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Abstract

According to band structure calculations, the Fermi surface of the quasi-two dimensional metal

θ-(ET)4ZnBr4(C6H4Cl2) illustrates the linear chain of coupled orbits model. Accordingly, de Haas-

van Alphen oscillations spectra recorded in pulsed magnetic field of up to 55 T evidence many

Fourier components, the frequency of which are linear combinations of the frequencies relevant to

the closed α and the magnetic breakdown β orbits. The field and temperature dependence of these

components’ amplitude are quantitatively accounted for by analytic calculations including, beyond

the Lifshitz-Kosevich formula, second order terms in damping factors due to the oscillation of the

chemical potential as the magnetic field varies. Whereas these second order terms are negligible

for the orbits α, β and 2β − α, they are solely responsible for the ’forbidden orbit’ β − α and its

harmonic and have a significant influence on Fourier components such as 2α and β + α, yielding

strongly non-Lifshitz-Kosevich behaviour in the latter case.

Keywords: De Haas-Van Alphen oscillations, high magnetic fields, two-dimensional organic met-

als.
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I. INTRODUCTION

Many quasi-two-dimensional (q-2D) metals, in particular charge transfer salts based on

the bis-ethylenedithio-tetrathiafulvalene (ET) molecule, illustrate the textbook Fermi sur-

face (FS) proposed by Pippard in the early sixties. This model FS, an example of which is

provided in the inset of Fig. 1, was intended to compute the de Haas-van Alphen (dHvA)

oscillation spectrum of the linear chain of orbits coupled by magnetic breakdown (MB)1,2.

In line with the coupled orbits network model of Falicov-Stachowiak2,3, relevant dHvA oscil-

lations spectra involve linear combinations of frequencies linked to the α and MB-induced β

orbits4–9. However, it is now well established that the field and temperature dependence of

many of these Fourier components cannot be accounted for by this model due to oscillation

of the chemical potential in magnetic field10–16. Analytic tools, given in the Appendix, have

been provided in order to quantitatively account for the field- and temperature-dependent

amplitudes of the various Fourier components observed17–19. Briefly, in addition to a first

order term corresponding to the Lifshitz-Kosevich (LK) model2, second order terms due to

oscillation of the chemical potential must be taken into account. Nevertheless, their rela-

tive importance strongly depends on the involved parameter values, in particular the Landé

factors. As an example, provided spin damping factors relevant to basic orbits are not too

small, i. e. g∗αmα and g∗βmβ (where g∗α(β) and mα(β) are the effective Landé factor and effec-

tive mass, respectively, of the α(β) orbit) are not close to odd integers, these second order

terms have a negligible contribution to the Fourier amplitude Aα and Aβ, respectively. In

contrast, the amplitudes Ap(β−α) of the Fourier components with frequencies p(Fβ − Fα),

which are commonly referred to as ’forbidden orbits’ since they do not correspond to MB

orbits, are only governed by second order terms. For completeness, It should be noticed

that, in the case of magnetoresistance oscillations, components such as β − α or β − 2α

correspond to quantum interference paths20 which are liable to enter the Shubnikov-de Haas

(SdH) spectra21.

Up to now, these calculations have only been implemented to account for the data of the

strongly two-dimensional compound θ-(ET)4CoBr4(C6H4Cl2)
17,18, referred in the following

to as the Co-compound. For this compound, the field and temperature dependence of

the second harmonic amplitude of the α orbit (A2α), which significantly differs from the

predictions of the LK model, and the ’forbidden orbit’ amplitude Aβ−α are quantitatively
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accounted for by the calculations. Nevertheless, data analysis for other compounds, with

different FS parameters, are needed to further check the model. In addition, depending on

the value of the involved FS parameters (in particular effective masses and Landé factors),

strongly non-monotonic field and temperature dependence is liable to be observed in few

cases17,19. Actually, such a feature has never been reported yet.

The aim of this article is to report on quantum oscillations spectra of θ-(ET)4ZnBr4(C6H4Cl2),

referred to as the Zn-compound in the following. This compound belongs to the same family

as the Co-compound, namely θ-(ET)4MBr4(C6H4Cl2), where M is a metal such as Co, Zn,

Hg, Cd (for a review, see Ref. 22). Strikingly, the crystal structure of these compounds

involves one conducting and one insulating ET plane, with different atomic arrangement,

insuring a strong two-dimensionality. More extended data than for the previously reported

Co-compound, i.e. field and temperature dependence of Fourier amplitude relevant to sev-

eral frequency combinations, are derived, allowing a more extensive check of the formulas

reported in the Appendix. In particular, it is demonstrated that strongly non-monotonic

temperature dependence of the Fourier component with frequency corresponding to the MB

orbit β+α is observed.

