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Approximate solutions of Lagrange multipliers for

information-theoretic random field models∗

B.STABER J.GUILLEMINOT †

Abstract

This work is concerned with the construction of approximate solutions for the Lagrange multipliers
involved in information-theoretic non-Gaussian random field models. Specifically, representations of
physical fields with invariance properties under some orthogonal transformations are considered. A
methodology for solving the optimization problems raised by entropy maximization (for the family of
first-order marginal probability distributions) is first presented and exemplified in the case of elasticity
fields exhibiting fluctuations in a given symmetry class. Results for all classes ranging from isotropy
to orthotropy are provided and discussed. The derivations are subsequently used for proving a few
properties that are required in order to sample the above models by solving a family of stochastic
differential equations – along the lines of the algorithm constructed in [9]. The results thus allow for
forward simulations of the probabilistic models in stochastic boundary value problems, as well as for
a reduction of the computational cost associated with model calibration through statistical inverse
problems.

Keywords: Elasticity; information-theoretic stochastic model; maximum entropy principle; random
field; stochastic elliptic boundary value problem; uncertainty quantification.

1 Preliminaries

1.1 Introduction

Uncertainty quantification involving stochastic boundary value problems (SBVP) has received much at-
tention during the past two decades in both computational mechanics and applied mathematics. Since
the seminal work from Ghanem and Spanos [6], most of the related contributions have been devoted to
the construction of efficient stochastic (Galerkin-type intrusive or non-intrusive) solvers for uncertainty
propagation and rely on functional representations (such as polynomial chaos expansions [4]) of random
variables and random fields (see e.g. [16]). As far as physical modeling and inverse identification are
concerned, computational simulations based on such spectral approaches deeply depend on the modeling
of the uncertainties, and the a priori selection of probability laws critically impacts the robustness and
fidelity of the analysis. In this prospect, information-theoretic stochastic models [13, 14] have been pro-
posed by invoking Shannon’s maximum entropy principle [21] and promoted as optimal prior choices for

∗Preprint version, accepted for publication in SIAM/ASA Journal on Uncertainty Quantification on May 26, 2015. This
work was supported by the French National Research Agency (ANR) (MOSAIC project, ANR-12-JS09-0001-01).
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the modeling of random data and uncertainties. Fruitful applications of this framework can be found in
[1, 2] in nuclear physics, in the pioneering work by Soize [22] for the modeling of uncertainties in structural
dynamics (see [26] and the references therein for a thorough synthesis) or in [24, 9] for the representation
of tensor-valued coefficients for stochastic elliptic operators, to name a few.

In particular, the construction of tensor-valued random field representations modeling the coefficients
of stochastic elliptic operators is of great importance and finds applications in a broad range of engineering
or scientific fields (such as biomedical engineering, geophysics or wave propagation through random media
for instance). In addition to some usual mathematical properties (e.g. positive-definiteness) preserving
the well-posedness of the associated SBVP, such random fields typically exhibit some invariance properties
under the action of a given group of isometries. The algebraic structure of the state space induced by
these constraints then makes the above stochastic models depend on a set of Lagrange multipliers whose
expressions cannot be obtained explicitly. Consequently, forward simulations of these physically-sound
random fields are not readily at hand and require the solving of a set of constrained optimization problems
as a preprocessing step. In this work, and without loss of methodological generality, we consider the class
of non-Gaussian elasticity random fields constructed in [9] and exhibiting some invariance properties
under the action of a group of rotations. The aim is twofold. First, we address the construction of an
approximate solution for the aforementioned Lagrange multipliers, for all material symmetry classes of
practical interest (that is, for the six symmetry classes from isotropy to orthotropy). Second, we make use
of the general form of these solutions to demonstrate some properties allowing the non-Gaussian random
fields to be generated by solving a family of Itô stochastic differential equations (ISDEs) - following the
sampling scheme proposed in [9].

This paper is organized as follows. The stochastic model for tensor-valued non-Gaussian elasticity
random fields is first recalled in § 2. The methodology for solving the optimization problem raised by the
maximum entropy formulation is then presented in § 3. The results for all symmetry classes, together with
a specific application to the case of transversely isotropic materials, are provided. Some mathematical
properties satisfied by the approximate solution are further investigated in § 4, where the ISDEs-based
sampling scheme is also recalled for the sake of completeness. An application to a random field exhibiting
the orthotropic symmetry (and related to composite modeling) is finally provided.

1.2 Notation

Throughout this paper, use will be made of the following matrix sets:

i. Mn(R) the set of real (n× n) matrices,

ii. MS
n(R) the set of real (n× n) symmetric matrices,

iii. M+
n (R) the set of real (n× n) symmetric and positive definite matrices,

iv. Msym
n (R) the set of real (n × n) symmetric and positive definite matrices defined by the symmetry

group Osym of all isometries leaving elements of Msym
n (R) invariant by composition (see [29]).

Let [In] and [0n] be the identity and zero n-by-n matrices respectively, and let 0n denote the null vector
of length n. Fourth-order and second-order tensors, vectors and scalars are denoted by JAK, [A], a and a
(resp. by JAK, [A], A and A) in a deterministic (resp. stochastic) framework. For any x and y in Rn,
let 〈x,y〉 :=

∑n
i=1 xiyi and ‖x‖Rn := 〈x,x〉1/2 be the the Euclidean scalar product and associated norm,

respectively. The matrix scalar product is denoted by � [A], [B] �:= Tr([B]T[A]) for all ([A], [B]) ∈
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Mn(R) × Mn(R) and defines the Frobenius norm ‖[A]‖F :=� [A], [A] �1/2. The level of statistical
fluctuations of any random matrix [A] is characterized by the scalar parameter δ[A] defined as:

δ[A] :=

√
E{‖[A]− [A]‖2F }/ ‖[A]‖2F ,

where E stands for the mathematical expectation and [A] = E{[A]}. Similarly, we denote by a and a the
mean values of random variables A and A, respectively; notation σA represents the standard deviation of
random variable A. Finally, c denotes a normalization constant whose value may change from line to line.

