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Regimes of expansion of a collisional plasma into a vacuum
C. Thaury, P. Mora, J. C. Adam, and A. Héron
Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
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The effect of elastic Coulomb collisions on the one-dimensional expansion of a plasma slab is
studied in the classical limit, using an electrostatic particle-in-cell code. Two regimes of interest are
identified. For a collision rate of few hundreds of the inverse of the expansion characteristic time �e,
the electron distribution function remains isotropic and Maxwellian with a homogeneous
temperature, during all the expansion. In this case, the expansion can be approached by a
three-dimensional version of the hybrid model developed by Mora �P. Mora, Phys. Rev. E 72,
056401 �2005��. When the collision rate becomes somewhat greater than 104�e

−1, the plasma is
divided in two parts: an inner part which expands adiabatically as an ideal gas and an outer part
which undergoes an isothermal expansion. © 2009 American Institute of Physics.
�doi:10.1063/1.3206940�

I. INTRODUCTION

In the past decade, several experiments have demon-
strated that high-quality beams of energetic ions can be gen-
erated by laser-plasma interaction.1–6 Diverse models have
been proposed to explain these observations.7–10 The most
frequently used assumes that ions are accelerated by an elec-
trostatic field created at the plasma-vacuum interface by fast
electrons.7 These electrons, which have absorbed a large part
of the laser energy during the interaction, form at the surface
of the plasma a cloud of hot electrons, spreading on a few
Debye lengths. The charge separation field thus created pulls
ions toward vacuum, and transfers progressively the energy
from the electrons to the ions.

Since 1966 and the pioneering work of Gurevitch,11 the
one-dimensional �1D� collisionless expansion of a plasma
into a vacuum has been thoroughly studied theoretically.12–21

These works provide a very accurate description of a purely
1D expansion, but they totally neglect the coupling between
the longitudinal and transverse directions. Coulomb colli-
sions are one potential source of such a coupling. Indeed,
while the electron longitudinal velocities decrease during the
expansion, collisions tend, for example, to redistribute the
energy and isotropize the electron distribution.

Actually, Coulomb collision can influence the expansion
of a fully ionized plasma through several effects, depending
on the initial electron-electron basic collision frequency

�0 =
ne0e4 ln �

8��2�0
2me

1/2�kBTe0�3/2 , �1�

where ln � is the Coulomb logarithm,22,23 ne0 is the electron
initial density, me is the electron mass, and Te0 the initial
electron temperature. For moderate frequencies, electron-
electron and electron-ion collisions tend to maintain the elec-
tron distribution function isotropic and Maxwellian during
all the expansion, whereas electrons and ions exchange very
little energy. As �0 increases, electrons start to deliver a part
of their energy to ions via collisions. If this process is suffi-
ciently efficient, electron and ion temperatures can be per-
fectly equilibrated during the whole expansion. Finally, for

very high collision rates, the electron mean free path can
become much smaller than the temperature gradient scale
length, leading to an adiabatic expansion. The characteristic
times of these different processes are derived in Sec. II. Sec-
tions III and IV are then devoted to a detailed analysis of the
Maxwellian-isotropic and adiabatic regimes.

II. CHARACTERISTIC FREQUENCIES

A. PIC code

To study the influence of Coulomb collisions on plasma
expansion, we performed particle-in-cell �PIC� simulations,
with a 1D3V, nonrelativistic and purely electrostatic code.
Electron-electron, electron-ion, and ion-ion binary collisions
are treated using the Monte Carlo method developed by
Nanbu.24 At each time step and in every cell, macroparticles
are randomly combined by pairs.25 Collisions between paired
particles are then treated, using a cumulative scattering angle
that simulates a succession of small-angle binary collisions.22

This angle is a function of the collision frequency �. It is
calculated, for each pair of colliding macroparticles, by tak-
ing into account the dependency of � on the particles relative
velocity vr ���1 / �vr�3�. Note that for simplicity, the Cou-
lomb logarithm is kept constant.