II. EXPERIMENTAL

Crystals were synthesized by electrocrystallization technique as reported in Ref. 23.

The FS topology was obtained through extended Hückel type tight-binding band struc-

ture calculations24, as reported in Refs. 25 and 26. These calculations were based on X-ray

diffraction data collected at 100 K and 180 K at the IPCP-Chernogolovka and the LCC-

Toulouse, respectively.

Six crystals denoted hereafter as crystal #1 to #6, respectively, were studied in pulsed

magnetic fields of up to 55 T with a pulse decay duration of 0.32 s. DHvA oscillations were

measured through magnetic torque measurements of crystals #1 to #4, with approximate

dimensions 0.1 × 0.1 × 0.04 mm3, stuck on a microcantilever. Variations of the micro-

cantilever piezoresistance were measured at liquid helium temperatures with a Wheatstone

bridge with an ac excitation at a frequency of 63 kHz. The angle between the normal to the

conducting plane and the magnetic field direction was θ = 11◦, 8◦ and 9◦ for crystals #1, #2

and #3, respectively, while θ was varied from 15◦ to 71◦ thanks to a rotating sample holder
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FIG. 1. (color on line) (a) Oscillatory part of the high field range of TDO frequency (crystal #6),

4-point interlayer magnetoresistance (crystal #5) and torque (crystal #3) data at 2 K and (b)

corresponding Fourier analysis (Fourier spectra are shifted down from each other by a constant

amount for clarity). Thin lines in (b) are marks calculated with Fα = 0.93 kT and Fα/Fβ = 0.205.

The inset displays the Fermi surface of the conducting layer at 100 K. Green rectangle depicts the

first Brillouin zone where S = (−a∗/2, b∗/2), Y = (0, b∗/2), M = (a∗/2, b∗/2), X = (a∗/2, 0) and

Γ = (0, 0). The basic orbits α and β are marked by the blue and red lines, respectively.
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for crystal #4. SdH oscillations were measured through 4-point interlayer magnetoresistance

(crystal #5) and contactless tunnel diode oscillator (TDO)-based method17,27 (crystal #6).

III. RESULTS AND DISCUSSION

In the next section (IIIA) the oscillatory data are examined at the light of band structure

calculations. Section IIIB reports on the field and temperature dependence of the basic

Fourier components, linked to the α and β orbits, observed in dHvA and SdH spectra while

dHvA frequency combinations are considered in Section IIIC.

A. Band structure calculations and oscillatory spectrum

Crystalline and electronic band structures of the Zn-compound are very similar to those

of the Co-compound. Briefly, two different cation layers, labeled A and B, respectively, in

Refs.17,22,23, with different atomic arrangements, are observed within the unit cell. According

to band structure calculations, layer A with α-type packing is insulating while layer B with

θ-type packing is conducting (for details regarding atomic packing in organic metals, see

Ref. 28). As reported in Fig. 1, the FS topology relevant to layer B illustrates the Pippard’s

model, observed in many organic conductors based on the ET molecule. Namely, it is

composed of one q-2D closed tube and two q-1D sheets separated by a gap. In magnetic

fields, the closed tube yields the α orbit while, thanks to MB, the β orbit with an area

equal to that of the first Brillouin zone (FBZ) is observed. The area of the α orbit is 17.0

% and 18.2% of the FBZ area at 180 K and 100 K, respectively. It can be remarked that

the FS of Fig. 1 differs from that of other θ-phase salts. In these latter salts the anions

impose a periodicity along the b direction which is different from that observed in the Zn-

and Co-compounds, yielding different FS topology29.

Fig. 1(a) displays oscillatory parts of the magnetic torque, 4-point longitudinal magne-

toresistance and TDO data at 2 K. It can be remarked first that, while TDO and 4-point

magnetoresistance data are in phase, magnetic torque data are phase-shifted by π/2. This

feature indicates that, while magnetic torque yields dHvA oscillations, both TDO and 4-

point magnetoresistance yield SdH oscillations, in agreement with previous statements30,31.

