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This paper presents a coupled experimental/numerical pro-
cedure to evaluate triaxiality fields. Such a type of analysis
is applied to a tensile test on a thin notched sample made
of Ti 6-4 alloy. The experimental data consist of digital im-
ages and corresponding load levels, and a commercial code
(Abaqus) is used in an integrated approach to Digital Image
Correlation (DIC). With the proposed procedure, samples
with complex shapes can be analyzed independently with-
out having to resort to other tests to calibrate the material
parameters of a given constitutive law to evaluate triaxili-
ties. The regularization involved in the integrated DIC pro-
cedure allows the user to deal with experimental imperfec-
tions such as cracking of the paint and/or poor quality of the
speckle pattern. For the studied material different hardening
postulates are tested up to a level of equivalent plastic strain
about three times higher than those achievable in a tensile test
on smooth samples. Different Finite Element discretizations
and model hypotheses (i.e., 2D plane stress and 3D simula-
tions) are compared.

1 Introduction
In the design of turbo-engines, it is required to ensure

safety margins between the operating conditions and burst.
A criterion, which is based upon the calculation of the aver-
age hoop stress, was proposed by Robinson [1] and is used
to estimate the burst speed of disks. In the case of complex
geometries and material models, this criterion is not accurate
enough. Today’s trend is to try to reduce safety margins by
relying on local burst predictions where finite element simu-
lations are performed to take into account precisely both the
complex geometry of actual disks and the constitutive model
of the material [2, 3].
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The burst prediction through local approaches strongly
depends on the modeling and identification of the constitu-
tive behavior [2,3]. For the studied material, a Hosford yield
criterion [4] was found to be more appropriate than the J2-
flow rule. However, even if the burst predictions were im-
proved in comparison with those based on Robinson’s cri-
terion, the remaining discrepancy between experiments and
numerical predictions has led the aero-engine manufactur-
ers to look for possible explanations and better predictions.
A possible source of discrepancy is that the state of stress
in the disks, which is estimated via 3D simulations with
von Mises’ elastoplastic models identified on uniaxial tensile
tests on smooth samples (i.e., with triaxialities of the order of
0.33), is characterized by higher levels of stress triaxiality for
defect-free configurations (i.e., ranging from 0.5 to 0.8).

The influence of the stress triaxiality [5, 6] and even
Lode parameter [7, 8] on the plastic behavior of metal and
alloys has been the subject of many studies [9–14]. More-
over the stress triaxiality is a key parameter when dealing
with damage and failure [15–19]. In addition to the depen-
dence on triaxiality, the studied titanium alloy exhibits an
important tension-compression asymmetry, which requires
the use of enhanced plasticity models [20]. For the appli-
cations of interest, the triaxiality is always positive, which
allowed us to test simpler material models. It was decided
to conduct experiments on flat notched specimens giving ac-
cess to levels of triaxiality consistent with the simulations of
defect-free disks and allowing for the use of digital image
correlation (DIC) techniques. Such sample geometries in-
duce nonuniform strain fields. In that case the measurements
of load-dependent displacement fields and their subsequent
exploitation to derive strain fields are needed [21,22]. Differ-
ent optical techniques can be used to measure displacement
fields [23, 24]. Among them, DIC is increasingly employed
due to its versatility and applicability to “any” scale of obser-



vation [25, 26]. Most of nowadays DIC codes rely on local
registrations (i.e., with subimages [27]). Global approaches
provide an alternative, which uses kinematic bases that are
made consistent with numerical simulations (e.g., finite ele-
ment DIC [22, 28, 29]).

Even though very powerful, finite element DIC as any
DIC approach suffers from the ‘resolution/spatial resolution’
curse since it is an inverse problem [30]. In particular, it does
not allow FE meshes of arbitrarily small sizes to be used.
For the test that is analyzed herein this limitation occurs for
minimal element sizes of 60 pixels due to the poor random
texture. For such element sizes the mechanical FE solution
is not refined enough. To correct for such shortcomings, a
further step is to integrate even more closely measurements
and simulations. This is achieved by resorting to Integrated
DIC (I-DIC) that uses mechanically admissible displacement
fields as kinematic bases. Such a type of technique was first
applied with closed-form (i.e., elastic) solutions [31,32], and
then generalized to numerically generated solutions [33–35].
The FE code is used, non intrusively, as a kinematic basis
generator and virtual load cell (via sensitivity fields) and the
unknown degrees of freedom become either boundary con-
ditions and material parameters [35].