Since collisions tend to redistribute the energy of the
system, we have to consider initial conditions with various
ratios Te0

� /Te0
� and Ti0 /Te0, where Te0

� and Te0
� are, respec-

tively, the longitudinal and transverse initial electron tem-
peratures, and Te0= �Te0

� +2Te0
� � /3 and �Ti0= �Ti0

� +2Ti0
�� /3�

the initial electron �ion� total temperatures. However, to sim-
plify the comparisons between the different parts of this ar-
ticle, the total thermal energy T0= �Te0+Ti0� /2 is kept con-
stant. Besides, all ion velocities are normalized to cs0

= �6ZkBT0 /mi�1/2, i.e., to the ion acoustic velocity corre-
sponding to the ideal collisionless case where electrons have
been heated only in the longitudinal direction, with Ti0=0
and Te0

� =6T0.
At the beginning of the simulations, the ions occupy

a slab of half-thickness L0=20�D0, where �D0

PHYSICS OF PLASMAS 16, 093104 �2009�
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= �6�0mekBT0 /ne0e2�1/2. Electrons are initially in Maxwell–
Boltzmann equilibrium with the self consistent electrostatic
potential with a Debye sheath in vacuum on both sides. The
mass ratio is me /mi=1836 with Z=1. The code is running
with a time step of �t=0.01	pe

−1, where 	pe= �ne0e2 /me�0�1/2

is the electron plasma frequency. Note that such a low time
step is required to resolve the highest collisions frequencies
considered. The simulation box is about 104�x, with �x
=0.2�D0, and there are 2
105 particles in each mesh.

B. Relaxation processes

One of the main effects of Coulomb collisions is to re-
distribute the energy of the system, in order to isotropize and
equilibrate the electron and ion temperatures. A precise
analysis of the dynamics of this redistribution is essential,
since it can strongly affect the expansion. Indeed, collisions
can, for instance, transfer a part of the electron momentum
from the longitudinal to the transverse directions, limiting
the expansion at its earliest stages, and then transfer it back
to the longitudinal direction, enhancing the expansion on the
long times. The aim of this section is to determine the char-
acteristic frequencies of these transfers.

1. Temperature isotropization

We focus first on the isotropization of the electron tem-
perature. Figure 1�a� shows the time evolution of its trans-
verse and longitudinal components, for �0=2
10−3	pi0,
Te0

� =6T0, Te0
� =0, and Te0 /Ti0=1000. These initial conditions

correspond to an ideal case, where electrons have been ex-
clusively accelerated along the longitudinal direction. We ob-
serve that Te

� strongly decreases from the beginning of the
expansion, as electrons transfer a part of their longitudinal
momentum to ions through the charge separation field, and a
part to the transverse directions through collisions. Accord-
ingly, as Te

� decreases, Te
� increases up to the time �iso

�70	pi0
−1 , where Te

�=Te
� . At that time, more than 90% of the

initial energy has been transferred to accelerated ions. Then
Te

� and Te
� diminish together, as electrons cool down during

the expansion. We remark that after �iso, Te
��Te

� . This indi-
cates that collisions are not efficient enough to counterbal-
ance “instantaneously” the cooling down.

To evaluate the isotropization characteristic frequency,
we must consider the contributions of both electron-electron
and electron-ion collisions. For Z=1, the macroscopic relax-
ation rates corresponding to these two processes are equal
and the total relaxation rate for Te

��Te
� is �iso

elec

= �16 /5�2���0.25 To estimate the ability of collisions to
maintain an isotropic distribution during the expansion, this
rate must be compared to the inverse of the expansion char-
acteristic time of an isotropic plasma, 1 /�e=Te

−1��Te /�t�
= �2 /3�cs /L, where cs=cs0 /�3 is the ion acoustic velocity in
an isotropic, nonequilibrated plasma �see Sec. III B�. Actu-
ally, the isotropic regime is entered when �iso

elec�1 /�e, i.e.,
when

�0 � �0
is = 0.3

cs0

L
. �2�

For L=20�D0, this leads to �0�0.015	pi0. Accordingly, Fig.

1�b� shows that, for �0=0.2	pi0, Te
��Te

� for all t��iso.
This figure also suggests that, for Te0

� 
Te0
� and �0��0

is,
the expansion can be separated in two stages, a first stage
during which the electron distribution is progressively isotro-
pized �for t��iso�, and a second one during which the plasma
is isotropic and expand with three degrees of freedom �for
t��iso�. As �0 increases, the duration of the first stage tends
to zero. This is illustrated by Fig. 1�d� which displays the
variation of �iso with �0, and indicates that the isotropization
stage lasts less than 1 /	pi0 for �0�60	pi0. For very high
collision frequencies, the electron distribution function can
therefore be considered as isotropic, whatever the initial tem-
peratures are.