2 Stochastic modeling of Msym
n (R)-valued random fields

Let {[C(x)], x ∈ Ω} be a Msym
n (R)-valued second-order random field, defined on a probability space

(Θ, T , P ) and indexed by an open bounded domain Ω ⊂ Rd, 1 ≤ d ≤ 3, n ∈ {3, 6}. Following [9], let
{[N(x)], x ∈ Ω} be the auxiliary Msym

n (R)-valued random field such that

∀x ∈ Ω , [C(x)] := [C(x)]1/2 [N(x)] [C(x)]1/2 , (2.1)

with [C(x)] = E{[C(x)]}, and thus

∀x ∈ Ω , E{[N(x)]} = [In] . (2.2)

Let {[Ei]}Ni=1 be the basis of matrix set Msym
n (R), with 2 ≤ N ≤ 21 in three-dimensional linear elasticity

(n = 6), defined in [29]. In the context of elasticity, the value of N depends on the symmetry class under
consideration. In accordance with usual terminology in micromechanics, this basis will be referred to as
a Walpole basis in the sequel. It can then be shown that for any x fixed in Ω, there exists a unique
symmetric random matrix [G(x)] such that

[N(x)] := expm ([G(x)]) , (2.3)

with expm the matrix exponential, and

[G(x)] =

N∑
i=1

Gi(x)[Ei] , (2.4)

hence defining a RN -valued random field {G(x) := (G1(x), . . . , GN (x)), x ∈ Ω} of coordinates on
Msym
n (R). It should be emphasized that the relaxation of the support constraint (for the coordinates

on the matrix basis) induced by the exponential mapping is a key ingredient for the selected sampling
scheme (see section § 4.2), and that this property does not hold for square-type (e.g. Cholesky) represen-
tations (see [10] for a sampling scheme corresponding to this case).

2.1 Information-theoretic probabilistic model for random field {[G(x)], x ∈ Ω}
The system of marginal probability distributions of random field {G(x), x ∈ Ω} completely defines the
one of random field {[G(x)], x ∈ Ω} (see Eq. (2.4)). Let {g 7→ pG(x)(g)}x∈Ω be the family of first-order
marginal probability density functions of {G(x), x ∈ Ω}. For simplicity, we assume below that the
above family is independent of x (this asssumption can be readily relaxed at the expense of notational
complexity). The methodology for deriving the random field model essentially consists
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• in constructing the density pG(x) through the maximization of Shannon’s differential entropy, given
some available information on random matrix [G(x)] – following Jaynes’ framework of information
theory;

• in defining G(x) as
G(x) := H ({W (r,x), r > 0}) , (2.5)

for any x fixed in Ω, where H is a non-linear operator (which depends on x whenever pG(x) does) and
{W (r,x), r > 0} is a standard RN -valued Wiener process such that G(x) exhibits the probability
density function defined above.

Such a construction requires a suitable definition for the (Gaussian) random field {W (r,x), r > 0,x ∈ Rd}
(see [9] for details, as well as section 4.2.1 for a summary), and the transformation defined by operator H
then defines the complete system of marginal laws for {G(x), x ∈ Ω}. As regards the MaxEnt formulation,
the following constraints are considered:

E

{
expm

(
N∑
i=1

Gi(x)[Ei]

)}
= [In] , (2.6a)

E

{
log

(
det

(
expm

(
N∑
i=1

Gi(x)[Ei]

)))}
= ν , |ν| < +∞ . (2.6b)

The first constraint is a direct consequence of Eqs. (2.2–2.3), whereas the second one implies that [N(x)]
and [N(x)]−1 are both second-order matrix-valued random variables (as shown in [22]). Note that the
combination of the above equations, together with Jensen’s inequality, basically shows that ν 6 0. The
MaxEnt probability density function pG(x) then reads as [9]:

pG(x)(g) = c exp

(
− � [Λsol], expm

(
N∑
i=1

gi[Ei]

)
� −λsol

N∑
i=1

giTr([Ei])

)
, (2.7)

where [Λsol] and λsol are the unknown Lagrange multipliers (raised by the MaxEnt formulation) such that
the two constraints (2.6a) and (2.6b) are satisfied. Clearly, [Λsol] belongs to a N -dimensional matrix set.

In addition, it is assumed that it can be decomposed as [Λsol] =
∑N
i=1 λ

sol
i [Ei], so that an independent

scalar-valued Lagrange multiplier λsol
i , 1 6 i 6 N , can be assigned to the i-th coordinate involved in

the decomposition on the matrix basis. In the sequel, we will consider the vector-valued representation
λsol := (λsol

1 , . . . , λsol
N , λsol) of the solution Lagrange multipliers.

3 Calculation of the Lagrange multipliers

3.1 Overview of the methodology

Apart from the isotropic and cubic symmetry classes, for which explicit solutions can be easily constructed
thanks to the particular properties of the matrix basis, no explicit solutions can be obtained for the
Lagrange multiplier λsol involved in the above MaxEnt formulation (see Eq. (2.7)). In order to tackle this
issue, a methodology relying on sequential optimization problems is proposed in order to obtain admissible
values of the parameter ν (which does not belong to R) involved in the second constraint equation (see
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Eq. (2.6b)), as well as to derive suitable cost functions for the computation of the Lagrange multipliers.
The numerical strategy basically proceeds along three main steps that are described below (for a given
material symmetry class).