The present paper shows a combined use of DIC and I-
DIC to evaluate the in situ stress triaxiality in a thin notched
sample made of titanium alloy. With the proposed procedure,
each sample can be analyzed independently without having
to resort to other tests to calibrate the material parameters
of a given constitutive law. Moreover the regularization em-
bedded in the I-DIC procedure allows us to deal with exper-
imental imperfection such as cracking of the paint and poor
quality of the speckle pattern. In the first part the choice of
the sample geometry and the experimental procedure are de-
scribed. The principles of DIC and I-DIC are briefly summa-
rized in the second part. This technique gives access to the
measured boundary conditions that can be prescribed when
performing an identification step either using Finite Element
Model Updating [36, 37] (FEMU) or I-DIC [35]. The latter
is utilized herein with different constitutive laws. The results
obtained via DIC and I-DIC are analyzed in the third part.
Various configurations are studied, namely, 2D and 3D FE
simulations, discretizations and constitutive equations. Last,
the triaxiality fields are assessed.

2 Experimental Setup
A drawback of uniaxial tensile tests on smooth samples

is that the onset of localized strain fields occurs at low strain
levels making it ill-suited for constitutive and failure char-
acterization [38]. Furthermore the state of stress at failure
may be different from that of in-service structures. In the
present study the state of stress is characterized by its von-
Mises level and corresponding triaxiality.

FE simulations are used to design the sample geometry
(Figure 1). They are carried out up to 0.12 cumulated plastic
strain levels, which is the macroscopic strain to failure for
the chosen material tested in tension on a smooth geometry
and measured with an extensometer. The aim is to reach at

least the lower bound of the targeted triaxiality range (i.e.,
0.50).

Fig. 1. Triaxiality field obtained by 3D FE elastoplastic simulations
on the final sample geometry. Three midsection cuts are shown

The chosen notched sample has a ligament width of
3 mm, a notch radius of 1.5 mm, and a thickness equal to
0.7 mm, see Figure 2). It is made of Ti 6-4 alloy.

Fig. 2. Sample geometry (nominal dimensions in mm)

The region in the vicinity of the notches has been mon-
itored with a single camera (definition: 1388× 1038 pixels,
16-bit digitization) and a telecentric lens to minimize the ef-
fects associated with out-of-plane motions. With the chosen
optical setup, the physical size of one pixel is 6.4 µm so that
the region of interest (ROI) encompasses the thinned regions
(Figure 4). Since the sample surface had to be polished to
reach the desired thickness, the texture was more difficult to
deposit. Two series of black and white droplets were sprayed
and resulted in a rather coarse speckle pattern, which is very
challenging for standard DIC approaches. The experiment
has been performed in a displacement-controlled mode to al-
low for softening.

In Figure 3 the influence of the observation scale on the
strain response of the specimen is presented. The net sec-
tion stress corresponds to the applied load F divided by the
initial surface S0 of the ligament. From the Q4-DIC results



to be presented in the next section, the macroscopic longi-
tudinal strain corresponds to the mean strain over the whole
region of interest. This information would have been avail-
able if an extensometer had been used with a gage length
L0 = 3.97 mm. The corresponding mesoscopic strain cor-
responds to the average longitudinal strain in an area center
about the ligament for a length L0 = 0.37 mm. Because of the
stress and strain concentrations, the mesoscopic strain level
is significantly higher than that at the macroscopic level. In
the following, all results will be related to a loading parame-
ter here chosen to be macroscopic strain εmacro.
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Fig. 3. Longitudinal response of the specimen at macroscopic and
mesoscopic scales. Net section stress versus engineering strain for
two different gage lengths L0

3 Integrated Digital Image Correlation (I-DIC)
3.1 Principle of I-DIC

Digital Image Correlation (DIC) consists of measuring
displacement fields between a gray level picture f in the
reference configuration and a series of pictures g in the de-
formed configuration [25–27]. The following functional

η
2
c(t) =

1
|Ω|∑

Ω

(g(x+u(x, t), t)− f (x))2 (1)

is to be minimized with respect to the parametrization of the
measured displacement field u(x, t), where x is any pixel of
the ROI Ω, and t the considered time. Because noise affects
both gray level images f and g, the previous functional is

normalized by 2γ2
f

χ
2
c(t) =

η2
c(t)
2γ2

f
(2)

so that any deviation of correlation residuals from noise in-
duces a level of χ2

c(t) that is on average greater than 1 [35],
where γ2

f is the variance of image acquisition noise that is
assumed to be white and Gaussian.