A similar analysis can be applied to the study of ion
isotropization. In this case, we have to consider ion-ion and
electron-ion collisions. Since the relaxation rate associated to
ion-ion collisions is �me /mi�1/2�Te0 /Ti0�3/2�iso

elec /2, the total re-
laxation rate for ion isotropization is

�iso
ion = 	1 + 
me

mi
�1/2
Te0

Ti0
�3/2��iso

elec/2.

This rate strongly depends on the ratio Te0 /Ti0. For Ti0


Te0, the isotropization is mainly due to ion-ion collisions
and �iso

ion��iso
elec. In contrast, for Ti0�Te0, we have �iso

ion

��iso
elec /2. However, in all cases, the ion relaxation rate is of

the same order or superior to the electron one. We can thus
consider that the condition �0��0

is is sufficient to guarantee
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FIG. 1. �Color online� Relaxation of electron and ion temperatures. ��a�–�c��
Evolution in time of the transverse and longitudinal components of the
electron mean temperature, and of the ion mean temperatures ��b� and �c��,
for �0=2
10−3	pi0 �a�, �0=0.2	pi0 �b�, and �0=200	pi0 �c�. �d� Variation of
the electron isotropization time �iso and of the electron-ion thermal equili-
bration time �eq, as a function of the collision frequency.
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that ion and electron distributions remain isotropic during all
the expansion.

2. Electron-ion thermal equilibration

In Sec. II B 1, we assumed that electrons transfer their
energy to ions through the charge separation field, and not
through electron-ion collisions. This hypothesis is valid for
low collision frequencies, as shown by Fig. 1�b�, in which
the ion temperature grows very little during the expansion.
However, it is no more the case when the collision frequency
is increased above few 100	pi0. This is illustrated by Fig.
1�c�, in which the ion temperature grows from the beginning
of the simulation up to �eq�10	pi0

−1 , where Te=Ti.
The relaxation rate related to electron-ion thermal equili-

bration for Z=1 and Ti0�Te0 is22,25

�eq =
8

3��

me

mi
�o.

The equilibration rate is thus more than 103 smaller than the
isotropization rate. Accordingly, Fig. 1�d� shows that for a
given collision frequency, equilibration is much longer than
isotropization. This confirms that energy transfers between
electrons and ions are negligible for moderate collision
frequencies.

Once electron and ion temperatures have been equili-
brated, the energy remains equiparted if the energy transfer is
fastest than the electron cooling down, i.e., if �eq�1 /�e. This
leads to the relation

�0 � �0
eq = 0.2

mi

me

cs0

L
. �3�

Note that in this case, we evaluate �e considering the ion
acoustic velocity of the equilibrated plasma cs=cs0 /�6. Sub-
stituting numerical values, we find that Te�Ti for all t
��eq, if �0�20	pi0. This is illustrated by Fig. 1�c�, obtained
for �0=200	pi0, which shows that after the equilibration
stage, electron and ion temperatures remain almost equal.

C. Limits of the Maxwellian and adiabatic
regimes

In Sec. II B, we demonstrated that collisions can induce
a large redistribution of the plasma energy between the lon-
gitudinal and transverse directions, as well as between ions
and electrons. The influence of collisions on plasma expan-
sion is, however, not limited to this redistribution, as they are
also involved in heat transport. For moderate collision fre-
quencies, they can in particular force the distribution func-
tions to spatially homogeneous Maxwellian distributions,
while for very high frequencies, they can prevent any heat
transfer, leading to an adiabatic expansion.

1. Electron distribution Maxwellianization

In addition to their contribution to the isotropization of
the electron distribution function, electron-electron collisions
are actually also responsible for a redistribution of energy in
the phase-space domain, that causes the kinetic distribution
to relax to a Maxwellian. This process is governed by the

energy exchange frequency �E which is the average time
required for an electron to suffer a 100% change in energy.
Indeed, an initially Maxwellian plasma remains Maxwellian
during the expansion, if energy exchanges between electrons
are significantly faster than the cooling-down, i.e., if �E

�1 /�e. If we consider particles of root mean square velocity
vRMS= �3kBTe0 /me�1/2, we get �E��0.22,26 As a result, the
Maxwellianization condition is

�0 � �0
mx = 0.4

cs0

L
. �4�

For L=L0, the plasma can, ergo, be considered as Maxwell-
ian if �0�0.02	pi0.

Figure 2 displays electron distribution functions of the
longitudinal velocity, obtained with or without collisions
�i.e., for, respectively, �0=10	pi0 and �0=0�, for Te0

� =Te0
� .