Corresponding Fourier analysis are displayed in Fig. 1(b). The two main frequencies, Fα =
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FIG. 2. (color on line) Temperature dependence (mass plots) of the magnetic torque amplitudes

(a) Aτ
α and (b) Aτ

β. Solid lines in (a) and (b) are best fits of Eqs. A.1 and A.3, respectively, to the

data. They are obtained with mα= 1.85, mβ= 3.4, B0 = 26 T and TD = 0.8 K. The considered

magnetic field values are evenly spaced in 1/B in the explored field range, the boundary of which

are indicated in the figures.

0.930(2) kT and Fβ = 4.534(7) kT, correspond to the α and β orbits, respectively, hence

the α orbit area amounts to 20.5 % of the FBZ area. This value is in good agreement with

the above reported band structure calculations which are based on X-ray diffraction data

measured at higher temperature, owing to the increase of the closed tube area relatively

to that of the FBZ, as the temperature decreases from 180 K to 100 K. Strikingly, an un-

precedented number of frequencies is observed, in particular in the case of the TDO data,

accounting for the strong non-sinusoidal oscillatory part of these data. These frequencies,

labeled Fη in the following, are linear combinations of Fα and Fβ. Frequency as high as 17.2

kT, corresponding to η = 4β − α, is observed in the TDO spectrum of Fig. 1.

B. Basic Fourier components amplitude

Let us consider first magnetic torque data, the oscillation spectra of which involve Fourier

components with frequencies Fη and amplitudes Aτ
η . Since we are dealing with a 2D metal,

these amplitudes are related to dHvA oscillations amplitudes Aη as Aη ∝ Aτ
η/Btan(θ) where

θ is the angle between the magnetic field direction and the normal to the conducting plane.

According to the LK formula, ln(Aτ
η/T ) is predicted to vary linearly with the temperature
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FIG. 3. (color on line) Angle dependence of the magnetic torque amplitudes Aτ
α and Aτ

β . Solid lines

are best fits of Eqs. A.1 and Eq. A.3 to the data for Aτ
α and Aτ

β, respectively. They are obtained

with the same effective mass and MB field as in Fig. 2 and g∗α = g∗β = 1.85.

FIG. 4. (color on line) Field dependence of the effective mass value of α and β orbits derived from

magnetic torque, 4-point magnetoresistance and TDO data. Horizontal lines mark the effective

mass values deduced from magnetic torque data, yielding dHvA oscillations, mα = 1.85 and mβ =

3.4.
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at a given magnetic field value (mass plot) at high T/B ratio. Since crystals #1, #2 and

#3 yield same results within the error bars reported below, we focus in the following on

the data relevant to crystal #3, with the lowest Dingle temperature. Data for η = α and

β are reported in Fig. 2. They can be analyzed through Eqs. A.1 and A.3, respectively.

However, no fewer than seven parameters enter these equations: effective masses mα(β),

Dingle temperatures TDα(β), effective Landé factors g∗α(β) and MB field B0. Nevertheless,

as observed in the case of the Co-compound17 and discussed in Ref. 18, the second order

terms of Eqs. A.1 and A.3 are negligibly small compared to their leading terms, provided

the spin damping factors Rs
α(β) are far enough from spin-zeroes. As a result, the LK model

applies and the spin damping factors act as field- and temperature-independent prefactors.

However, in addition to the effective masses, the MB field B0 and the Dingle temperatures

TDα(β) govern the field dependence of Aα(β). As a result, each of the two equations A.1

and A.3 still involve 3 parameters yielding large uncertainties. For this reason, it is assumed

in the following that TDα = TDβ. Within this assumption, data yield mα= 1.85(10), mβ=

3.40(15) and B0 = 26(3) T for all the three studied crystals. The Dingle temperature, which

is the only crystal-dependent parameter is TD1 = 0.9(1) K, TD2 = 1.1(1) K and TD3 =

0.8(1) K for crystal #1, #2 and #3, respectively. Effective Landé factors g∗α(β), which are

the remaining parameters to be determined, are obtained through the angle dependence of

Aα(β). Solid lines in Fig. 3 are the best fits of Eqs. A.1 and A.3 to the data relevant to

crystal #4, yielding g∗α = g∗β = 1.85(10).

In short, the effective masses and Dingle temperatures of the Zn-compound are close

to the data obtained for the Co-compound whereas the MB field of the latter is higher17.

