, the expansion becomes iso-
tropic and the mean magnetic energy normalized by hot elec-
tron is almost the same in the two cases. Thus, the presence
of cold electrons modifies the early time of the expansion
and the time at which the longitudinal and transverse ener-
gies become equal, but it does not perturb much the behavior
of the plasma at long time.

(b) Relativistic case. We now turn to the relativistic re-
gime by considering a plasma with a hot energy Eh0

FIG. 10. �Color online� Mag-
netic field Bz�x ,y� at different
times in unit of me
ph /e. In �a�
Eh0=10 keV and �=1. In �b�
Eh0=10 keV and �=0.1. In �c�
Eh0=1 MeV and �=1. In �d�
Eh0=1 MeV and �=0.1. The
fields in the left column have de-
veloped during the first stage of
the expansion, while those in the
right column have developed dur-
ing the second stage.
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=1 MeV. Figure 9�c� shows that there is not much differ-
ence between the relativistic and nonrelativistic cases. In
agreement with Fig. 6, the growth rate is just larger in the
relativistic case �we measure �PIC�0.41
ph�, so that the
saturation of the magnetic field and the isotropization of the
distribution function occur earlier. We remark also that, at
maximum, about 1.2% of the initial hot energy has been
converted to magnetic energy, while in Fig. 9�a� it was about
2%. This is another consequence of the relativistic saturation
observed in Fig. 6. Note that the absolute value of Em is,
however, much larger in the relativistic case.

The left column of Fig. 10�c� shows that the most un-
stable wave number is quite the same as in Fig. 10�a�. This is
at first confusing since, according to Eq. �23�, km is expected
to increase with A. But Fig. 9�c� shows that the anisotropy is
already strongly reduced when Em is maximal, so that A is
almost identical at this time in Figs. 9�a� and 9�c�, which
explains why kPIC

m is also the same in both cases. During the
second stage of the expansion, all the wave vectors lie in the
longitudinal axis, while in �a� some modes had a transverse
component. This suggests that modes with 	�0 are more
stable in the relativistic regime.

According to Sec. II B, the presence of a cold population
with �=0.1 is not expected to affect significantly the expan-
sion when A is large. For A=v�0

2 /v�0
2 −1�240 �case of Fig.

9�c��, the classical dispersion relation �Eq. �32�� suggests that
the maximum growth rate should be divided by 1.3 for �
=0.1. One-dimensional relativistic simulations with fixed
ions and k=kyey demonstrate that this result is not modified
when relativistic effects are taken into account. Yet, we mea-
sure in Fig. 9�d� that the growth rate �PIC=0.17
ph is 2.4
smaller for �=0.1 than for �=1. This figure shows also that
the mean magnetic energy by hot electron is more than 20
times lower in presence of cold electrons �instead of 9 in 1D
simulations�. Figure 10�d� further confirms that the addition
of a cold population reduces the amplitude of the magnetic
field and shows that it increases the wave number of the most
unstable mode. This last point is also observed in 1D simu-
lations and, in a lesser extent, in classical calculations �using
Eq. �32� we find that km should be multiplied by 1.7�.

The differences between 1D and 2D simulations indicate
that the plasma expansion influences the development of the
Weibel instability. Indeed, as hot electrons transfer their mo-
mentum both to ions and cold electrons, via kinetic effects
�31�, the anisotropy decreases which hinders the growth of
the instability. In �a� and �c� this cooling is quite small during
the first stage, so that the effect of the expansion on the
Weibel instability is weak. The stronger influence observed
in �d� might be due to a significant transfer of momentum
from hot electrons to cold electrons.

Despite a larger impact of the electron cooling on the
development of the Weibel instability, the expansion is simi-
lar in �c� and �d�, with two differences. First, because the
amplitude of the magnetic field is smaller, the isotropization
of the distribution function occurs later in �d� than in �c�.
Second, more kinetic energy is converted in magnetic energy
during the second stage of the expansion than during the
first, for the influence of cold electrons is much weaker dur-
ing this second stage.

Figure 10�d� shows that, after the second development of
the instability, the magnetic field is very weak in the center

of the plasma. This is because this part of the plasma is
stabilized by cold electrons, while the outer plasma contains
only hot electrons. A similar effect is observed, although less
clearly, in the absence of a cold population. In this case, it is
due to the fact that the anisotropy is weaker in the unper-
turbed part of the plasma because of kinetic effects �31,32�,
so that the magnetic field develops mainly in the expanding
part of the plasma �16�.