We notice that electron-electron collisions strongly modify
the distribution function, leading to an almost perfect Max-
wellian distribution when �0=10	pi0. Besides, the inset of
Fig. 2 shows that, in the collisionless case, the local electron
temperature varies strongly because of kinetic effects,21

whereas it is almost constant throughout the plasma in the
collisional case. Energy exchanges between electrons are
thus also responsible for a spatial homogenization of the
temperature. The dotted line on the main panel represents the
Maxwellian distribution corresponding to the temperature
measured on the inset for �0=10	pi0. As expected, it repro-
duces almost perfectly the PIC distribution. This figure thus
demonstrates that electron-electron collisions can efficiently
force the distribution to relax to a homogeneous Maxwellian.
We emphasize that the temperature homogenization is ob-
served only for moderate collisions frequencies. Actually, for
extremely high �0, the expansion becomes adiabatic.

0 1 2 3

1E-4

1E-3

0.01

0.1

1

Collisional
ν

0
= 10ω

pi0

f vx
/f

vx
(0

)

v2

x
/ v2

th0

Collisionless

0 100 200 300
0.0

0.1

0.2

Collisionless

T

⎥

⎟

e
/T

⎥

⎟

e0

x / λ
D0

Collisional

FIG. 2. �Color online� Maxwellianization of the electron distribution func-
tion. Main panel, distribution functions of the velocity in the expansion
direction fvx, for �0=0 �collisionless plasma� and �0=10	pi0. These distri-
butions are taken at the center of the foil �x=0�, when 	pi0t=100. The dotted
line is the Maxwellian distribution function expected for Te

� =0.16Te0. Inset,
spatial variation of the local electron temperature, averaged over twenty
meshes, with or without collisions.
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2. Heat transfer characteristic time

An adiabatic process is characterized by an absence of
heat transfer. In order to determine the collision frequency
required to suppress the heat transport, we first consider the
1D heat equation

Cv
�Te

�t
−

�

�x
�

�Te

�x
= 0, �5�

where Cv is the heat capacity at constant volume and � the
thermal conductivity. In the highly collisional case, the
plasma is isotropic and Cv=3 /2nekB. Besides, assuming that
the electron mean free path is somewhat smaller than the
temperature gradient scale length LT=Te /�Te, we can use
the Spitzer–Härm expression27 for �, that is for Z=1,

� � 4
nekB

2Te

me�0
. �6�

The heat transfer characteristic time �h=Te��Te /�t�−1, is then
derived from Eq. �5�

Cv
Te

�h
�

7

2
�

Te

LT
2 ⇔ �h � 0.1

�0LT
2

kBTe/me
. �7�

Finally, assuming that LT�L and that the plasma is equili-
brated �Te=Ti=T0�, the adiabaticity condition �h��e

= �3 /2�5�L /cs0 �see Sec. IV�, writes

�0 � �0
ad = 6

mi

me

cs0

L
. �8�

Substituting numerical values, we obtain �0
ad�600	pi0.

This value is reported, with the other characteristic fre-
quencies, in Table I. It emphasizes that, in the adiabatic re-
gime, the plasma is isotropized and equilibrated, and justifies
so the assumptions made before. Table I also helps to iden-
tify two regimes of interest, namely the Maxwellian-
isotropic and nonequilibrated regime for 0.02	pi0
�0

�20	pi0, and the equilibrated-adiabatic regime for �0

�600	pi0. Note that to enter one of these regimes, the basic
collision frequency �0 has to be significantly greater than the
corresponding characteristic frequency. These frequencies
have actually been calculated for particles of velocity
�2kBT0 /me�1/2, but the collision frequencies of suprathermal
particles are much lower. For instance, the collision fre-
quency of an electron of velocity 6.5�kBT0 /me�1/2 is about

�0 /100. The characteristic collision frequencies correspond-
ing to such an electron are thus 100 times larger than the
mean values reported in Table I.

III. MAXWELLIAN-ISOTROPIC REGIME

In this section, we focus on the Maxwellian-isotropic
regime of expansion. We first introduce a slightly modified
version of the code described in Ref. 12. This code is then
used to interpret results from PIC simulations, in which
electron-ion and ion-ion collisions are neglected. We finally
discuss a more realistic case, where electron-ion and ion-ion
collisions are taken into account.

