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1.  Introduction

Many quasi-two-dimensional (q-2D) metals, in particular 
charge transfer salts based on the bis-ethylenedithio-tetrathi-
afulvalene (ET) molecule, illustrate the textbook Fermi sur-
face (FS) proposed by Pippard in the early sixties. This model 
FS, an example of which is provided in the inset of figure 1, 
was intended to compute the de Haas–van Alphen (dHvA) 
oscillation spectrum of the linear chain of orbits coupled by 

magnetic breakdown (MB) [1, 2]. In line with the coupled 
orbits network model of Falicov–Stachowiak [2, 3], relevant 
dHvA oscillations spectra involve linear combinations of 
frequencies linked to the α and MB-induced β orbits [4–9]. 
However, it is now well established that the field and tempera-
ture dependence of many of these Fourier components cannot 
be accounted for by this model due to oscillation of the chem-
ical potential in magnetic field [10–16]. Analytic tools, given 
in the Appendix, have been provided in order to quantitatively 
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Abstract
According to band structure calculations, the Fermi surface of the quasi-two dimensional 
metal θ-(ET)4ZnBr4(C6H4Cl2) illustrates the linear chain of coupled orbits model. 
Accordingly, de Haas–van Alphen oscillations spectra recorded in pulsed magnetic field of up 
to 55 T evidence many Fourier components, the frequency of which are linear combinations 
of the frequencies relevant to the closed α and the magnetic breakdown β orbits. The field 
and temperature dependence of their amplitude are quantitatively accounted for by analytic 
calculations including, beyond the Lifshitz–Kosevich formula, second-order terms in 
damping factors due to the oscillation of the chemical potential as the magnetic field varies. 
Whereas these second-order terms are negligible for the orbits α, β and β α−2 , they are solely 
responsible for the ‘forbidden orbit’ β α−  and its harmonic and have a significant influence on 
Fourier components such as α2  and β α+ , yielding strongly non-Lifshitz–Kosevich behaviour 
in the latter case.
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account for the field- and temperature-dependent amplitudes 
of the various Fourier components observed [17–19]. Briefly, 
in addition to a first-order term corresponding to the Lifshitz–
Kosevich (LK) model [2], second-order terms due to oscil-
lation of the chemical potential must be taken into account. 
Nevertheless, their relative importance strongly depends on 
the involved parameter values, in particular the Landé fac-
tors. As an example, provided spin damping factors relevant 
to basic orbits are not too small, i. e. *

α αg m  and *
β βg m  (where 

*
α β( )g  and α β( )m  are the effective Landé factor and effective 

mass, respectively, of the α β( ) orbit) are not close to odd inte-
gers, these second-order terms have a negligible contribution 
to the Fourier amplitude αA  and βA , respectively. In contrast, 
the amplitudes β α( − )Ap  of the Fourier components with fre-
quencies ( − )β αp F F , which are commonly referred to as ‘for-
bidden orbits’ since they do not correspond to MB orbits, are 
only governed by second-order terms. For completeness, It 

should be noticed that, in the case of magnetoresistance oscil-
lations, components such as β α−  or β α− 2  correspond to 
quantum interference paths [20] which are liable to enter the 
Shubnikov–de Haas (SdH) spectra [21].

Up to now, these calculations have only been implemented 
to account for the data of the strongly two-dimensional com-
pound θ-(ET)4CoBr4(C6H4Cl2) [17, 18], referred in the fol-
lowing to as the Co-compound. For this compound, the field 
and temperature dependence of the second harmonic ampli-
tude of the α orbit ( αA2 ), which significantly differs from 
the predictions of the LK model, and the ‘forbidden orbit’ 
amplitude β α−A  are quantitatively accounted for by the cal-
culations. Nevertheless, data analysis for other compounds, 
with different FS parameters, are needed to further check the 
model. In addition, depending on the value of the involved FS 
parameters (in particular effective masses and Landé factors), 
strongly non-monotonic field and temperature dependence is 
liable to be observed in few cases [17, 19]. Actually, such a 
feature has never been reported yet.