Owing to the effective Landé factors values, which were only estimated in Ref. 17, the second

order terms of Eqs. A.1 and A.3 are negligible in the field and temperature range explored,

indicating that the LK model, i.e. the first order term of Eqs. A.1 and A.3 satisfactorily

accounts for the basic orbits α and β, respectively.

A hallmark of the validity of the LK formula is the field-independency of the effective

mass derived through this formula from the temperature dependence of the amplitude, as

it can be observed in Fig. 4 for the dHvA data. In contrast, an apparent strong increase

of the effective mass is observed in the case of TDO and, to a less extent, of the 4-point

interlayer magnetoresistance data. This behaviour can be ascribed to the failure of the

LK formula for SdH oscillations relevant to basic orbits of q-2D metals32–34. This feature,
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FIG. 5. (color on line) Mass plot of magnetic torque amplitudes for different values of the magnetic

field of (a) β − α, (b) 2(β − α), (c) 2α and (d) 2β − α. Solid lines in (a), (b), (c) and (d) are

calculated with Eqs. A.5, A.6, A.2 and A.8, respectively. They are obtained with the same set of

parameters as in Figs. 2, 3. Dashed lines in (c) and (d) are obtained with the Lifshitz-Kosevich

formula.

which is beyond the scope of the present study focused on dHvA spectra, requires specific

calculations of the conductivity35–38 taking into account the multiband nature of the FS. As

for the smaller discrepancy observed for 4-point magnetoresistance compared to contactless

TDO measurements, it must be considered that interlayer resistance (Rzz) and in-plane

resistance (Rxx) which are governed by different matrix elements38, are measured in the

former and latter case, respectively. Besides, the electrical contacts on the crystal, in the

case of 4-point magnetoresistance, connect the quasi-particles to a non-quantized reservoir,

liable to induce a damping of the chemical potential oscillation34.

C. Frequency combinations

Since the parameters entering Eqs. A.1 to A.8 are determined from the analysis of the

data relevant to the α and β orbits, the field and temperature dependence of all the other

Fourier components amplitude should be accounted for by these parameters. As examples,

9



FIG. 6. (color on line) Fourier analysis in the frequency range around Fβ+α, at the mean magnetic

field value B = 47 T. In the temperature range (a) 2.25-2.56 K and (b) 2.66-3.48 K, the Fourier

amplitude decreases and increases, respectively, as the temperature increases. (c) Mass plot for

different values of the magnetic field. Solid lines are calculated with Eq. A.7. They are obtained

with the same set of parameters as in Figs. 2, 3, 5. Dotted lines are the contributions of the first

order term, corresponding to the Lifshitz-Kosevich formula.
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the behaviour of few of these amplitudes is considered in Fig. 5: a very good agreement is

indeed observed.

Let us examine these data in more details. First, since the β−α amplitude is dominated

by the product Rα,1Rβ,1 (see Eq. A.5) its temperature dependence displays a slightly negative

curvature. Analyzed through the LK formula, the data would yield an apparent effective

mass mapp
β−α close to that of β +α, actually about 0.8(mβ +mα). This result is in agreement

with both experimental data relevant to κ-ET2Cu(NCS)2 for which mapp
β−α ≃ 0.85(mβ+mα)

7,

and in line with numerical simulations16.

As already observed5,7,39, 2α is not accounted for by the LK formula as well. Indeed,

according to Eq. A.2, the second order term which is of the same order of magnitude as the

LK damping factor Rα,2 is dominated by R2
α,1 accounting for a non-LK behaviour.

Oppositely, the amplitude of the 2β − α component is very close to the prediction of the

LK model since the second order term, dominated by the product Rα,1Rβ,2 is very small

compared to the LK term which is proportional to R2β−α,1.

Finally, the Fourier component β+α is considered in Fig. 6. While below about 2.6 K, the

amplitude decreases as the temperature decreases, it increases in the range 2.6 K ∼ 3.5 K, in

strong discrepancy with the LK formula. This behaviour is quantitatively well accounted for

by Eq. A.7 which evidences a dip in the temperature dependence of the amplitude. Indeed,

the second order term of Eq. A.7 is dominated by the product Rα,1Rβ,1 which contributes to

the amplitude with an opposite sign to the first order Lifshitz-Kosevich term proportional

to Rα+β,1. These two factors cancel each other at a given field and temperature value (e.g.