• Step 1: Determination of a sequence {νi}mνi=1 of admissible values for parameter ν. This first step is
concerned with the definition of a sequence of well-posed optimization problems, the well-posedness
being understood here in the sense of sampling parameter ν in its admissible set R− (see Eq. (2.6b)),
in accordance with the underlying structure of Msym

n (R) (see section § 3.2.1 for an illustration). This
sampling is achieved by having recourse to a projection procedure that is detailed in § 3.1.1.

• Step 2: Construction of optimization problems for the Lagrange multiplier λsol. In this step, we first
introduce an optimization problem related to the constraints defined by Eqs. (2.6), for each given
value of ν determined in Step 1. The algebraic form of a solution guess is subsequently obtained
and allows one to solve an alternative optimization problem depending on a single parameter. These
optimization problems are detailed in § 3.1.2 and § 3.1.3, respectively.

• Step 3: Construction of an interpolation δ[N ] 7→ λsol. In this final step, a simple interpolation
relating δ[N ] (which is the parameter characterizing the level of statistical fluctuations of random

matrix [N ]; recall that δ[N ] is assumed to be independent of x for simplicity) to λsol is constructed,
hence facilitating the practical use of the constructed random field model (regardless of the material
symmetry class). This construction relies on the one-to-one mapping between parameters ν and δ[N ]

(see e.g. [22]).

A detailed application of the methodology for the transversely isotropic symmetry is provided in sec-
tion § 3.2.1. The results for all other classes are then given in § 3.2.3.

3.1.1 Definition of admissible values of ν through an Euclidean projection

Let us consider a given material symmetry class Msym
n , as well as a particular related crystallographic

system (if need be). When a triclinic system (which corresponds to the case Msym
n = M+

n (R)) is consid-
ered, the stochastic model for random matrix [N ] turns out to correspond to the information-theoretic
random matrix class for fully anisotropic random matrices, named SG+, constructed in [22] [23]. In this
particular case, an exact algebraic solution for the Lagrange multipliers and a random generator exist (see
the above references). Consequently, samples of a random matrix with mean value [In] and exhibiting
triclinic fluctuations (say, [N triclinic(δtriclinic)], where δtriclinic refers to the parameter measuring the level
of fluctuations) can be easily obtained and projected on Msym

n , hence providing realizations of a random
matrix (say, [N sym(δsym)]) with fluctuations in the symmetry class under consideration. Clearly, the pa-
rameter δsym depends on δtriclinic. Note further that this mapping is not one-to-one, so that it can not be
considered as a valuable alternative for defining, through a measure transformation, Msym

n -valued random
matrices. However, a set of MS realizations of [N sym(δsym)] can be obtained as

[N sym(δsym, ωk)] := argmin
[A] ∈ Msym

n

D([A], [N triclinic(δtriclinic, ωk)]) , 1 6 k 6MS , (3.1)

where D is the Euclidean distance defined by

D([A1], [A2]) := ‖[A1]− [A2]‖F , ∀([A1], [A2]) ∈M+
n (R)×M+

n (R) , (3.2)

the argument ωk denoting the k-th realization on both sides of Eq. (3.1). Explicit solutions for the above
projection problem can be found in e.g. [19]. The strategy can then be summarized as follows:
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1. Select mν equally spaced values of δtriclinic in the admissible range [0,
√

(n+ 1)/(n+ 5)].

2. For each selected value δtriclinic
i , 1 6 i 6 mν ,

a. perform Monte-Carlo simulations to obtain the set {[N triclinic(δtriclinic
i , ωk)]}MS

k=1 of realizations

of the triclinic random matrix [N triclinic(δtriclinic
i )];

b. compute the corresponding set of realizations of [N sym(δsym
i )] using Eq. (3.1);

c. compute the value of νi using a classical statistical estimator:

νi '
1

MS

MS∑
k=1

log (det ([N sym(δsym
i , ωk)])) .

Such a methodology allows for the definition of well-posed optimization problems related to the constraints
given by Eqs. (2.6), as discussed in the next section.

3.1.2 Construction of an optimization problem for the computation of the Lagrange mul-
tipliers

Let Φ be the potential function defined from RN into R by:

Φλ(u) :=�
N∑
i=1

λi[Ei], expm

 N∑
j=1

uj [Ej ]

� +λ

N∑
k=1

ukTr([Ek]) , (3.3)

with λ = (λ1, . . . , λN , λ) ∈ Dλ. The admissible set Dλ ⊂ RN+1 is such that the function u 7→
exp{−Φλ(u)} is integrable over RN for any λ ∈ Dλ. For any λ fixed in Dλ, the above potential function
allows for the introduction of a RN -valued random variable Zλ defined by the following probability density
function:

pλ(z) := c exp{−Φλ(z)} . (3.4)

It follows that
G = Zλsol (3.5)

in probability distribution, in view of Eq. (2.7).
Let νi be a given value of parameter ν obtained through the strategy detailed in section § 3.1.1,

1 6 i 6 mν . Let Jα : Dλ → R+ be the cost function given by

Jα(λ) :=

(
1− α
n

)
‖E{[Qλ]} − [In]‖2F +

(
α

ν2
i

)
(E{log(det([Qλ]))} − νi)2

, (3.6)

in which

[Qλ] := expm

(
N∑
i=1

Zλ i[Ei]

)
(3.7)

and Zλ := (Zλ 1, . . . , ZλN ) is the random variable defined by Eqs. (3.3-3.4). In Eq. (3.6), α ∈ [0, 1] is a
free parameter that allows one to numerically balance the respective contributions of the two constraints
(note that the latter are not conflicting, since the two terms are respectively related to the mean value and
coefficient of variation). In practice, the sensitivity of the results with respect to α can be investigated,
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although selecting α = 0.5 generally provides robust predictions (because of the normalization of each
term in the cost function). The solution Lagrange multiplier is then defined as:

λsol := argmin
λ ∈ Dλ

Jα(λ) . (3.8)

The above constrained nonconvex nonlinear optimization problem can be solved by using an interior-point
method (such as the one available in the fmincon function for Matlab users, for instance) or a pattern
search algorithm running in the neighborhood of a starting point. The definition of this optimization
guess, denoted by λini hereafter, is addressed below.