In conclusion, this numerical study demonstrates that the
classical linear model presented in Sec. II is sufficient to
understand most of the features of the expansion, and to
predict the influence of various parameters. It is however
inadequate to obtain precise values in the relativistic regime.
As shown in Sec. II B, the addition of a cold population
tends to stabilize the plasma and Fig. 9�d� suggests that this
effect is stronger when hot electrons are relativistic. The in-
fluence of a cold population is much weaker during the sec-
ond growth of the instability. As a result, the amplitude of the
magnetic field, in the presence of cold electrons, is generally
larger during the second stage of the expansion. In the next
section we show that these results can be used to analyze the
development of the Weibel instability during the interaction
of an intense laser pulse with a thin foil.

B. Laser heated plasma

1. Numerical conditions

To complete this study, we consider now a plasma slab
with an isotropic electron temperature of 500 eV, and we use
a 2D3V relativistic and collisional PIC code to study the
development of magnetic fields during the interaction of this
plasma with an intense laser. The laser is a Gaussian pulse
with a full width at half maximum of �=4.8�, a half ampli-
tude duration of �=95T, and a full duration of 190T, where
�=1 �m is the laser wavelength and T=c /� is the optical
period. This laser impinges on the plasma at normal inci-
dence and reaches a peak intensity I�2=1.2
�1019 W cm−2 �m2. The plasma is a slab of initial width
L=2� and of electron density ne0=100nc, where nc
=me
0

2�0 /e2 is the critical density.
The mesh size is �x=0.015c /
0 and the time step is �t

=0.0145
0
−1, with 
0 as the laser angular frequency. The

simulation box size is 240c /
0�576c /
0 and there are 20
particles in each cell. Particles are reinjected with thermal
velocities when they reach the transverse boundaries and are
reflected when they reach the longitudinal boundaries.
Electron-electron and electron-ion collisions are treated us-
ing the Monte Carlo method proposed by Nanbu �33�. For
simplicity, the Coulomb logarithm is fixed to 12, which cor-
responds to an initial mean collision frequency of about
0.3
0. Note that this choice results in an overestimate of the
collision frequency for cold electrons.

2. Simulation results

During the interaction of an overdense plasma with an
intense laser pulse at normal incidence, electrons in the skin
depth are accelerated in the longitudinal direction by the v
�B force �22�. A hot anisotropic population of electron is
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thus created within a few laser optical cycles. In light of Sec.
III A, this anisotropy is expected to lead to the growth of the
Weibel instability.

Figure 11�a� shows that at t=95T, magnetic fields have
actually developed around the plasma surfaces. In particular,
we notice the presence of intense fields in the expanding
parts of the plasma �x�0 and x�2��. They are however not
due to the Weibel instability but to the limited size of the
laser focal spot which induces temperature and density gra-
dients �34�. In the following, we ignore these fields and we
rather concentrate on the ones which are developing because
of the Weibel instability in the inner plasma �0�x�2��.
These fields, which can be easily identified due to their large
wave numbers, start to grow at t�60T, the time at which the
laser amplitude at the plasma surface has reached 30% of its
maximum value. As the anisotropy and the hot electron ve-
locity at this time are, respectively, A�7.7 and v� �0.16c,
we expect from the linear theory a growth rate of �m

=0.6
0. This is consistent with the simulation where the
growth rate at t�60T is �PIC�0.5
0 �the precision is lim-
ited by the time resolution of the diagnostic�. A good agree-
ment between the theory and the simulation is also observed
at t=95T. At this time, the anisotropy has been reduced by
the magnetic field �A=2.2�, so that the theoretical wave vec-
tor is km=7
0 /c, which corresponds precisely to the numeri-
cal value evaluated from Fig. 11�a�. This value then de-
creases in time as the anisotropy is further lowered �Figs.
11�b� and 11�c��.

Interestingly, we remark in Fig. 11�b� that the magnetic
field, which almost vanishes in the center of the plasma, is

quite intense at the rear side of the target �at x�2��. This is
due to the presence of cold electrons in the plasma. Accord-
ing to Sec. II B a population of cold electrons actually “sta-
bilizes” the plasma when the fraction of hot electrons � is
much smaller than 1 / �A+1�. At t=60T when the instability
starts to develop, the fraction of hot electrons in the plasma
bulk is about ��0.15%. For A=7.7, the growth rate is thus
according to Eq. �33� 2.6�104 lower than in absence of cold
electron. This prevents the instability to develop in this part
of the plasma. The situation is quite different around the
plasma-vacuum interfaces where for different reasons there
is no cold population. At the front surface, the cold popula-
tion has in fact been strongly heated by the laser, while at the
rear surface, the magnetic field grows in an area which was
initially in vacuum and which contains therefore no cold
electron. Looking at Figs. 11�a�–11�c� we see that the mag-
netized area of the plasma increases in time. This is because
the cold electron temperature near the magnetic front pro-
gressively increases, mainly due to resistive heating, so that
the instability can develop in a larger part of the plasma.