A. Hybrid code

The code used in this section to analyze PIC results, is a
hybrid Lagrangian code which describes the expansion of a
plasma slab with cold ions, initially at rest, and sharp bound-
aries. The electron density is modeled by a Maxwell–
Boltzmann distribution. For t�0, electrons are assumed to
remain in equilibrium with the electric potential � satisfying
the Poisson equation, while the ion expansion is described by
the equations of motion. Besides, the evolution in time of the
electron temperature is determined by the energy conserva-
tion law

dUe

dt
= − kBTe


−�

�

ne
�ve

�x
dx , �9�

where Ue=1 /2Ne0kBTe is the total electron thermal energy,
and Ne0=2ne0L the total number of electrons. Due to the
symmetry of the plasma, the boundary conditions are, for
any time, E����=0, E�x=0�=0, and vi�x=0�=0, where E is
the electric field, vi is the ion velocity, and x=0 is the coor-
dinate of the foil center.

The code described in Ref. 12 models the expansion of a
purely 1D plasma, while in the present case collisions drive
energy exchanges between the longitudinal and transverse
momenta. To take into account these three degrees of free-
dom, we assumed that the electron energy is, at any time,
equally distributed along each direction, that is Ue

=3 /2Ne0kBTe with Te
�=Te

� =Te, and modified accordingly the
energy conservation law. This assumption is justified if the
isotropization time is much shorter than the expansion char-
acteristic time, that is if �0��0

is. However, even when this
condition is satisfied, the code thus modified does not fully
describe the effect of collisions in the Maxwellian-isotropic
regime. Indeed, it does not include any collisional energy
transfer between ions and electrons. Such transfers are how-
ever not totally negligible, when �0 becomes of the order of
several 	pi0. Modeling these collisions would necessitate
substantial changes to the code. Nevertheless, even in its
present state, this code can give some insight into the
Maxwellian-isotropic regime of expansion.

TABLE I. Characteristic frequencies.

Regime Expression Value for L=20�D0

Isotropic �0
is � 0.3

cs0

L
0.015	pi0

Maxwellian �0
mx � 0.4

cs0

L
0.02	pi0

Equilibrated �0
eq � 0.2

mi

me

cs0

L
20	pi0

Adiabatic �0
ad � 6

mi

me

cs0

L
600	pi0
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B. Influence of electron-electron collisions only

At first, we performed PIC simulations with electron-
electron collisions only. We emphasize that these simulations
do not correspond to realistic conditions. Indeed, even when
ions and electrons exchange little energy, electron-ion colli-
sions contribute to the isotropization rate �see Sec. II B 1�.
This study is anyway useful, to isolate the effect of isotro-
pization and Maxwellianization on the expansion.

Figure 3�a� shows, for various collision frequencies, the
time dependence of the ion front velocity v f�t�, obtained
from PIC simulations. In these simulations, the longitudinal
and transverse temperatures are initially equal. We observe
that v f increases with �0, and saturates around �0�10	pi0.
We notice also that the influence of collisions on the expan-
sion is almost negligible for �0�0.2	pi0. This result seems
inconsistent with Fig. 1�b�, where the effect of collisions
appears to be strong for �0=0.2	pi0. This discrepancy is only
apparent. Up to now, we have assumed that the collision
frequency �0 is constant in time, but it actually increases as
the electron temperature goes down. The frequency �0 can
thus be too low to counterbalance the energy transfer from
electrons to ions, at the beginning of the expansion, but suf-
ficiently high to do it, once the plasma has cooled down. For
instance, in the case of Fig. 3�a�, we observed that, for �0

=0.2	pi0, the ratio Te
� /Te

� increases while t�40	pi0. This
means that collisions do not affect significantly the expan-
sion before this time. This analysis is consistent with Fig.

3�a�, in which the function v f�t� for �0=0.2	pi0, do not differ
from the collisionless case before t�40	pi0. In Fig. 1�b�, the
isotropization seems to be efficient, because Te

� is of the
same order than Te

� , for t��iso. However, in the case of Fig.
1�b� also, Te

� /Te
� increases while t�40	pi0, and the expan-

sion enters the isotropic regime only after this time. There is
hence no contradiction between Figs. 1�b� and 3�a�.

