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Viewpoint simulation for camera pose estimation

from an unstructured scene model

Pierre Rolin, Marie-Odile Berger, and Frédéric Sur

Abstract— We consider the problem of camera pose estima-
tion from a scene model obtained beforehand by a structure-
from-motion (SfM) algorithm. The model is made of 3D points,
each one of them being represented by its coordinates and a
set of photometric descriptors such as SIFT, extracted from
some of the input images of the SfM stage. Pose estimation
is based on the matching of interest points from a test view
with model points, using the descriptors. Descriptors having a
limited invariance with respect to viewpoint changes, such an
approach is likely to fail when the test view is far away from
the images used to construct the model. Viewpoint simulation
techniques, as ASIFT, have proved effective for wide-baseline
image matching. This paper explores how these techniques can
enrich a scene model by adding descriptors from simulated
views, using either orthographic or pinhole virtual cameras.
Viewpoint simulation permits pose estimation in situations
where the approach based on the sole SIFT descriptors simply
fails.

I. INTRODUCTION

Pose estimation from a known environment is a prob-

lem of uttermost importance in, e.g., pose initialization

before image-based refinement [1], re-localization in SLAM

in case of tracking failure [2], and, more generally, geo-

localization [3], or augmented reality applications [4]. The

present paper deals with pose estimation from correspon-

dences between interest points from a new view (called

here test view) and points from an unstructured 3D scene

model as in [2], [4], [5]. Here, the scene model basically

consists of a point cloud built beforehand from a set of prior

images through a structure-from-motion (SfM) algorithm [6],

[7]. Such an algorithm first matches interest points between

images, based on photometric descriptors. Chains of matched

interest points from several images are then used to simul-

taneously estimate camera poses and 3D point coordinates

using triangulation and bundle adjustment. The descriptors

from a chain eventually give a set of image features to any 3D

point. Several features are proposed in the literature, among

them invariant patches [5] or visual words built upon the

photometric descriptors [8], [9]. The present work makes use

of the collection of the SIFT descriptors [10], as in [4]. Each

3D point of the model is therefore associated with the list of

SIFT descriptors from the corresponding matching chain in

the prior images used in SfM. The scene model is assumed

small enough so that such an exhaustive representation is

still realistic (as in [4]), and does not necessitate a compact

representation such as in [9].

Estimating a camera pose from the test view based on

the scene model consists in solving the Perspective-n-Points
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(PnP) problem [11], [12], [13] for a set of point correspon-

dences between the test view and the scene model. This

approach is limited by the invariance of the photometric

descriptors, which is known to be typically limited to a 30◦

orientation change [14]. If the test view shows a too strong

viewpoint change with respect to the prior images, SIFT

matching is not reliable and too few consistent matches can

be built to solve the PnP problem.

A. Proposed contribution

The goal of this work is to enrich the set of features

associated with the 3D points by generating additional

SIFT descriptors extracted from simulated viewpoints far

away from the available actual ones. As a consequence,

the invariance range of the description of the 3D points is

enlarged, and matching (hence pose estimation) is facilitated

when the scene presents a strong aspect change in the test

view. Viewpoint simulation has proved to be efficient for

matching interest points between two images under a strong

viewpoint change in ASIFT [15] and methods derived from

it [16], [17], or, to a lesser extent, FERNS [18]. In these

approaches, viewpoint simulation is performed under affine

transformations. In our case, assuming the scene to be locally

planar, all views of a region surrounding a 3D point are

linked by homographies in the pinhole model, or by affine

transformations in the orthographic model. The additional

descriptors will thus be generated from simulated views

following one of these two models, in order to mimic a

motion of the camera in positions not present in the prior

images. This is illustrated in Figures 1 and 2. Note that

a similar approach is developed in [19] or [20], but the

simulated views are fronto-parallel only. In [21], viewpoint

simulation is also envisaged in order to improve object recog-

nition, and in [9] for the localization of a camera in a large

environment. In these approaches, the simulated descriptors

are embedded in a quantized visual vocabulary potentially

affected by information loss (as pointed out in [22]). To the

best of our knowledge, a dedicated study focused on the

benefit of viewpoint simulation for pose estimation is still

missing.

B. Paper organization

Section II explains viewpoint simulation using affine trans-

formation or homographies. Section III gives the implemen-

tation details: how the 3D scene model is enriched with the

generated descriptors, and how correspondences with the test

view are built. Experiments are discussed in Section IV and

Section V concludes.







reduce discretization effects. Each strategy have its pros and

cons; the discussion is left for future works.

Simulation gives a patch centered on the 3D point pro-

jection in the virtual view. The SIFT algorithm then gives

keypoints and associated descriptors in this patch. The de-

scriptor of the nearest keypoint in the simulated patch to the

theoretical projection of the considered 3D point is added

to the list of the descriptors of the 3D points, provided the

distance is below 10 pixels (which is a rough estimate of

the reprojection distance in the SfM stage). This threshold

is useful to get rid of cases where no SIFT keypoint is

extracted at the expected position. A quite large threshold is

needed since Gaussian scale-space does not commute with

non-similarity transformations, hence the keypoint of interest

cannot rigorously match the projection of the 3D point.