The amplitude of the magnetic field is maximum around
t=150T, which corresponds to the time at which the laser
amplitude at the plasma surface has dropped to �80% of its
peak value. Figure 11�c� shows that there is still a thin layer
of the plasma which is weakly magnetized at this time. Then,
the amplitude of the magnetic field slowly decreases as the
plasma expands �similarly to Fig. 9�. This is illustrated in
Fig. 11�d� which shows that at t=240T the magnetic field
amplitude has been reduced by �3.

Thus, the physics is very similar to the one analyzed in
Sec. III A, except that in the present case the plasma condi-
tions vary in space, and that during most of the laser-plasma
interaction the laser is a source of anisotropy which feeds the
instability. Note that we obtained very similar results using a
2D3V collisionless code which indicates that the influence of
Coulomb collisions is weak during the time of the simulation
for the chosen parameters. The magnetic field penetrates
only slightly faster in the inner plasma without collisions.

IV. CONCLUSION

This paper shows that, in an anisotropically heated
plasma, magnetic fields in the megagauss range grow during
the plasma expansion in two stages. During the first stage,
the instability develops with wave vectors perpendicular to
the expansion direction, while during the second one they are
mainly parallel to this direction. In both cases, the develop-
ment of the instability was analyzed using simple linear
models. For classical electron temperatures, these models
provide a quantitative description of the instability. In the
relativistic regime, they do not lead to quantitative predic-
tions, but can be used to estimate, for a given set of param-
eters, the significance of the Weibel instability and to assess
the influence of a particular parameter.

The influence of a cold population has been studied in
detail. In particular, we demonstrated that when the inverse
of the hot electron fraction is larger than the anisotropy, the
plasma is stabilized by the cold population. Thus, the insta-
bility can be inhibited during the first stage of the expansion.
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FIG. 11. �Color online� Magnetic field Bz�x ,y� / �me
0 /e� at dif-
ferent times, during the interaction of an intense laser pulse with a
plasma slab. The laser comes from the x�0 half-space. The maxi-
mum of the pulse reaches the surface x=0, where the laser is re-
flected, at t=120T. Its focal spot is centered at y=0.
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In agreement with Ref. �16�, we showed that the influence of
cold electrons is much weaker during the second stage of the
expansion, so that intense magnetic fields eventually develop
in all cases.

This last point is only true if the influence of Coulomb
collisions is still weak when the anisotropy restarts to in-
crease; otherwise, collisions will isotropize the plasma and
prevent the instability to develop. According to Ref. �15�
collisional effects become predominant when the mean col-
lision frequency �0�100cs0 /L, where cs0=�ZkBTe /mi
is the ion acoustic velocity, that is, when
�ne /1021 cm2��L /�m� / �Te /eV�2�10−2. At the beginning of
the second stage, the electron temperature is on the order of
or higher than the initial temperature in the cold direction;
we can thus assume Te�500 eV. Doing so we find that, for
L=1 �m, collisions will inhibit the second growth of the
instability only if ne�2.5�1024 cm−2. Obtaining such a
high density after the first stage of the expansion is highly
unlikely. This shows that collisions cannot play a significant
role during the laser-plasma ion acceleration. For very cold
initial electron temperatures they could, however, contribute
to hinder the development of the instability in the inner part
of the plasma.

Since the instability develops in a few femtoseconds
��0.4 fs in the case of Fig. 2�, the magnetic field can influ-
ence strongly the laser-plasma interaction and the plasma
expansion. Its most direct impact is of course to isotropize

the electron distribution function, which leads to a slower
decrease of the electron temperature. In the classical limit,
for instance, the temperature for t�cs0 /L decreases as Te
� t−2/3 with isotropization, and as Te� t−2 without it �15,16�.
More importantly, the magnetic field influences the trans-
verse width of the electron clouds at the plasma surfaces, and
hence the emittance of accelerated ion beams �17,18,35�. As
mentioned above, B may also perturb the coupling between
the laser and the plasma. The amplitude of the self-generated
magnetic field is actually of the same order of the one of the
laser field �1.2me
0 /e versus 3me
0 /e at maximum in the
case of Sec. III B�. As this magnetic field varies in both time
and space, it could perturb both temporally and spatially the
plasma dynamics and thus influence the properties of ener-
getic electron beams �36� and of high-order harmonics
�37,38� produced on dense plasmas. Lastly, it could also in-
fluence the propagation of electromagnetic waves �e.g., high-
order harmonics� through the plasma �39�.
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