The displacement basis for u(x, t) is chosen a priori
to minimize η2

c with respect to the associated amplitudes.
Continuous displacement fields found in finite element dis-
cretizations are one possible choice [22, 28, 29], which leads
to lower uncertainties in the measured displacement fields
when compared with local approaches with the same local
displacement interpolations [30]. More importantly, such
fields can be directly compared with finite element simula-
tions. Most of the applications of finite element DIC reported
so far deal with regular meshes made of 4-noded elements.
They are considered herein but with unstructured meshes.
Such type of DIC approach is referred to as Q4-DIC [22,30].

In the following, Integrated DIC will be used to directly
evaluate mechanical fields to extract, say, stress triaxialities.
To have access to such fields, the parameters of the chosen
constitutive law have to be known. They are part of the
proposed procedure, which calibrates them to get the most
reliable estimates of triaxialities for the given constitutive
model. Let {p} denote the vector gathering all unknown ma-
terial parameters. The I-DIC setting consists of minimizing
globally over space and time the total identification residual
with respect to the sought material parameters

{popt}= argmin
{p}
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with
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({Fm}−{Fc({p})})t({Fm}−{Fc({p})})
γ2

F n

where χ2
F denotes the global equilibrium gap, which is to be

minimized in conjunction with the global correlation resid-
uals χ2

c , {Fm} the vector gathering all measured load levels
for all considered steps n, {Fc} the vector gathering all com-
puted load levels, and γF is the standard resolution of the load
measurement.

A Newton-Raphson algorithm is implemented to mini-
mize χ2

tot, which is nonlinear with respect to {p}. The sen-
sitivities with respect to the sought parameters {p} of the
displacement field u and applied load Fc have to be assessed



iteratively to update the current estimate of the sought pa-
rameters

u(x, t,{p(i)}) = u(x, t,{p(i−1)})

+
∂u

∂{p}
(x, t,{p(i−1)}){δp} (5)

Fc(t,{p(i)}) = Fc(t,{p(i−1)})+ ∂Fc

∂{p}
(t,{p(i−1)}){δp}

where {p(i−1)} is the set of parameters at iteration i−1, and
{δp} the sought parameter increment. The computation of
the sensitivity fields ∂u/∂{p} can be performed either ana-
lytically [33, 40] or numerically by computing the displace-
ment fields for small variations of each parameter of the con-
sidered set. In practice, forward finite differences are con-
sidered to compute the sensitivity fields with the commercial
FE code Abaqus. Similarly, the force sensitivities ∂Fc/∂{p}
are evaluated by resorting to finite forward differences. As
for FEMU, this type of procedure utilizes any FE code, be it
commercial, in a non intrusive way [35].

Both DIC approaches (i.e., Q4-DIC and I-DIC) are to
be used in the sequel. Q4-DIC is the reference when the
same mesh is used in both approaches since no mechanical
hypotheses are made except the continuity of the measured
displacement fields. Further, the Dirichlet boundary condi-
tions used in I-DIC analyses are those measured via Q4-DIC
so that the comparison of both approaches will be carried
out with the same displacements on the loaded boundaries of
the ROI. For I-DIC, two different types of mechanical anal-
yses are performed, namely, 2D plane stress simulations and
3D computations. For the latter ones, the Dirichlet bound-
ary conditions correspond to the extruded measured nodal
displacements along the whole thickness of the FE model.
Three different meshes are chosen to address numerical con-
vergence. First a so-called coarse mesh (i.e., I-DIC-c) is
identical to that used in Q4-DIC (i.e., 60-pixel elements). An
intermediate mesh is also constructed and the corresponding
I-DIC analysis is labelled I-DIC-i (the typical element size is
equal to 25 pixels). Last an even finer mesh is analyzed (i.e.,
I-DIC-f) with a typical element size of 10 pixels.