2.9 K at 50 T in the present case), depending on the spin damping factors value, hence on

the respective values of the products g∗αmα and g∗βmβ. It can be remarked that this feature

is not observed in the Co-compound17. Indeed, owing to slightly different effective masses

and effective Landé factors, the dip in the β + α amplitude would be observed around 9 K,

i.e. beyond the temperature range in which oscillations can be observed19.

IV. SUMMARY AND CONCLUSION

Band structure calculations relevant to the quasi-two dimensional metal θ-(ET)4ZnBr4(C6H4Cl2)

indicate that this compound illustrates the linear chain of coupled orbits model proposed

by Pippard1,2 (see Fig. 1) as it is the case for many organic conductors based on the ET
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molecule. In line with this statement, quantum oscillations spectra evidence many Fourier

components, the frequency of which are linear combinations of the frequencies relevant to

the closed α and the magnetic breakdown β orbits. The field and temperature dependence

of the de Haas-van Alphen amplitude of these components is quantitatively accounted for by

the analytic calculations reported in the Appendix. Beyond the Lifshitz-Kosevich formula,

they include second order terms arising from the chemical potential oscillations. These

second order terms have negligible contributions to the amplitude of the basic α and β

components allowing the determination of the various physical parameters entering the data

(effective masses, magnetic breakdown fields, etc.). They have also a minor contribution on

the magnetic breakdown orbit 2β − α. Oppositely, they have significant contribution to 2α

and β+α. Although this latter component physically corresponds to a magnetic breakdown

orbit, its temperature dependence evidences a strong dip due to the cancelation of the first

and second order terms. Finally, the ’forbidden frequency’ β −α and its harmonic 2β − 2α,

which are due to the oscillation of the chemical potential, are accordingly accounted for by

second order terms, only.
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Appendix: Analytical expressions of Fourier amplitudes

In this appendix, are recalled the analytical equations for de Haas-van Alphen amplitudes

Apη with frequencies pFη given in Refs.17–19. They are relevant to two-dimensional FS

illustrating the Pippard model in which the component η is a linear combination of the α

and β orbits and p is the harmonic order (see insert of Fig. 1).

Aα = −

Fα

πmα
Rα,1 −

Fα

πmβ

[

1

2
Rα,1Rα,2 +

1

6
Rα,2Rα,3 + 2Rβ,1Rα+β,1 +

1

2
Rβ,2R2β−α,1

]

(A.1)
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A2α = −

Fα

2πmα

Rα,2 +
Fα

πmβ

[

R2
α,1 −

2

3
Rα,1Rα,3 − Rα,2Rα+β,2

]

(A.2)

Aβ = −

Fβ

πmβ

Rβ,1 −
Fβ

πmβ

[

1

2
Rβ,1Rβ,2 +

1

6
Rβ,2Rβ,3 + 2Rα,1Rα+β,1 + 2Rβ,1R2β,1

]

(A.3)

A2β = −

Fβ

2πmβ

[Rβ,2 + 2R2β,1] +
Fβ

πmβ

[

R2
β,1 −

2

3
Rβ,1Rβ,3 −

1

4
Rβ,2Rβ,4 −Rα,2Rα+β,2

+ 2Rα,1R2β−α,1 − Rβ,2R2β,2 − Rβ,4R2β,1] (A.4)

Aβ−α = −

Fβ−α

πmβ
[Rα,1Rβ,1 +Rα,2Rα+β,1 +Rβ,2Rα+β,1 +Rβ,1R2β−α,1] (A.5)

A2(β−α) = −

F2β−2α

πmβ

[

2Rα,2R2β,1 + 2R2β−α,2R2β,1 + 2Rα,1R2β−α,1 +
1

2
Rα,4Rα+β,2

+
1

2
Rα,2Rβ,2 +

1

2
Rβ,2R2β−α,2

]

(A.6)

Aβ+α = −

2Fβ+α

πmβ+α
Rβ+α,1 +

Fβ+α

πmβ

[

Rα,1Rβ,1 − 2Rα+β,2Rα+β,1 −
1

3
Rβ,3R2β−α,1

]

(A.7)

A2β−α = −

F2β−α

πm2β−α
R2β−α,1 −

F2β−α

πmβ

[

1

2
Rα,1Rβ,2 +

1

3
Rα,3Rα+β,2

]