3.1.3 Definition of the initial guess through an auxiliary optimization problem

By using a first order approximation of the constraint in mean given by Eq. (2.6a), namely

E

{
expm

(
N∑
i=1

Gi(x)[Ei]

)}
≈ [In] + E

{
N∑
i=1

Gi(x)[Ei]

}
, (3.9)

it can be deduced that
∀1 6 i 6 N , E {Gi(x)} ≈ 0 . (3.10)

Upon matching the mode coordinates with the mean values thus approximated, it is then assumed that

∇uΦλ(u)|u=0N
= 0N . (3.11)

Owing to the normal convergence of the matrix exponential series, it can be shown that

(∇Φλ(u))` =

+∞∑
k=1

1

k!

(
k∑
p=1

Tr
(
[Λ][U ]p−1[E`][U ]k−p

))
+ λTr([E`]) . (3.12)

Hence
Tr([Λ][E`]) + λTr([E`]) = 0 (3.13)

in virtue of Eq. (3.11), and thus

λ` = −λ Tr([E`])/ ‖[E`]‖2F , 1 6 ` 6 N . (3.14)

For all symmetry classes, the above relation yields a very simple form for the matrix-valued Lagrange
multiplier, namely

N∑
i=1

λi[Ei] = −λ[In] , (3.15)

so that the probability density function defined by Eq. (3.4) is integrable at infinity if and only if λ < 0.
We assume at this stage that this probability density function is integrable over RN for λ < 0. For any
fixed value of λ, let J 0

α be the auxiliary cost function defined as

J 0
α(λ) := Jα (ϕ1(λ), . . . , ϕN (λ), λ) , (3.16)

where
ϕi(λ) := −λ Tr([Ei])/ ‖[Ei]‖2F , 1 6 i 6 N . (3.17)
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The initial guess λini is then defined by

λini := (ϕ1(λ0), . . . , ϕN (λ0), λ0) , (3.18)

with
λ0 := argmin

λ ∈ R∗
−

J 0
α(λ) . (3.19)

In this work, the one-dimensional optimization problem given by Eq. (3.19) is solved by evaluating the
cost function on a regular grid. The mathematical expectations involved in the cost function Jα are
computed by invoking the ergodic theorem. For any given value of λ, the probability distribution defined
by Eqs. (3.3-3.4) is sampled by using a Metropolis-Hastings algorithm (MHA) [12] [17] (with an acceptance

rate set to 1/4, following [20]). For later use, this algorithm is denoted as Z
(k+1)
λ = FMHA(Z

(k)
λ ), k > 1

(with initial value Z
(1)
λ ), where Z

(k)
λ is the k-th iterate along the Markov chain. By using a second-order

approximation of the exponential term in the potential function, it is seen that a Gaussian transition
kernel may be advantageously selected. In this case, the mean and covariance matrix of the (Gaussian)
kernel are given by the null vector 0N and by the diagonal matrix [Covλ] with entries:

[Covλ]ii := −λ−1 ‖[Ei]‖−2
F , 1 6 i 6 N . (3.20)

Here, it is worthwhile to notice that the MHA does not require specific properties on the potential function
(apart from asymptotic ones related to integrability) and can thus be selected for constructing an approx-
imate solution for the Lagrange multipliers, for a given value of the parameters involved in the constraint
equations. Once this solution has been determined, additional properties of Φ [25] will be investigated
in order to address the random field generation through the alternative algorithm (involving stochastic
differential equations) proposed in [9] (see section § 4.1).

3.2 Application to all symmetry classes (ranging from isotropy to orthotropy)
in three-dimensional elasticity

3.2.1 Detailed analysis for the transversely isotropic case

In this section, the above methodology is applied to the transversely isotropic symmetry (for which N = 5).
Let n = e3 be the unit vector normal to the plane of isotropy. A matrix basis can then be obtained through
the Kelvin-Voigt matrix representation of the fourth-rank tensor basis given by [29]:

JE1K := [p]⊗ [p] , JE2K :=
1

2
[q]⊗ [q] , JE3K :=

1√
2

([p]⊗ [q] + [q]⊗ [p]) ,

JE4K := [q]⊗[q]− JE2K , JE5K := JIK− JE1K− JE2K− JE4K ,

(3.21)

where [p] := n ⊗ n, [q] := [I3] − [p] and JIKijkl := (δikδjl + δilδjk)/2. It should be noticed that the
algebraic properties of the matrix basis, together with the constraints used in the maximum entropy
principle, yield some specific statistical dependences between the components of random vector G(x) (x
being fixed; see [8]). Following the strategy introduced in section § 3.1, a set of admissible values for
parameter ν is first determined by means of the projection-based methodology (see section § 3.1.1). The
graph of mapping δ[N ] 7→ ν thus obtained is shown in Fig. 3.1, where it is seen that the aforementionned
function is monotonically decreasing. Note that this figure shows that most of the values of practical
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interest for ν are concentrated near the origin (from a numerical standpoint, it is seen that the range
of concentration depends on the symmetry class under consideration). This important fact illustrates
that completing the first step of the methodology (see section § 3.1) is absolutely required in order to set
well-posed optimization problems associated with Eqs. (2.6). For a given value of λ, the burn-in period

0.05 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0
ν

 

 

δ[N ]

Figure 3.1: Graph of δ[N ] 7→ ν (cubic spline interpolation) for transverse isotropy.