FE simulations are performed using reduced integration
elements with hourglass stabilization to prevent from volu-
metric locking. It is worth noting that with the present tech-
nique, the mesh can be made as fine as needed since the num-
ber of unknowns has been significantly reduced to the num-
ber of sought material parameters parameters instead of the
nodal degrees of freedom in Q4-DIC. This in turn provides a
strong robustness of the whole procedure and allows imper-
fections such as cracking of the paint and poor quality of the
speckle pattern to be dealt with effectively. These challenges
are due to the fact that the sample had to be ground to obtain
the desired thickness.

3.2 Constitutive Models
In I-DIC approaches, one important feature is the choice

of the constitutive law. Four different constitutive postulates

will be made hereafter:

• linear isotropic elasticity,
• elastoplasticity with J2-flow rule and isotropic harden-

ing described by Ludwik’s power law [41]
• elastoplasticity with J2-flow rule and isotropic harden-

ing described by Voce’s exponential law [42]
• elastoplasticity with J2-flow rule and isotropic harden-

ing described by extended Voce’s law (i.e., exponential
+ linear hardening).

The identification of Poisson’ ratio ν turned out to be
delicate. The reference value ν = 0.32 was set. In elastic-
ity, only one parameter is sought (i.e., Young’s modulus).
For Ludwik’s law, four parameters are tuned (i.e., Young’s
modulus, yield stress, hardening modulus and hardening ex-
ponent). For Voce’s law, four parameters are also determined
(i.e., Young’s modulus, yield stress, hardening stress and
hardening strain). Last, for extended Voce’s law, five pa-
rameters are calibrated (i.e., Young’s modulus, yield stress,
hardening stress, hardening strain, and hardening modulus).

4 DIC and I-DIC Results
A first series of DIC analyses is run by resorting to Q4-

DIC in which no mechanical assumptions are made except
the fact that the displacement fields are continuous through-
out the whole experiment. Figure 4 shows the longitudinal
displacement field for the last picture prior to failure (i.e.,
εmacro = 0.072). As expected, there is a very important dis-
placement gradient in the area close to the ligament. The
considered mesh is also shown. It corresponds to the lowest
element size (i.e., 60 pixels) that can be used to reach con-
vergence of the Q4-DIC code. Such a coarse mesh is due to
the poor quality of the random texture. With such conditions,
the standard displacement resolution is 0.2 µm (or 0.03 pixel)
and the corresponding strain resolution is 0.05 %. These res-
olutions were determined by analyzing pictures shot for the
reference configuration.

To check the quality of the registration, the dimension-
less residual field ϕ(x, t) = |g(x + u(x, t), t)− f (x)|/∆ f is
shown in Figure 5 for the final measurement, where ∆ f is
the dynamic range of the picture in the reference config-
uration (i.e., ∆ f = maxΩ f −minΩ f ). The mean residual
ϕc(t) = 〈ϕ(x, t)〉Ω will be shown for each analyzed image
in Figure 11. The overall mean residual Φc is equal to 0.028,
which indicates that the measured displacements are trust-
worthy. However, very high residuals are observed in the
ligament region. This is an indication that the chosen kine-
matics associated with the coarse FE mesh is not able to fully
capture the actual displacement fluctuations. Strain localiza-
tion may have occurred in that region. Furthermore one ob-
serves paint cracks, represented by large dark spots.

From the measured displacement field, it is possible to
estimate strain fields. Having a finite element description of
the displacement fields, the displacement gradients are com-
puted by differentiating the shape functions as in any stan-
dard mechanical FE code [43]. In the present case the nom-
inal strain component is shown in the longitudinal direction



Fig. 4. Longitudinal displacements (expressed in pixels) measured
via Q4-DIC when εmacro = 0.072
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Fig. 5. Normalized gray level residual field ϕ for a Q4-DIC analysis
when εmacro = 0.072

in Figure 6.
The displacements measured via Q4-DIC on the top and

bottom edges of the ROI are prescribed as Dirichlet bound-
ary conditions to run I-DIC procedures. In the present case,
a 3D mesh and Ludwik’s law are considered. The boundary
conditions are extruded along the thickness direction. Fig-
ure 7 shows the corresponding displacement field measured
via I-DIC-3D-f (i.e., 10-pixel elements are considered). Con-
sequently, a smoother field is measured when compared with
Q4-DIC. Two reasons explain such results. First, the mesh
is finer. Second, I-DIC-3D-f is regularized in a very strong

Fig. 6. Longitudinal nominal strain field for a Q4-DIC analysis when
εmacro = 0.072

way since the identified field is mechanically admissible in
an FE sense.