(A.8)

Damping factors are given by the LK and coupled orbits network models2 as Rη,p(B, T )

= RT
η,p(B, T )RD

η,p(B)RMB
η,p (B)Rs

η,p
2,3 where the temperature, Dingle, MB and spin damping

factors are expressed as RT
η,p = pXη sinh

−1(pXη), R
D
η,p = exp(−pu0mηTD(B cos θ)−1), RMB

η,p =

(ip0)
nt
η(q0)

nr
η , Rs

η,p = cos(πg∗ηmη/2 cos θ), respectively. The field-and temperature-dependent

variable (Xη) and the constant (u0) are expressed as Xη = u0mηT/(B cos θ) and u0 =

2π2kBme(eh̄)
−1 = 14.694 T/K. The tunneling (p0) and reflection (q0) probabilities are given

by p0 = e−B0/2B cos θ and p20 + q20 = 1. TD is the Dingle temperature defined by TD =

h̄(2πkBτ)
−1, where τ−1 is the scattering rate, B0 is the MB field, mη and g∗η are the effective

masses and effective Landé factor, respectively. It can be noticed that the terms of first

order in damping factors correspond to the LK model.
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Chem. Soc. 115 4101 (1993).

14



26 A. Audouard, F. Duc, D. Vignolles, R. B. Lyubovskii, L. Vendier, G. V. Shilov, E. I. Zhilyaeva,

R. N. Lyubovskaya, E. Canadell, Phys. Rev. B 84 045101 (2011).

27 L. Drigo, F. Durantel, A. Audouard and G. Ballon, Eur. Phys. J.-Appl. Phys. 52 10401 (2010).

28 R. P. Shibaeva and E. B. Yagubskii, Chem. Rev. 104 5347 (2004).

29 A. Kobayashi, R. Kato, H. Kobayashi, S. Moriyama, Y. Nishio, K. Kajita and W. Sasaki, Chem.

Letters (1986) 2017.

30 T. Coffey, Z. Bayindir, J.F. DeCarolis, M. Bennett, G. Esper and C.C. Agosta, Rev. Sci. Instrum.

71 4600 (2000).

31 E. Ohmichi, E. Komatsu, T. Osada, Rev. Sci. Instrum. 75 2094 (2004).

32 V. N. Laukhin, A. Audouard, H. Rakoto, J. M. Broto, F. Goze, G. Coffe, L. Brossard, J. P.

Redoules, M. V. Kartsovnik, N. D. Kushch, L. I. Buravov, A. G. Khomenko, E. B. Yagubskii,

S. Askénazy and P. Pari, Physica B 211 282 (1995).

33 P. S. Sandhu, G. J. Athas, J. S. Brooks, E. G. Haanappel, J. D. Goettee, D. W. Rickel, M.

Tokumoto, N. Kinoshita, T. Kinoshita and Y. Tanaka, Surface Science 361-362 913 (1996).

34 N. Harrison, R. Bogaerts, P. H. P. Reinders, J. Singleton, S. S. Blundell and F. Herlach, Phys.

Rev. B 54 9977 (1996).

35 P. D. Grigoriev, Phys. Rev. B 67 144401 (2003).

36 I. O. Thomas, V. V. Kabanov and A. S. Alexandrov, Phys. Rev. B 77 075434 (2008).

37 I. B. Berkutov, V. V. Andrievski, Yu. F. Komnik, O. A. Mironov, M. Mironov and D. R. Leadley,

Low Temp. Phys. 35 141 (2009).

38 A. Endo, N. Hatano, H. Nakamura and R. Shirasaki, J. Phys.: Condens. Matter 21 345803

(2009).

39 J. Wosnitza, V. M. Gvozdikov, J. Hagel, O. Ignatchik, B. Bergk, P. J. Meeson, J. A. Schlueter,

H. Davis, R. W. Winter and G. L. Gard, New Journal of Physics 10 083032 (2008).

15


	Non-Lifshitz-Kosevich field- and temperature-dependent amplitude of quantum oscillations in the quasi-two dimensional metal -(ET)4ZnBr4(C6H4Cl2) 
	Abstract
	Introduction
	Experimental
	Results and discussion
	Band structure calculations and oscillatory spectrum
	Basic Fourier components amplitude
	Frequency combinations

	Summary and conclusion
	Acknowledgments
	Analytical expressions of Fourier amplitudes
	References