The saturation observed in Fig. 3�a� indicates that, when
�0�10	pi0, the isotropization is faster than the electron cool-
ing, so much so that the plasma remains isotropic during the
whole expansion. Figure 3�b� compares the curves v f�t�, ob-
tained from PIC simulations for �0=10	pi0 and �0=0 �colli-
sionless case�, with the ones resulting from hybrid simula-
tions performed using 1D or three-dimensional �3D� electron
temperature repartitions. The agreement between the two
models is quite satisfactory. In the collisionless regime, the
curves resulting from the hybrid an PIC codes have, how-
ever, somewhat different behaviors. This comes from elec-
tron kinetic effects which force the electron distribution
function to deviate from a Maxwellian �see Fig. 2 and Ref.
21�. Such effects are indeed not described by the hybrid
code. In the collisional case, both curves have the same
shape, as collisions maintain the distribution Maxwellian, but
their amplitudes are slightly different. This discrepancy
arises from the difficulty of evaluating precisely v f. Indeed,
because the density tends to zero at the ion front, its position
and velocity depend on the discretization of the density func-
tion, that is in the context of PIC simulations, on the number
of particles in each cell. Be that as it may, the differences
between the two codes are definitely small.

A similar agreement between both codes is obtained in
Fig. 4 which displays electron temperatures as a function of
time. The long-time asymptotic behavior of Te is derived
from Eq. �9�, assuming ve�x / t.12 Doing so, we get dTe /dt
=−aTe / t, resulting in Te� t−a, with a=2 in the collisionless
regime and a=2 /3 in the isotropic case. Electron cooling is
thus much slower in the isotropic regime. Accordingly, in
Fig. 3�b�, the slope of v f�t� at long time is steeper for �0
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FIG. 3. �Color online� Identification of the Maxwellian-isotropic regime of
expansion. �a� Dependence on time of the ion front velocity, for collision
frequencies 0��0�20	pi0. �b� Comparisons of the ion front velocities cal-
culated using the hybrid code or the PIC code. The two curves associated
with the hybrid code, labeled “hybrid 1D” and “hybrid 3D” correspond,
respectively, to the 1D version of the code described in Ref. 12, and to the
isotropic version presented in Sec. III A. The longitudinal temperature Te

� is
the same in both cases.
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=10	pi0 than for �0=0. Note that we verified with the hybrid
code, that though the acceleration is slower, v f�t� converges,
in the collisional case, to almost the same maximal velocity
than in the case of a collisionless plasma with T0

� =6T0 and
T0

�=0.

C. Simulations with all type of collisions

Figures 3 and 4 demonstrate that electron-electron colli-
sions cause the plasma to expand with three degrees of free-
dom when �0�10	pi0, and that this process is accurately
described by a simple expansion model. However, electron-
ion and ion-ion collisions cannot be rigorously neglected.
Indeed, Figs. 4 and 5 show that these collisions affect the
time dependence of both the electron temperature and the ion
front velocity. In particular, we notice that, when all colli-
sions are considered, v f grows faster at early times, and more
slowly at late times. This faster increase arises from the fact
that, while t��eq, electrons transfer a part of their energy to
ions, through electron-ion collisions. Accordingly, the elec-
tron temperature diminishes quicker in this case �see Fig. 4�.
The gentle ion acceleration observed at long times, is then a
consequence of this lower temperature. One can note that
because of ion-ion collisions, the curves v f�t� are noisier
when all collisions are taken into account.

Figure 5 also illustrates that the deformation of v f�t� is
slightly amplified by an increase of �0. This was expected as
the energy transfer between ions and electrons grows with
the equilibration rate �eq��0. These variations are, however,
relatively small, so much so that the hybrid model provides
an acceptable approximation of v f�t�. To conclude this sec-
tion, we emphasize that, in a laser-plasma experiment, the
laser does not generally heat isotropically the plasma. As a
consequence, the isotropic regime described here can be pre-
ceded by a transient stage �for t��iso�, during which the
electron distribution is isotropized.

IV. ADIABATIC REGIME

When the collision frequency �0 significantly exceeds
�0

ad, the expansion ceases to be isothermal and becomes adia-
batic. As �0

ad��0
eq, we assume in this section that ion and

electron distributions are initially equilibrated, i.e., Te0=Ti0

=T0.