Fig. 7. Longitudinal displacements (expressed in pixel) measured
via I-DIC-3D-f when εmacro = 0.072

The quality of the registration is again assessed with the
dimensionless residuals for the last analyzed picture (Fig-
ure 8). The mean value over all images and the entire ROI is
equal to 0.033, which indicates that the measured displace-
ments are trustworthy, too. This level is slightly higher than
that observed with Q4-DIC (i.e., 0.028). This is to be ex-
pected when a model error occurs. The latter is mainly lo-
cated in the ligament region. In the other parts of the sample,
the residuals are very low.
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Fig. 8. Normalized gray level residual field ϕ for an I-DIC-3D-f anal-
ysis when εmacro = 0.072

Figure 9 shows the longitudinal strain field at the last
step of the experiment. Thanks to I-DIC enabling for finer
meshes, the spatial distribution of strains is better described
in addition to the strain concentrations in the ligament region.

Fig. 9. Longitudinal nominal strain field for an I-DIC-3D-f analysis
when εmacro = 0.072

To get a more quantitative comparison, Figure 10 reports
the absolute difference of correlation residuals between the
two analyses. Except in the central part of the sample, the
levels are very small and close to noise contributions. When

compared with Figures 5 and 8, the levels in the central part
are significantly lower. These results validate both DIC ap-
proaches and show that kinematic details near the ligament
are captured neither by Q4-DIC nor I-DIC-3D-f for the ana-
lyzed picture.
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Fig. 10. Absolute difference of normalized gray level residuals be-
tween a Q4-DIC and an I-DIC-3D-f analysis when εmacro = 0.072

Figure 11 shows the change of the mean dimensionless
correlation residuals ϕc for the entire analyzed sequence.
The two DIC analyses follow a very similar trend. When
εmacro ≤ 0.02 the dimensionless residuals are virtually iden-
tical for the two DIC approaches and remain close to the ac-
quisition noise. In this part of the experiment, the chosen
model is fully validated according to the correlation residu-
als. When F ≤ Fmax (i.e., εmacro ≤ 0.034) the dimensionless
residuals are still close for both DIC approaches. The model
is still valid according to the correlation residuals. Con-
versely, when F ≥ Fmax (i.e., εmacro ≥ 0.034) there is a slight
divergence of both residuals. The actual displacement fields
are no longer precisely captured by the coarse DIC mesh.
The quality of the speckle pattern and possibly the cracking
of the paint at the late steps of loading play a major role in
this increase. However from the small difference between
the DIC and I-DIC indicates that the model error remains
acceptable in the high strain regime prior to final failure.

Since global equilibrium was also included in the iden-
tification residual (see Equation (4)), the measured load level
and sum of reaction forces on the edges of the ROI are com-
pared in Figure 12. A very good agreement is observed since
the dimensionless root mean square difference is equal to 11.
Most of the difference occurs in the elastic regime. However,
since the Young’s modulus was one of the parameters to be
optimized and its level is consistent with known values it is
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believed that the discrepancy may be due to experimental
imperfections that are not fully captured with 2D-DIC per-
formed on only one face of the sample.
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Fig. 12. Comparison between measured and identified (via I-DIC-
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load level (Fmax)

All the previous residuals are now analyzed in terms of
their distance to noise levels in Figure 13. For the whole

picture sequence the global identification residual χtot = 9.3.
This level is one order of magnitude greater than that ex-
pected if only noise would be detected. A model error is
therefore confirmed. In a simpler situation (i.e., strain local-
ization did not occur in a dog-bone sample), levels of the or-
der of 5 have been reported [35]. Consequently, even though
a model error is clearly detected, the results should not be
discarded.
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Fig. 13. Identification, correlation and equilibrium residuals with I-
DIC-3D-f