The aim of this article is to report on quantum oscil-
lations spectra of θ-(ET)4ZnBr4(C6H4Cl2), referred to 
as the Zn-compound in the following. This compound 
belongs to the same family as the Co-compound, namely 
θ-(ET)4MBr4(C6H4Cl2), where M is a metal such as Co, Zn, 
Hg, Cd (for a review, see [22]). Strikingly, the crystal structure 
of these compounds involves one conducting and one insu-
lating ET plane, with different atomic arrangement, insuring 
a strong two-dimensionality. More extended data than for the 
previously reported Co-compound, i.e. field and temperature 
dependence of Fourier amplitude relevant to several frequency 
combinations, are derived, allowing a more extensive check of 
the formulas reported in the Appendix. In particular, it is dem-
onstrated that strongly non-monotonic temperature depend-
ence of the Fourier component with frequency corresponding 
to the MB orbit β+α is observed.

2.  Experimental

Crystals were synthesized by electrocrystallization technique 
as reported in [23]. The FS topology was obtained through 
extended Hückel type tight-binding band structure calcula-
tions [24], as reported in [25, 26]. These calculations were 
based on x-ray diffraction data collected at 100 K and 180 K at 
the IPCP-Chernogolovka and the LCC-Toulouse, respectively.

Six crystals denoted hereafter as crystal #1 to #6, respec-
tively, were studied in pulsed magnetic fields of up to 55 T 
with a pulse decay duration of 0.32 s. DHvA oscillations were 
measured through magnetic torque measurements of crystals 
#1 to #4, with approximate dimensions × ×0.1 0.1 0.04 mm3, 
stuck on a microcantilever. Variations of the microcantilever 
piezoresistance were measured at liquid helium temperatures 
with a Wheatstone bridge with an ac excitation at a frequency 
of 63 kHz. The angle between the normal to the conducting 
plane and the magnetic field direction was θ = ° °12 , 8  and 9° 
for crystals #1, #2 and #3, respectively, while θ was varied 
from 15° to 71° thanks to a rotating sample holder for crystal 
#4. SdH oscillations were measured through 4-point interlayer 

Figure 1.  (a) Oscillatory part of the high field range of TDO 
frequency (crystal #6), 4-point interlayer magnetoresistance (crystal 
#5) and torque (crystal #1) data at 2 K and (b) corresponding 
Fourier analysis (Fourier spectra are shifted down from each other 
by a constant amount for clarity). Thin lines in (b) are marks 
calculated with =αF 0.93 kT and =α βF F/ 0.205. The inset displays 
the Fermi surface of the conducting layer at 100 K. Green rectangle 
depicts the first Brillouin zone where S   =   (−a*/2, b*/2), Y   =   (0, 
b*/2), M   =   (a*/2, b*/2), X   =   (a*/2, 0) and Γ = ( )0, 0 . The basic 
orbits α and β are marked by the blue and red lines, respectively.

J. Phys.: Condens. Matter 27 (2015) 315601
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magnetoresistance (crystal #5) and contactless tunnel diode 
oscillator (TDO)-based method [17, 27] (crystal #6).

3.  Results and discussion

In the next section 3.1 the oscillatory data are examined at the 
light of band structure calculations. Section 3.2 reports on the 
field and temperature dependence of the basic Fourier compo-
nents, linked to the α and β orbits, observed in dHvA and SdH 
spectra while dHvA frequency combinations are considered 
in section 3.3.

3.1.  Band structure calculations and oscillatory spectrum

Crystalline and electronic band structures of the Zn-compound 
are very similar to those of the Co-compound. Briefly, two dif-
ferent cation layers, labeled A and B, respectively, in [17, 22, 
23], with different atomic arrangements, are observed within 
the unit cell. According to band structure calculations, layer 
A with α-type packing is insulating while layer B with θ-type 
packing is conducting (for details regarding atomic packing 
in organic metals, see [28]). As reported in figure 1, the FS 
topology relevant to layer B illustrates the Pippard’s model, 
observed in many organic conductors based on the ET mol-
ecule. Namely, it is composed of one q-2D closed tube and 
two q-1D sheets separated by a gap. In magnetic fields, the 
closed tube yields the α orbit while, thanks to MB, the β orbit 
with an area equal to that of the first Brillouin zone (FBZ) is 
observed. The area of the α orbit is 17.0% and 18.2% of the 
FBZ area at 180 K and 100 K, respectively. It can be remarked 
that the FS of figure 1 differs from that of other θ-phase salts. 
In these latter salts the anions impose a periodicity along the b 
direction which is different from that observed in the Zn- and 
Co-compounds, yielding different FS topology [29].