for the Metropolis-Hastings algorithm is estimated by characterizing the convergence of the mapping
Niter 7→ ConvMes(Niter) defined as:

ConvMes(Niter) :=
1

Niter

Niter∑
k=1

∥∥∥Z(k)
(ϕ1(λ),...,ϕN (λ),λ)

∥∥∥2

. (3.22)

Note that for transverse isotropy, one has (ϕ1(λ), . . . , ϕN (λ), λ) = λ(−1,−1, 0,−1,−1, 1). The graph of
ConvMes is shown in Fig. 3.2 for λ = −5, showing that the convergence is achieved for k > M0, with
M0 = 3× 104. The ergodic estimators are then computed between iterates M0 and Me, where the value
of Me is again determined through a convergence analysis on the cost function defined by Eq. (3.16). The
graph of the ergodic estimator for J 0

1/2 is shown in Fig. 3.3 for λ = −5. It is seen that for this case, the

convergence is clearly reached for Me = 5 × 107. The graphs of mapping λ 7→ J 0
1/2(λ) obtained for the

mν = 7 retained values of parameter ν are shown in Fig. 3.4. For each selected value, it is seen that an
optimal initialization value λ0 can be clearly identified. By using this guess (for a particular value of ν)
in the solving of the global optimization problem defined by Eq. (3.6) (in which the underlying structure
of the search space for each multiplier is relaxed), it is found that numerically,

λsol ' (ϕ1(λ0), . . . , ϕ5(λ0), λ0) , (3.23)

with a relative error that is typically less than 1% – hence indicating the relevance of the strategy for
defining the guesses. In addition, the relation δ[N ] 7→ |λ0| turns out to be linear in log-log scale, as shown
in Fig. 3.5 (see also Tab. 3.1 below for specific values), thus suggesting the use of a power-law interpolation:

λ0 = −α1(δ[N ])
α2 , (3.24)
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Figure 3.2: Convergence towards the invariant measure: graph of Niter 7→ ConvMes(Niter) for λ = −5.

νi -0.0295 -0.0767 -0.1225 -0.2 -0.2767 -0.4 -0.5019

λ0 -85.9962 -32.9983 -20.9264 -12.7144 -9.1724 -6.4327 -5.1673

δ[N ] 0.0984 0.1587 0.1991 0.2554 0.3005 0.3576 0.3985

Table 3.1: Table of selected values for parameter νi, together with the corresponding values of initial guesses and associated

parameters δ[N ].

where α1 = 0.8156 and α2 = −2.01. The final solution for the transverse isotropy is then defined as

λsol = −α1(δ[N ])
α2(−1,−1, 0,−1,−1, 1) , (3.25)

or in matrix form,
[Λsol] = −λsol[In] , λsol = −α1(δ[N ])

α2 , (3.26)

with α1 = 0.8156 and α2 = −2.01.

3.2.2 Numerical application for the transversely isotropic case

In this section, we provide a comparison between a database obtained by projecting a set of realizations of
a random matrix with triclinic fluctuations (δtriclinic ' 0.68) on the set of transversely isotropic matrices
(for a given unit vector normal to the plane of isotropy), and data simulated by using the results derived
in the previous section. To this aim, the parameter δ[N ] is estimated from the projected data, and the
probability density function involving the approximate potential is sampled through the MHA. Note that
the above level of fluctuations does not correspond to a value that was considered for constructing the
approximate solution. The graphs of some first- and second-order marginal probability density functions
(obtained by using a classical kernel density estimator with 60,000 realizations) are shown in Figs. 3.6, 3.7,
3.8, 3.9 and 3.10. A very good match is observed (no matter the components involved), thus showing the
relevance of the approximate solution. It should be noted that the capability of the model to reproduce
projected data has been numerically checked for all symmetry classes of interest. This property can be
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explained in part by the linearity of the relation between the triclinic tensor and its projection, so that
the database and the model essentially carries information of the same probabilistic nature.

3.2.3 Results summary for all symmetry classes

For all symmetry classes, a general form for the potential function can be then derived and expressed in
terms of parameters δ[N ], α1 and α2. Following the previous sections, it can be deduced that the potential
function reduces to

Φ(u) = α1δ[N ]
α2 × Tr

expm

(
N∑
i=1

ui[Ei]

)
−

N∑
j=1

uj [Ej ]

 , ∀u ∈ RN , (3.27)

where the parameters α1 and α2 are summarized in Tab. 3.2 for the six symmetry classes (it is recalled that
the triclinic case has been addressed in [24], and that the monoclinic class is not considered here because
of its limited range of application – apart from the modeling of crystals) and δ[N ] > 0. It is seen that the

Symmetry N α1 α2 Crystallographic preferred directions

Isotropic 2 0.3246 -2.0300 -

Cubic 3 0.4914 -2.0293 Canonical basis of R3

Trans. Iso. 5 0.8156 -2.01 Normal to the plane of isotropy n = e3

Tetragonal 6 0.9906 -2.0040 Canonical basis of R3

Trigonal 6 0.9858 -2.0056 a = e1, b = (−1/2,
√

3/2, 0), c = e3

Orthotropic 9 1.4323 -2.0293 Canonical basis of R3

Table 3.2: Regression coefficients for the six symmetry classes and description of the crystallographic systems used in the

calculations (the canonical basis (e1, e2, e3) of R3 is defined as (ei)j = δij , 1 6 i, j 6 3).

real solution multiplier λ turns out to be proportional to δ[N ]
−2 and depends almost linearly on N . These

11
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results are consistent with the ones obtained for the triclinic class (see [24]) and allow for a significant
reduction of the computational cost associated with the statistical inverse identification of the stochastic
model (since the first-order marginal distribution then depends on a single statistically-sound parameter,
namely δ[N ] – rather than on N+1 non-physical parameters). It is worth mentioning that for all symmetry
classes, the traces of all basis matrices turn out to be independent from the crystallographic parameters
[29], hence making the above form for the potential function valid regardless of these parameters. Finally,
the gradient associated with the final form of the potential function (defined by Eq. (3.27)) takes the
following simple expression,

1 6 ` 6 N , (∇Φλ(u))` = −λ� expm[U ], [E`]� +λTr([E`]) , (3.28)

which satisfies Eq. (3.11) by construction.