To analyze the sensitivity of the present results to nu-
merical features (i.e., mesh size, 2D vs. 3D simulations) and
model choices, different I-DIC analyses were performed to
assess their influence on the global identification residual χtot
(Table 1). There is a clear gain when 2D plane stress simu-
lations are compared with 3D simulations, for any type of
discretization. Consequently, even though the thickness of
the sample is very small (i.e., 0.72 mm in the present case),
a plane stress computation induces a model error that is de-
tected. Concerning the effect of discretization, in the plane
stress case the intermediate mesh leads to the lower identifi-
cation residual. The finest 2D mesh leads to very high strain
levels in the ligament, which are unphysical. Conversely,
for the 3D simulations, the two finer discretizations lead to
similar identification residuals. With the chosen constitu-
tive model (i.e., Ludwik’s law), these two discretizations are
equivalent. When compared with Q4-DIC results, the maxi-
mum predicted strains are lower. This result can be explained
by the fact that the paint has cracked (Figure 5) and that Q4-
DIC actually accounts for this spurious effect, which is not
the case of I-DIC that discards it thanks to the elastoplastic
regularization.

The next question is related to the choice of a constitu-



Table 1. Global identification residual χtot for different analyses and
corresponding maximum triaxiality and cumulated plastic strain

Approach Constitutive law χtot ηmax pmax

I-DIC-2D-c Ludwik 10.7 0.57 0.39

I-DIC-2D-i Ludwik 10.5 0.57 0.67

I-DIC-2D-f Ludwik 11.4 0.59 0.91

I-DIC-3D-c Ludwik 9.7 0.7 0.28

I-DIC-3D-i Ludwik 9.3 0.69 0.33

I-DIC-3D-f Ludwik 9.3 0.69 0.36

I-DIC-3D-f Voce 9.2 0.69 0.34

I-DIC-3D-f ext. Voce 9.1 0.68 0.34

I-DIC-3D-f Elastic 339 0.49 –

Q4-DIC – – – 0.43]

]indicative value (due to paint cracking)

tive model. To address this issue, the 3D fine mesh is chosen
and the model is changed to a standard and extended version
of Voce’s law. These models induce a second order decrease
of the global identification residual χtot (Table 1). Giving
more freedom in the hardening response of the material does
not induce a significant increase of the identification quality.
The model error is not due to a too poor hardening model.
Conversely, when an elastic law is assumed during the whole
experiment, a very significant degradation of the global iden-
tification residual χtot is observed (Table 1).

In Figure 14, the equivalent stress/plastic strain re-
sponses are shown when described by the three considered
hardening models. The latter ones give very similar predic-
tions for equivalent strain levels less than 0.2. They differ by
about 50 MPa at most beyond that strain level. It is interest-
ing to note that the hardening law with the highest number of
parameters lies mostly between the two hardening postulates
with the lowest degrees of freedom. All these trends confirm
that strain localization has occurred at these high equivalent
strain levels. For all the chosen models, the same level of
static residual is observed. Consequently, all the tested mod-
els are fully compatible in terms of applied load and macro-
scopic strain. Their (small) differences only lie in the dis-
placement fields they induce.

Having no exploitable data with DIC or I-DIC on
smooth samples on the same material tested in tension, the
present results are compared with very recent data in Fig-
ure 15. The calibrated hardening response is compatible with
those provided in Ref. [20] though not identical (i.e., possi-
bly due to differences in the material state). The main differ-
ence lies in the value of the yield stress, which is very sensi-
tive to the initial state of the material. For other grades, the
following range is observed σy = 800− 1100 MPa % [39],
which encompasses the results of Figure 14. Let us note that
the use of a complex geometry allowed for the calibration
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Fig. 14. True equivalent stress/plastic strain curves determined for
the three chosen hardening postulates

of the hardening curve for much higher levels of equiva-
lent plastic strain than observed in a tensile test (typically
of the order of 0.10-0.16 [20, 39]). Two curves are shown
per analyzed test. The data of Ref. [20] correspond a ten-
sile test on a smooth sample in the LD direction (solid sym-
bols) and the extrapolated model used to predict via FE sim-
ulation the response of an experiment on a notched sample
(solid line). For the present study, the result shown in Fig-
ure 14 for Voce’s model (dashed line) is compared with that
obtained for an identification up to the maximum load level
(F = Fmax) and subsequently extrapolated for higher strain
levels (thin solid line). The extrapolation underestimates the
actual material response by about 50 MPa.