Figure 1(a) displays oscillatory parts of the magnetic 
torque, 4-point longitudinal magnetoresistance and TDO data 

at 2 K. It can be remarked first that, while TDO and 4-point 
magnetoresistance data are in phase, magnetic torque data are 
phase-shifted by π/2. This feature indicates that, while mag-
netic torque yields dHvA oscillations, both TDO and 4-point 
magnetoresistance yield SdH oscillations, in agreement with 
previous statements [30, 31]. Corresponding Fourier anal-
ysis are displayed in figure 1(b). The two main frequencies, 

= ( )αF 0.930 2  kT and = ( )βF 4.534 7  kT, correspond to the 
α and β orbits, respectively, hence the α orbit area amounts 
to 20.5% of the FBZ area. This value is in good agreement 
with the above reported band structure calculations which are 
based on x-ray diffraction data measured at higher tempera-
ture, owing to the increase of the closed tube area relatively 

Figure 2.  Temperature dependence (mass plots) of the magnetic 
torque amplitudes (a) α

τA  and (b) β
τA . Solid lines in (a) and (b) are 

best fits of equations (A.1) and (A.3), respectively, to the data. They 
are obtained with = = =α βm m B1.85, 3.4, 260  T and =T 0.8D  K. 
The considered magnetic field values are evenly spaced in 1/B in 
the explored field range, the boundary of which are indicated in the 
figures.

Figure 3.  Angle dependence of the magnetic torque amplitudes α
τA  

and β
τA . Solid lines are best fits of equations (A.1) and (A.3) to the 

data for α
τA  and β

τA , respectively. They are obtained with the same 
effective mass and MB field as in figure 2 and * = * =α βg g 1.85.

Figure 4.  Field dependence of the effective mass value of α and β 
orbits derived from magnetic torque, 4-point magnetoresistance and 
TDO data. Horizontal lines mark the effective mass values deduced 
from magnetic torque data, yielding dHvA oscillations, =αm 1.85 
and =βm 3.4.

J. Phys.: Condens. Matter 27 (2015) 315601
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to that of the FBZ, as the temperature decreases from 180 K 
to 100 K. Strikingly, an unprecedented number of frequen-
cies is observed, in particular in the case of the TDO data, 
accounting for the strong non-sinusoidal oscillatory part of 
these data. These frequencies, labeled ηF  in the following, 
are linear combinations of αF  and βF . Frequency as high as 
17.2 kT, corresponding to η β α= −4 , is observed in the TDO 
spectrum of figure 1.

3.2.  Basic Fourier components amplitude

Let us consider first magnetic torque data, the oscillation 
spectra of which involve Fourier components with frequencies 

ηF  and amplitudes η
τA . Since we are dealing with a 2D metal, 

these amplitudes are related to dHvA oscillations amplitudes 

ηA  as θ∝ ( )η η
τA A B/ tan  where θ is the angle between the mag-

netic field direction and the normal to the conducting plane. 
According to the LK formula, ( )η

τA Tln /  is predicted to vary 
linearly with the temperature at a given magnetic field value 
(mass plot) at high T/B ratio. Since crystals #1, #2 and #3 yield 
same results within the error bars reported below, we focus 
in the following on the data relevant to crystal #3, with the 
lowest Dingle temperature. Data for η = α and β are reported 
in figure 2. They can be analyzed through equations (A.1) and 
(A.3), respectively. However, no fewer than seven parameters 
enter these equations: effective masses α β( )m , Dingle temper-

atures α β( )TD , effective Landé factors *
α β( )g  and MB field B0. 

Nevertheless, as observed in the case of the Co-compound 
[17] and discussed in [18], the second-order terms of equa-
tions (A.1) and (A.3) are negligibly small compared to their 
leading terms, provided the spin damping factors α β( )R s  are far 
enough from spin-zeroes. As a result, the LK model applies 
and the spin damping factors act as field- and temperature-
independent prefactors. However, in addition to the effective 
masses, the MB field B0 and the Dingle temperatures α β( )TD  
govern the field dependence of α β( )A . As a result, each of 
the two equations (A.1) and (A.3) still involve 3 parameters 
yielding large uncertainties. For this reason, it is assumed in 
the following that =α βT TD D . Within this assumption, data 
yield = ( ) = ( )α βm m1.85 10 , 3.40 15  and B0   =   26(3) T for 
all the three studied crystals. The Dingle temperature, which 
is the only crystal-dependent parameter is = ( )T 0.9 1D1  K, 