We begin our analysis by deriving a self-similar solution
for the adiabatic expansion.28 The continuity and momentum
equations for the ion fluid are

�ni

�t
+

�

�x
�nivi� = 0, �10�

mini
 �vi

�t
+ vi

�vi

�x
� = ZnieE −

�pi

�x
+ Ri, �11�

where pi is the ion pressure, E is the electric field, and Ri is
a term that describes electron-ion collisions. Similarly, ne-
glecting electron inertia, the electron momentum equation
writes

0 = − neeE − �pe/�x + Re, �12�

where pe is the electron pressure and Re=−Ri. Combining
Eqs. �11� and �12�, we get

mini
 �vi

�t
+ vi

�vi

�x
� = �Zni − ne�eE −

�pi

�x
−

�pe

�x
. �13�

Then, we assume that ne=Zni which is a good approximation
away from the ion front, and use the self similar parameter
�=x / t to get from Eqs. �10� and �13�

�vi − ��
dni

d�
+ ni

dvi

d�
= 0, �14�

�vi − ��
dvi

d�
= −

1

nimi

d

d�
�pi + pe� . �15�

To go further, we consider that both fluids are ideal
gases, and use adiabatic equations of state to obtain expres-
sions for the pressures. In the case of ions, this leads to

pi = ni0kBT0�ni/ni0��, �16�

where �=5 /3 is the adiabatic index for a gas with three
degrees of freedom. Moreover, we assume that the plasma
remains equilibrated during all the expansion. Thus, we have
pe=Zpi and Eq. �15� becomes

�vi − ��
dvi

d�
= −

c0
2

ni0

 ni

ni0
��−1dni

d�
, �17�

where c0=cs0���1+Z� /6Z. Eliminating dvi /d� and dni /d�
from Eqs. �14� and �17� yields,

vi = � � c0�ni/ni0���−1�/2. �18�

Finally, we substitute the derivative of Eq. �18� into Eq. �14�,
and integrate the equation obtained to get

ni
ad��� = ni0
 2

� + 1
−

� − 1

� + 1

�

c0
�2/�−1

, �19�

vi
ad��� =

2

� + 1
�� + c0� . �20�

Note that we have chosen the positive sign in Eq. �18� to get
a density that decreases when � increases. The constant of
integration has been determined using the fact that, in the
unperturbed plasma, vi

ad=0 and ni=ni0. For that reason, these
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FIG. 5. �Color online� Ion front velocity as a function of time, with or
without electron-ion and ion-ion collisions.
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equations do not fully describe the expansion, after the rar-
efaction wave has reached the center of the plasma slab.

The density ni
ad and the velocity vi

ad, calculated at 	pi0t
=10 for Z=1, are plotted in Fig. 6, together with PIC results
obtained for �0=2000	pi0. We observe that the plasma be-
haves differently, depending on whether x�xad�4�D0, or
x�xad. In the part x�xad, the expansion is adiabatic with
ni /ni0��T /T0��−1. Accordingly, the self-similar adiabatic
model reproduces well the velocity and density profiles
given by the PIC code. In contrast, in the part x�xad, the
equation of state is no more adiabatic, and the temperatures
remain almost constant as ni decreases. We remark, however,
that the plasma is not equilibrated in the neighborhood of the
ion front, as the collision frequency ��ne /Te

3/2 decreases
when x increases. We observe also that vi deviates signifi-
cantly from vi

ad for x�xad. In this part of the plasma, vi is
actually more satisfactorily fitted by the self-similar isother-
mal velocity vi

iso=vi
ad�xad / t�+ �x−xad� / t.11

To explain these observations, the analysis of the Sec. II
has to be refined; this analysis is indeed not valid at the
beginning of the expansion, since we took LT�L and �e

�L /cs0. To this end, we assume that the plasma is adiabatic,
and we investigate the conditions for which this hypothesis
ceases to be true. From Eqs. �16� and �19�, in which we have
substituted �=2c0 / ��−1�−z / t and �=5 /3, we get T
=T0�z /4cot�2. Then from Eq. �7�, we obtain the heat transport
characteristic time

�h � 0.5
�0�c0t�2

kBT0/me
. �21�

This equation shows that �h increases in time, as long as the
rarefaction wave has not reached the center of the plasma
slab. To determine the limit of the adiabatic regime, this time
has to be compared to the cooling characteristic time �e

=T��T /�t�−1= t /2. Doing so, we find that the expansion can-
not be adiabatic as long as

t � tad = 0.3
mi

me
�0

−1. �22�

Substituting numerical values, we obtain, for �0=2000	pi0

and tad�0.3	pi0
−1 .