3.2.4 Analytical solutions for the isotropic and cubic symmetries

For the isotropic and cubic symmetries, analytical solutions for the Lagrange multipliers can be obtained
thanks to some specific properties of the tensorial basis. Let us first consider the isotropic case, and recall
that x is fixed. From Eq. (2.7), it is deduced that pG(x)(g) = pG1(x)(g1)× pG2(x)(g2), with: ∀g1 ∈ R , pG1(x)(g1) = c exp

(
−λsol

1 exp(g1)− λsolg1

)
,

∀g2 ∈ R , pG2(x)(g2) = c exp
(
−5λsol

2 exp(g2)− 5λsolg2

)
.

(3.29)

The integrability of the marginal probability density functions at infinity implies that λsol
1 > 0, λsol

2 > 0
and λsol < 0. Using the normalization constraint and the measure transformation, it can be shown that
the marginal probability density functions associated with the random variables N1(x) and N2(x) take

12
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Figure 3.6: Graph of the probability density function of random variables C11 (left panel) and C12 (right
panel). Blue line: data. Red line: model-based simulations.

the form: 
∀n1 ∈ R∗+ , pN1(x)(n1) = IR+(n1)

nk1−1
1

θk11 Γ(k1)
exp

(
−n1

θ1

)
,

∀n2 ∈ R∗+ , pN2(x)(n2) = IR+(n2)
nk2−1

2

θk22 Γ(k2)
exp

(
−n2

θ2

)
,

(3.30)

in which IR+ is the indicator function of R+ and Γ is the Gamma function defined as:

Γ(z) :=

∫ +∞

0

tz−1 exp(−t) dt , ∀z > 0 . (3.31)
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It follows that N1(x) and N2(x) are statistically independent Gamma-distributed random variables, with
parameters (k1, θ1) = (−λsol, 1/λsol

1 ) and (k2, θ2) = (−5λsol, 1/(5λsol
2 )). Since E{Ni} = kiθi, Var{Ni} =

kiθ
2
i and E{Ni} = 1 for 1 6 i, j 6 2, one has δ2

[N ] = (θ1 + 5θ2)/6. Therefore, it is seen that for the
isotropic case,

λsol = −1/(3δ2
[N ]) , λsol

1 = λsol
2 = −λsol , (3.32)

which is in complete accordance with the numerical result provided in Tab. 3.2.
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Similarly, it is found for the cubic symmetry that

λsol = −1/(2δ2
[N ]) , λsol

1 = λsol
2 = λsol

3 = −λsol , (3.33)

in agreement with Tab. 3.2.
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4 Mathematical properties of the approximate potential func-
tion and sampling algorithm

4.1 Mathematical properties of the potential function Φ

Let Msym
n be given, and let Φ be the potential function defined by Eq. (3.27), with λ = −α1δ[N ]

α2 and
δ[N ] > 0.

Property 4.1 The potential function RN 3 u 7→ Φ(u) defined by Eq. (3.27) is continuous on RN and
strictly convex for all symmetry classes.

Proof. The continuity first follows from the composition of continuous functions. Next, note that

Tr

expm

(
N∑
i=1

ui[Ei]

)
−

N∑
j=1

uj [Ej ]

 = Tr

(
n∑
i=1

f(ρi)υ
i ⊗ υi

)
, (4.1)

where f : R → R is the function defined by f(x) = exp(x) − x for any x in R, ρ1, . . . , ρn are the

(possibly equal) eigenvalues of [U ] =
∑N
i=1 ui[Ei] ∈ MS

n(R) and {υi}ni=1 is the set of associated eigen-
vectors. Since the function f is continuous and strictly convex on R, it follows that the function
[U ] 7→ Tr (expm ([U ])− [U ]) is strictly convex on MS

n(R). Based on this property, it can easily be shown

that the function h : u 7→ h(u) = Tr(expm(
∑N
i=1 ui[Ei]) −

∑N
j=1 uj [Ej ]) is then strictly convex on RN ,

and so is the potential function. �

Property 4.2 The function u 7→ ‖∇uΦ(u)‖RN is locally bounded on RN , regardless of the symmetry
class.

Proof. For u ∈ RN , let [U ] =
∑N
k=1 uk[Ek] and [L] =

∑N
j=1 `j [Ej ] = expm ([U ]). Eq. (3.12) can then be

rewritten as
(∇uΦ(u))` = −λ� [L]− [In], [E`]� , (4.2)

for 1 6 ` 6 N . Being the composition of continuous functions, the function u 7→ ∇uΦ(u) is clearly
continuous over RN , and so is the function u 7→ ‖∇uΦ(u)‖RN . Hence, it follows that u 7→ ‖∇uΦ(u)‖RN
is locally bounded on RN . �

Property 4.3 The function u 7→ ‖∇uΦ(u)‖RN is such that

E{‖∇uΦ(u)‖RN } =

∫
RN
‖∇uΦ(u)‖RN c exp{−Φ(u)}du < +∞ , (4.3)

with c−1 =
∫
RN exp{−Φ(u)} du, regardless of the symmetry class.