= ( )T 1.1 1D2  K and = ( )T 0.8 1D3  K for crystal #1–#3, respec-

tively. Effective Landé factors *
α β( )g , which are the remaining 

parameters to be determined, are obtained through the angle 
dependence of α β( )A . Solid lines in figure 3 are the best fits of 
equations  (A.1) and (A.3) to the data relevant to crystal #4, 

yielding * = * = ( )α βg g 1.85 10 .
In short, the effective masses and Dingle temperatures 

of the Zn-compound are close to the data obtained for the 
Co-compound whereas the MB field of the latter is higher [17]. 
Owing to the effective Landé factors values, which were only 
estimated in [17], the second-order terms of equations (A.1) 
and (A.3) are negligible in the field and temperature range 

Figure 5.  Mass plot of magnetic torque amplitudes for different values of the magnetic field of (a) β α− , (b) β α( − )2 , (c) α2  and (d) 
β α−2 . Solid lines in (a)–(d) are calculated with equations (A.2), (A.5), (A.6) and (A.8), respectively. They are obtained with the same set 

of parameters as in figures 2 and 3. Dashed lines in (c) and (d) are obtained with the Lifshitz–Kosevich formula.
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explored, indicating that the LK model, i.e. the first-order 
term of equations (A.1) and (A.3) satisfactorily accounts for 
the basic orbits α and β, respectively.

A hallmark of the validity of the LK formula is the field-
independency of the effective mass derived through this for-
mula from the temperature dependence of the amplitude, as 
it can be observed in figure 4 for the dHvA data. In contrast, 
an apparent strong increase of the effective mass is observed 
in the case of TDO and, to a less extent, of the 4-point inter-
layer magnetoresistance data. This behaviour can be ascribed 
to the failure of the LK formula for SdH oscillations relevant 
to basic orbits of q-2D metals [32–34]. This feature, which 
is beyond the scope of the present study focused on dHvA 
spectra, requires specific calculations of the conductivity [35–
38] taking into account the multiband nature of the FS. As for 
the smaller discrepancy observed for 4-point magnetoresist-
ance compared to contactless TDO measurements, it must be 
considered that interlayer resistance (Rzz) and in-plane resist-
ance (Rxx) which are governed by different matrix elements 
[38], are measured in the former and latter case, respectively. 
Besides, the electrical contacts on the crystal, in the case of 
4-point magnetoresistance, connect the quasi-particles to a 
non-quantized reservoir, liable to induce a damping of the 
chemical potential oscillation [34].

3.3.  Frequency combinations

Since the parameters entering equations  (A.1)–(A.8) are 
determined from the analysis of the data relevant to the α and 
β orbits, the field and temperature dependence of all the other 
Fourier components amplitude should be accounted for by 
these parameters. As examples, the behaviour of few of these 
amplitudes is considered in figure 5: a very good agreement is 
indeed observed.

Let us examine these data in more details. First, since the 
β α−  amplitude is dominated by the product α βR R,1 ,1 (see 
equation (A.5)) its temperature dependence displays a slightly 
negative curvature. Analyzed through the LK formula, the 
data would yield an apparent effective mass β α−mapp  close to that 
of β α+ , actually about ( + )β αm m0.8 . This result is in agree-
ment with both experimental data relevant to κ-ET2Cu(NCS)2 
for which ≃ ( + )β α β α−m m m0.85app  [7], and in line with numer-
ical simulations [16].

As already observed [5, 7, 39], α2  is not accounted for by 
the LK formula as well. Indeed, according to equation (A.2), 
the second-order term which is of the same order of magnitude 

as the LK damping factor αR ,2 is dominated by αR ,1
2  accounting 

for a non-LK behaviour.
Oppositely, the amplitude of the β α−2  component is very 

close to the prediction of the LK model since the second-order 
term, dominated by the product α βR R,1 ,2 is very small com-
pared to the LK term which is proportional to β α−R2 ,1.