In the following discussion, the results with Ludwik’s
law are considered for the 3D model with the finest mesh.
This case has led to the smallest identification residual (Ta-
ble 1) for the chosen constitutive equation.

5 Discussion
Having coupled measurement and simulation in a seam-

less (i.e., integrated) way, it is possible to discuss mechan-
ical fields that cannot be directly assessed if full-field mea-
surements were performed independently from simulations.
Since 3D simulations are used to evaluate the sensitivities in
the I-DIC procedure, it is possible to visualize various fields
on the monitored surface but also within the bulk. In the
following discussions, the midsection plane (i.e., parallel to
the observed surface at a distance equal to half the sample
thickness) is also considered.

Figure 16 shows von Mises’ equivalent stress field
σeq(x, t) on the midsection plane for two steps of the loading
history. In elasticity, stress concentrations around the notch
are observed. When plasticity has fully developed, the stress
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Fig. 15. Comparison of the calibrated hardening curve with the re-
sults of Ref. [20] (thin solid line: extrapolated values). For the present
work, the dashed line corresponds to Voce’s model shown in Fig-
ure 14, the solid line to a calibration up to the maximum load level
(Fmax) and subsequently extrapolated

concentration has been significantly decreased.
Figure 17 shows von Mises’ equivalent plastic strain

field p(x, t) on the analyzed surface and in the midsection
plane. Even though the overall levels are close, there is a
clear difference between the two fields. In particular, the
field in the midsection plane is more localized than on the
external surface and the maximum level is higher (0.37 vs.
0.29). The fact that the mechanical fields are not identical
on the external surface of the sample when compared with
the midsection is a further confirmation that 3D simulations
are needed, even though they are coupled with 2D surface
measurements.

The triaxiality η(x, t)=σh(x, t)/σeq(x, t) is another field
that can be extracted from the FE simulations (Figure 18),
where σh denotes the hydrostatic stress. In the elastic regime,
the field is very similar in terms of distribution in the midsec-
tion plane and on the external surface. The maximum levels
are very close.

Conversely, when yielding occurs, the triaxiality field
is more localized in the midsection plane than on the exter-
nal surface (Figure 19). Further, the maximum levels are
no longer similar (i.e., 0.7 vs. 0.59). These overall trends
are similar to those observed for the cumulated plastic strain
fields shown in Figure 17 for the same loading step.

Last, the stress triaxiality is shown in Figure 20 for four
different points as a function of the corresponding cumulated
plastic strain. Two of the considered points are located on
the notch tip and the other two in the center of the two an-
alyzed sections. For the two points close to the notch tip,
the stress triaxiality remains virtually constant because of the

(a) εmacro = 0.004

(b) εmacro = 0.072

Fig. 16. Von Mises’ equivalent stress maps in the elastic regime (a)
and fully developed elastoplastic step (b)

free-edge condition. Conversely, the two central points expe-
rience significant fluctuations of stress triaxiality during the
test. The point located in the midsection plane reaches the
highest level (i.e., 0.63) at the end of the experiment. A 2D
simulation would not have been able to capture such high
level.

Table 1 gathers the triaxiality levels for the different
models investigated herein. In elasticity, ηmax = 0.49 for the
middle points on the surface and in the midsection plane. A
2D computation leads to similar levels. Conversely, in plas-
ticity there is a significant difference between the triaxiality
levels observed at the end of the test with 2D simulations
(i.e., ηmax = 0.57) and 3D results (i.e., ηmax = 0.7 ). This
result further underlines the differences between 2D and 3D



simulations in the present analysis. The hardening law is of
secondary importance and the fact that the global identifi-
cation level was similar led also to very close estimates of
ηmax. Last, in terms of maximum equivalent plastic strain,
the results with I-DIC-3D-f are very close for the three hard-
ening postulates (i.e., pmax ≈ 0.36). When compared with
I-DIC-2D, there is clear difference.