Proof. Note first that Tr([Ei]) > 0, 1 6 i 6 N , for any symmetry class. Upon using Eq. (4.2) and by
invoking the Cauchy-Schwartz inequality, it can then be shown that

E
{
‖∇uΦ(u)‖2RN

}
6 λ2

N∑
i=1

(
E{‖[L]‖2F } ‖[Ei]‖

2
F + (Tr([Ei]))

2
)
, (4.4)
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where [L] = expm ([U ]) and [U ] =
∑N
j=1 uj [Ej ]. Due to the constraint defined by Eq.(2.6b), the random

matrix [L] is a second-order variable (that is, E{‖[L]‖2F } < +∞), so that

E{‖∇uΦ(u)‖2RN } < +∞ (4.5)

and hence, E{‖∇uΦ(u)‖RN } < +∞ . �

Property 4.4 The potential function Φ is such that

inf
u ∈ RN

Φ(u) = Φmin , Φmin > 0 , (4.6)

regardless of the symmetry class.

Proof. By construction, one has Φmin = Φ(0N ) and thus, Φmin = nα1δ[N ]
α2 > 0 in view of Eq. (3.27).

�

Property 4.5 The potential function Φ is such that

inf
‖u‖RN > R

Φ(u)→ +∞ as R→ +∞ , (4.7)

for all symmetry classes.

Proof. Note first that the potential function can be written as

Φ(u) = α1δ[N ]
α2

q∑
i=1

mi(exp(ρi)− ρi) , (4.8)

where ρ1, . . . , ρq are the q distinct eigenvalues of [U ] =
∑N
i=1 ui[Ei] ∈MS

n(R) and mi denotes the algebraic

multiplicity of ρi, 1 6 i 6 q; hence, Φ(u) > 0 for any u ∈ RN . Since ‖[Ei]|2F > 1 for i = 1, . . . , N (for all
symmetry classes), it is easily seen that

‖u‖RN 6 ‖[U ]‖F 6
√
n ‖[U ]‖2 , (4.9)

where ‖[U ]‖2 = max
i ∈ {1,...,q}

| ρi | = |ρM |. From Eq. (4.8), it can be deduced that

α1δ[N ]
α2 ×mρM (exp(ρM )− ρM ) 6 Φ(u) , ∀u ∈ RN , (4.10)

in which ρM ∈ R. If ρM > 0, a combination of Eqs. (4.9) and (4.10) yields

inf
‖u‖RN > R

Φ(u)→ +∞ as R→ +∞ . (4.11)

If ρM < 0, the left hand side of Eq. (4.10) tends to +∞ as ‖u‖RN → +∞ (which corresponds to
ρM → −∞), so that Eq. (4.11) similarly holds. �

The properties 4.2-4.3 are essentially related to the sampling scheme for the non-Gaussian random field,
whereas the properties 4.4-4.5 show that P (du) := c exp{−Φ(u)} du (with c−1 =

∫
RN exp{−Φ(u)}du)

can be interpreted as a probability measure whenever δ[N ] > 0.
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4.2 Sampling scheme for random fields with values in Msym
n

Based on the previous properties, it can be shown that the Msym
n (R)-valued non-Gaussian random field

defined in Section 2 can be sampled by solving a family of Itô stochastic differential equations indexed by
Ω [9]. This sampling scheme is recalled for the sake of completeness below.

4.2.1 Definition of an auxiliary RN -valued Gaussian random field

Let {Ξ(x),x ∈ Rd} be a RN -valued Gaussian homogeneous centered random field defined by the contin-
uous correlation function [RΞ] (with values in the set of diagonal real matrices) given by:

∀y ∈ Rd , [RΞ(y)]ii = E{Ξi(x+ y)Ξi(x)} , [RΞ(0)]ii = 1 , 1 6 i 6 N . (4.12)

Let Rd 3 x 7→ Ξ(x, θk) be the k-th independent realization of the aforementioned random field. Let
W = {W (r,x), r > 0, x ∈ Ω} be the RN -valued second-order centered Gaussian random field defined
as follows:

• ∀x ∈ Ω, W (0,x) = 0 almost surely;

• the generalized derivative DrW of W with respect to r is the normalized Gaussian cylindrical white
noise denoted by B.

The generalized covariance function [CB] of B writes

∀(x,y) ∈ Ω× Ω , ∀τ ∈ R , [CB(x,y, t+ τ, t)] = δ0(τ)[RΞ(x− y)] , (4.13)

with δ0 the generalized Delta function at the origin of R. It follows that by construction, and for any x
fixed in Ω, the stochastic process {W (r,x), r ≥ 0} is a standard Wiener process with values in RN .

4.2.2 Sampling scheme

For x fixed in Ω, let {(U(r,x),V (r,x)), r > 0} be the Markov process with values in RN ×RN satisfying
the following Itô stochastic differential equation:

∀r ∈ R+ ,

{
dU(r,x) = V (r,x) dr

dV (r,x) =
(
−∇uΦ(U(r,x))− η

2
V (r,x)

)
dr +

√
η dW (r,x)

, (4.14)

where η ∈ R∗+ is a free tunable parameter and {W (r,x), r > 0} is the Wiener process defined in
the previous section. The above stochastic differential equation is supplemented with initial conditions
U(0,x) = U0(x) and V (0,x) = V 0(x) almost surely, where the probability distribution of the random
variable (U0(x),V 0(x)) is assumed to be given. It can then be shown that

lim
r → +∞

U(r,x) = G(x) (4.15)

in probability distribution, hence providing a sampling algorithm for the non-Gaussian random field
{G(x), x ∈ Ω} introduced in Section 2.1. In practice, the stochastic differential equation can be discretized
by using any suitable algorithm (see e.g. [15] [18] and [27] for further details). In particular, the Störmer-
Verlet algorithm [28] [5] [11] [3] turns out to be very efficient and is then recalled hereinafter. Let ∆r be
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the discretization time step, and let rk = (k − 1)∆r, k > 1, correspond to a regular time discretization.
For k > 1, the scheme is defined as