Before tad, the plasma expands as an isotropic Maxwell-
ian plasma. For t� tad, the plasma is divided in two regions
which expand differently. The region of the plasma which
has started to expand before tad continues to expand nonadia-
batically, whereas the region which has started to expand
only after tad undergoes an adiabatic expansion. At t= tad, we
have xad0�−c0tad. Then, for t� tad, xad�t� can be evaluated,
exploiting the fact that the quantity of matter in the adiabatic
part is conserved, that is �−c0t

xad�t�ni�x�dx=ni0c0�t− tad�. Using
Eq. �19�, this conservation law results, for L /c0� t� tad, in

xad�t� = c0t�3 − 4�tad/t�1/4� . �23�

We remark that, in the limit t� tad, xad�t��3c0t. This means
that, at long times, the boundary of the adiabatic region cor-
responds to the position of the ion front predicted by the
self-similar adiabatic model �see Eq. �19��. In addition, we
notice that the plasma tends to be fully adiabatic as �0→�.
We emphasize also that, for any collision frequency �0, one
can find plasma slab half-lengths L, such that L /c0� tad��0�.
This means that the inner part of a very thick plasma always
expands adiabatically.

According to Eqs. �22� and �23�, xad�10	pi0��10�D0.
This value is inconsistent with Fig. 6, where the expansion is
observed to be approximately adiabatic up to x�4�D0. One
possible reason for this discrepancy is that �0 has been cal-
culated for particles of mean velocities, while the heat trans-
port is mainly carried out by the fastest electrons. In order to
evaluate the effective duration of the fully nonadiabatic
stage, we looked for the value of tad which best fit the func-
tion xad

PIC�t� obtained from the PIC simulation. For this analy-
sis, we define xad

PIC�t� as the point where the temperature
raised to the power 3/2 becomes twice as big as the density.
Figure 7 shows that the agreement between xad

PIC�t� and the
analytic function xad�t� is quite satisfactory for tad=0.9	pi0

−1 .
This time corresponds to a collision frequency approximately
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FIG. 6. �Color online� Adiabatic expansion of a plasma foil, for �0
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dashed line to the adiabatic self-similar model and the dotted line to the
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three times smaller than �0, that is to a mean velocity of
about 2�kBTe /me�1/2. Note that these values are just rough
estimates, as the criterion use to determine xad

PIC�t� is arbi-
trary.

V. DISCUSSION

In Sec. II, we have identified two regimes of collisional
plasma expansion: the Maxwellian-isotropic regime which is
numerically observed for 10��0 /	pi0
600, and the partly
adiabatic regime which required �0 /	pi0�600. Up to now,
we have, however, not specified the physical parameters
leading to such collision frequencies. If we consider a fully
ionized aluminum target of half-thickness L0, with ne0=7.8

1023 cm−3, and use the Lee and More expression for
ln �,23 we find that a collision frequency �0=10	pi0 corre-
sponds to an electron temperature Te0�140 eV, and that
�0=2000	pi0 is obtained for Te0�3 eV. However, according
to Ref. 23, the electron conductivity model of Spitzer and
Härm does not apply to temperatures below 10 eV. For Te0

=3 eV, this model actually underestimates the thermal con-
ductivity by a factor of almost 10. As a consequence, still
lower temperatures are necessary to reach the adiabatic re-
gime in the considered conditions.

Obviously, electron temperatures required to observe the
collisional regimes of expansion are much lower than those
related to laser-plasma ion acceleration which are generally
of several hundreds of keV. The present study could, how-
ever, be relevant to other kind of experiments. An important
example is the expansion of warm dense matter, heated iso-
choricly by ultrafast proton beams.29–31 Electron tempera-
tures obtained in this way are actually about few tens of eV.
In Ref. 29, for instance, a 10 �m thick Al target is heated up
to 23 eV. In this case, the basic collision frequency is about
100	pi0, L�105�D0, and �0

ad�0.1	pi0. The expansion is thus
expected to be partly adiabatic, with a first Maxwellian-
isotropic stage which lasts tad�18	pi0

−1 , and is then followed
by a second stage, during which two xad0�1 nm thick layers
on both sides of the plasma go on expanding in the
Maxwellian-isotropic regime, while the rest of the plasma
expands adiabatically.

This illustrates how Coulomb collisions can affect the
expansion of a 1D plasma into a vacuum. We emphasize that
in two or three space dimensions, other effects come into
play. As an example, it is shown in Ref. 32 that electron-ion
collisions near the target surface can contribute to the emit-
tance growth of laser-accelerated proton beams. Lastly, we
stress that electromagnetic instabilities which are another po-
tential source of coupling between the transverse and longi-
tudinal directions, could lead to effects similar to those de-
scribed in Sec. III.
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