Finally, the Fourier component β α+  is considered in 
figure 6. While below about 2.6 K, the amplitude decreases 
as the temperature decreases, it increases in the range 2.6 K ∼ 
3.5 K, in strong discrepancy with the LK formula. This behav-
iour is quantitatively well accounted for by equation  (A.7) 

which evidences a dip in the temperature dependence of the 
amplitude. Indeed, the second-order term of equation  (A.7) 
is dominated by the product α βR R,1 ,1 which contributes to the 
amplitude with an opposite sign to the first-order Lifshitz–
Kosevich term proportional to α β+R ,1. These two factors 
cancel each other at a given field and temperature value (e.g. 
2.9 K at 50 T in the present case), depending on the spin 
damping factors value, hence on the respective values of the 
products *

α αg m  and *
β βg m . It can be remarked that this feature 

is not observed in the Co-compound [17]. Indeed, owing to 
slightly different effective masses and effective Landé factors, 
the dip in the β α+  amplitude would be observed around 9 K, 
i.e. beyond the temperature range in which oscillations can be 
observed [19].

Figure 6.  Fourier analysis in the frequency range around β α+F , 
at the mean magnetic field value =B 47 T. In the temperature 
range (a) 2.25–2.56 K and (b) 2.66–3.48 K, the Fourier amplitude 
decreases and increases, respectively, as the temperature increases. 
(c) Mass plot for different values of the magnetic field. Solid lines 
are calculated with equation (A.7). They are obtained with the 
same set of parameters as in figures 2, 3 and 5. Dotted lines are the 
contributions of the first-order term, corresponding to the Lifshitz–
Kosevich formula.
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4.  Summary and conclusion

Band structure calculations relevant to the quasi-two 
dimensional metal θ-(ET)4ZnBr4(C6H4Cl2) indicate that 
this compound illustrates the linear chain of coupled orbits 
model proposed by Pippard [1, 2] (see figure 1) as it is the 
case for many organic conductors based on the ET mol-
ecule. In line with this statement, quantum oscillations 
spectra evidence many Fourier components, the frequency 
of which are linear combinations of the frequencies rel-
evant to the closed α and the magnetic breakdown β orbits. 
The field and temperature dependence of the de Haas–van 
Alphen amplitude of these components is quantitatively 
accounted for by the analytic calculations reported in the 
Appendix. Beyond the Lifshitz–Kosevich formula, they 
include second-order terms arising from the chemical 
potential oscillations. These second-order terms have neg-
ligible contributions to the amplitude of the basic α and 
β components allowing the determination of the various 
physical parameters entering the data (effective masses, 
magnetic breakdown fields, etc). They have also a minor 
contribution on the magnetic breakdown orbit β α−2 . 
Oppositely, they have significant contribution to 2α and 
β α+ . Although this latter component physically cor-
responds to a magnetic breakdown orbit, its temperature 
dependence evidences a strong dip due to the cancelation 
of the first and second-order terms. Finally, the ‘forbidden 
frequency’ β α−  and its harmonic β α−2 2 , which are due 
to the oscillation of the chemical potential, are accordingly 
accounted for by second-order terms, only.
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Appendix A.  Analytical expressions of Fourier 
amplitudes

In this appendix, are recalled the analytical equations for de 
Haas–van Alphen amplitudes ηAp  with frequencies ηpF  given 
in [17–19]. They are relevant to two-dimensional FS illus-
trating the Pippard model in which the component η is a linear 
combination of the α and β orbits and p is the harmonic order 
(see insert of figure 1).
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Damping factors are given by the LK and cou-
pled orbits network models [2] as Rη,p(B,T) =  

( ) ( ) ( )η η η ηR B T R B R B R,p p p p,
T

,
D

,
MB

,
s  [2, 3] where the temperature, 

Dingle, MB and spin damping factors are expressed as 

= ( )η η η
−R pX pXsinhp

T
,

1 , θ= (− ( ) )η η
−R pu m T Bexp cosp,

D
0 D

1 , 

= ( ) ( )η η ηR p qip
n n

,
MB

0 0

t r

, π θ= ( * )η η ηR g mcos /2 cosp,
s , respectively. 

The field-and temperature-dependent variable ( ηX ) and the 
constant (u0) are expressed as ηX  = θ( )ηu m T B/ cos0  and 

π= ( ℏ) =−u k m e2 14.694e0
2

B
1  T K−1. The tunneling (p0) and 

reflection (q0) probabilities are given by = θ−p e B B
0

/2 cos0  

and + =p q 10
2

0
2 . TD is the Dingle temperature defined by 

π τ= ℏ( )−T k2D B
1, where τ−1 is the scattering rate, B0 is the MB 

field, ηm  and *
ηg  are the effective mass and effective Landé 

factor, respectively. It can be noticed that the terms of first 
order in damping factors correspond to the LK model.
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