U (k+1/2)(x) = U (k)(x) +
∆r

2
V (k)(x)

V (k+1)(x) =
1− ζ
1 + ζ

V (k)(x)− ∆r

1 + ζ
∇uΦ(U (k+1/2)(x)) +

√
η

1 + ζ
∆W (k+1)(x)

U (k+1)(x) = U (k+1/2)(x) +
∆r

2
V (k+1)(x)

, (4.16)

where U (k)(x) = U(rk,x), V (k)(x) = V (rk,x), ζ = η∆r/4 and

∆W (k+1)(x) = W (rk+1,x)−W (rk,x) :=
√

∆rΞ(x, θk+1) . (4.17)

The initial conditions are given by U (1)(x) = u(0) and V (1)(x) = v(0), with u(0) and v(0) two arbitrary
vectors in RN . The convergence stated by Eq. (4.15) thus reads as

G(x) = lim
∆r ↓ 0

(
lim

k → +∞
U(rk,x)

)
. (4.18)

From a computational standpoint, the sampling scheme requires N×M0 (with M0 the number of iterations
required to reach the stationary solution) realizations of a R-valued centered homogeneous Gaussian
random field to be generated, for every realization of {G(x),x ∈ Ω}. Therefore, the CPU time associated
with the algorithm mainly depends on the strategy that is used for simulating such a Gaussian random
field; see e.g. [7] and the references therein for a discussion about the computational complexity. Note
that whenever the realizations of the Gaussian fields can be stored in a preprocessing step, the algorithm
can be distributed in a straightforward manner. In this case, the total CPU time is scaled by the number
of cores available, as well as by the CPU time that is necessary to reach the stationary solution at any
point of the domain (the latter being equal to M0× titer, with titer the CPU time to complete one iteration
in the discretization scheme). It should be finally noted that the value of M0 depends on the symmetry
class under consideration (or equivalently, on N), as well as on the level of statistical fluctuations.

4.2.3 Numerical illustration for an orthotropic material

Here, we consider a two-dimensional open bounded domain Ω =]0, 32[2, discretized with 64 points along
each direction. The selected mean model is given by

∀x ∈ Ω , [C(x)] =


32 4.2 3.8 0 0 0
4.2 20 4 0 0 0
3.8 4 12 0 0 0
0 0 0 2.5 0 0
0 0 0 0 3.5 0
0 0 0 0 0 4

 , (4.19)

and corresponds to a typical stiffness matrix for an orthotropic composite (in GPa). The correlation
function [RΞ] of the Gaussian homogeneous random field {Ξ(x),x ∈ R2} is defined as

∀(x,y) ∈ R2 × R2 , [RΞ(x− y)]ii =

2∏
j=1

(
2Lijc

π|xj − yj |

)2

sin2

(
π|xj − yj |

2Lijc

)
(4.20)
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for all 1 6 i 6 N , Lijc being interpreted as the spatial correlation length of the Gaussian homogeneous
random field {Ξi(x),x ∈ R2} along the direction defined by the unit vector ej of the canonical basis of R2.
For simplicity, the correlation lengths are assumed to be all equal to the same value, denoted by Lc. The
level of statistical fluctuations is set to δ[N ] = 0.1. The parameters involved in the sampling algorithm are
given by η = 9 and ∆r = 0.001, and the stationary solution is reached after M0 = 50, 000 iterations. The
CPU time associated with the convergence to the stationary regime at any point is 0.888 sec on average.
Realizations of some components of the orthotropic stiffness random field are shown below for two choices
of correlation lengths, namely Lc = 5.3 and Lc = 16. As expected, it is seen that the random field

Figure 4.1: One realization of random field {C11((x, y)), (x, y) ∈ Ω}: Lc = 5.3 (left panel), Lc = 16 (right
panel).

Figure 4.2: One realization of random field {C12((x, y)), (x, y) ∈ Ω}: Lc = 5.3 (left panel), Lc = 16 (right
panel).
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Figure 4.3: One realization of random field {C44((x, y)), (x, y) ∈ Ω}: Lc = 5.3 (left panel), Lc = 16 (right
panel).

defined by the smallest correlation length exhibits fluctuations with higher spatial frequencies. Finally,
the estimated correlation function of random field {C11(x),x ∈ Ω} is shown in Fig. 4.4, where it is
seen that the elasticity random field inherits a correlation structure that is similar to that of the input
underlying Gaussian fields (as already observed in [9]).

Figure 4.4: Plot of the estimated normalized correlation function for the random field {C11(x),x ∈ Ω},
for Lc = 5.3 (left panel) and Lc = 16 (right panel).

21



5 Conclusion

In this work, we have addressed the construction of approximate solutions for the Lagrange multipliers
involved in some classes of information-theoretic non-Gaussian random field models. A general method-
ology for solving the optimization problems raised by entropy maximization (for the family of first-order
marginal probability distributions) was first presented. Whereas the strategy is exemplified on tensor-
valued elasticity fields exhibiting fluctuations in a given symmetry class, it can be readily extended for
solving similar problems in formulations involving state spaces whose algebraic structure is induced by
invariance properties. The results for all classes of practical interest (from isotropy to orthotropy) are
then provided and are shown to be consistent with the ones algebraically obtained for the triclinic case.
A numerical application to the case of transversely isotropic materials is further presented and illustrates
the relevance of the approach. These derivations are subsequently used to establish a set of mathematical
properties related to the ISDE-based sampling scheme proposed in [9]. This paper offers a self-contained
treatment of information-theoretic probabilistic models and allows for forward simulations of such random
field representations in uncertainty quantification for stochastic boundary value problems. It further al-
lows, through a simple parametrization relying on a single statistically-sound parameter, for a substantial
reduction of the computational cost whenever these models are plugged into optimization problems related
to statistical inverse identification.
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