6 Conclusions
It has been shown that triaxiality fields can be estimated

in a thin notched sample made of Ti 6-4 alloy via integrated
DIC. This type of approach seamlessly combines image reg-
istration and finite element simulations. It is worth noting

(a) External surface

(b) Midsection plane

Fig. 17. Von Mises’ equivalent plastic strain maps for two different
locations when εmacro = 0.072

(a) External surface

(b) Midsection plane

Fig. 18. Triaxiality maps for two different locations when εmacro =
0.004 (i.e., elastic regime)

that each sample can be analyzed independently and no a pri-
ori information on the material parameters is needed. One of
the additional outputs of such an approach thus is the ma-
terial parameters of the chosen constitutive model, which
are needed to estimate stresses, and the identification qual-
ity based on gray level residuals and global equilibrium gap.

In the studied experiment it was shown that 3D sim-
ulations are needed to lower the correlation residuals and
that fine meshes are desirable to get more trustworthy re-
sults. These meshes are unaccessible with standard DIC
procedures for which the finer the element size the larger
the measurement uncertainties [30]. If the discretization be-
comes too fine, the registration cannot be performed. To the
authors’ best of knowledge, it is the first time that I-DIC



results are reported for discretizations that are significantly
finer than achievable with standard global DIC approaches
in elastoplastic cases. Further, C8 element have been used
to properly recover a correct state of pressure around the lig-
ament, a region which is in a nearly incompressible state.
With I-DIC, the number of unknowns becomes very small
(i.e., the material parameters), thereby providing a strong
robustness. In the present case, the poor texture and paint
cracking made standard DIC analyses very challenging if not
impossible.

For the notched sample analyzed herein, the maximum
strain levels were at least three times higher than the macro-
scopic strains to failure evaluated on smooth samples. Thus,
the constitutive laws were probed in a significantly larger

(a) External surface

(b) Midsection plane

Fig. 19. Triaxiality maps for two different locations when εmacro =
0.072 (i.e., plastic regime)
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Fig. 20. Triaxiality history for four different points either located at
the notch tip or in the center of the considered surfaces (i.e., external
plane or midsection plane)

strain range. In terms of identification levels, the three inves-
tigated isotropic hardening laws led to similar global iden-
tification residuals. The detail of the chosen model seems
secondary except for elasticity that led to very large errors.
However, beyond the ultimate load level, significant errors
detected on the gray level residuals indicate model errors as-
sociated with strain localization. Conversely, the load resid-
uals remained of the same order of magnitude as in the first
part of the experiment.

It is shown that the estimation of triaxiality fields re-
quires 3D simulations even when the considered samples are
thin. This is especially true when elastoplasticity is fully de-
veloped. The maximum levels of triaxiality are reached in
the bulk of the sample (i.e., What is essential is invisible to
the eye1). In the present case, the maximum triaxiality is vir-
tually independent of the details of the isotropic hardening
law. However, it is significantly different from the levels ob-
served in elasticity or even with 2D plane stress simulations.

The next step of such analyses is to enrich the consti-
tutive law to lower the identification residuals. In Ref. [20]
anisotropy of the plastic response was observed and mod-
eled. Similarly, twinning may occur. The I-DIC procedure
developed herein can be extended to anisotropic yield sur-
faces and more complex hardening models. A damage model
may also be coupled with the hardening law. In such consti-
tutive models, the role of stress triaxiality is known to be of
primary importance [6, 15–18].

Last, only one external surface was observed and the
measured (Dirichlet) boundary conditions were extruded for
3D simulations. This hypothesis may induce errors that can

1Antoine de Saint-Exupéry (1943) “The Little Prince” Reynal & Hitch-
cock (USA)



be lowered by using at least another camera (for the oppo-
site surface) or by applying a regularization technique on
the boundary conditions [44, 45]. If the sample thickness in-
creases, four instead of two cameras may be utilized. Stere-
ocorrelation may also be considered to evaluate 3D surface
displacements. Another route is also possible by resorting to
computed tomography [46] or laminography [47] in which
digital volume correlation is a useful tool to reveal strain lo-
calization induced by plasticity [48]. All these experimen-
tal improvements may add more information that is useful
when, say, integrated approaches are to be implemented.
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