C. Estimating the camera pose

1) Image / model correspondences: A new view being

given, SIFTs are first extracted. Second, any SIFT keypoint

is associated to a 3D point if the ratio of the distances

between the descriptor and the two nearest classes in the 3D

model is below a threshold (0.6 in practice). Approximated

nearest neighbor [26] speeds up the search. This is the same

algorithm as in [4].

2) Perspective-n-Points: Pose estimation is performed

through a robust estimation via RANSAC [27] based on the

PnP algorithm proposed in [28]. We assume that intrinsic

parameters are known, which is the case if the same camera

as in the SfM stage is used. Of course, the smaller the

outlier rate in the preceding step, the smaller the number

of iterations in RANSAC.

IV. EXPERIMENTS

The following experiments prove that, under wide dif-

ferences of view direction or under strong depth variation,

viewpoint simulation dramatically improves pose estimation.

The pose can be estimated in situations where the standard

algorithm (without simulation) fails. Generally speaking, for

a fixed number N of RANSAC iterations, the pose is more

accurately estimated than without simulation. Afterwards, we

discuss computation times and potential improvements.

In the figures, the cameras giving the prior images for SfM

are in red, virtual cameras are in green, test viewpoints are

in cyan and computed poses are in blue.

A. Experimental setup

We evaluate the proposed method on four datasets : a se-

ries of images from the publicly available Robot Dataset [29]

(the result of the SfM stage is presented in Figure 1)

and three personal datasets, as depicted in Figure 5. These

datasets feature 1600 × 1200 images and present mostly

piecewise planar, object-centered scenes. All experiments are

within the same setup. A 3D model of the scene is built

with VisualSfM (Section III-A). The pose of a test view is

estimated (Section III-C) under different scenarios: S where

the model is the SfM reconstruction without simulation, A

Book Poster

Desk Wall

Fig. 5. Representative images from the four datasets. Book is from [29].

where the model of S is enriched with the additional descrip-

tors from affine simulations, and H where the model of S is

enriched with homography simulation (Section III-B).

To compare the three scenarios, 100 poses are computed

from the same test view in each case using the same number

of RANSAC iterations for every run. The variability of these

100 poses are then visually compared. It is expected that all

these poses are superposed. In this case, we also compute

the standard deviation (see caption). In the Book dataset, a

ground truth is available and the actual test pose is known.

As the inlier ratio among image/model correspondences

is very different from a dataset to another (e.g., from 4%

to 23% in scenario S), we consider different numbers of

RANSAC iterations for each of the datasets. However, to

make variability comparison easier, the same number of

iterations is used for the three scenarios. As we shall see,

simulation-based scenarios give a smaller pose variability

than scenario S. This means that enriching the model with

simulated features makes RANSAC to converge faster, i.e.,

the inlier ratio to increase.

B. Pose improvement using simulation-based models

1) Robustness of pose estimation to viewpoint changes:

Viewpoint simulation is shown to significantly increase pose

accuracy when the test view is taken far away from the SfM

views, giving a strong aspect change of the scene.

We first present experiments with the Book dataset (Fig-

ure 1), where the actual test pose is available. It is hence

possible to determine if a 2D/3D match is correct or not, by

projecting the considered 3D point using the ground truth

pose: If the reprojection distance is below 20 pixels the match

is considered as correct (this threshold corresponds to µ+3σ

where µ and σ are respectively the mean and the standard

deviation of the SfM reprojection error). In this experiment

the inlier ratio is found to be 23% in scenario S, 30% in A,

and 37% in scenario H.

Figure 7 shows the repartition of the 2D/3D matches along

the simulated and actual views in scenario H. The viewpoint

that contributes the most to pose computation is here a virtual







scenario S, 30% to 28% in scenario A and 37% to 35% in

scenario H. Although these results are encouraging, choosing

a unique representative element is paradoxical, since our

approach consists in enriching descriptor classes. Reducing

classes to a small number of representative elements is

however to be further investigated.

Let us finish with a speed-up for RANSAC. Figure 7 is

a representative example of the distribution of the 2D/3D

correspondences along the virtual and actual views. It turns

out that only a few views (either virtual or real) significantly

contribute to the set of correspondences, and among these

views the inlier ratio is quite high. Viewpoints close to the

sought one are more likely to produce correct correspon-

dences than the others. A straightforward speed-up for the

RANSAC stage is thus to impose a prior distribution which

favours correspondences from the images giving the largest

numbers of image/model correspondences. This amounts to

drawing correspondences from subsets with a higher inlier

rate, as in PROSAC [32]. Although further investigations

are needed, early tests indicate that this strategy actually

improves RANSAC convergence speed.

V. CONCLUSION

This paper discusses viewpoint simulation to enrich an

unstructured scene used in a pose estimation application.

It presents both the theoretical model and an experimental

setup. Although the present study is limited to relatively

small scenes, it permits us to gain several insights. First,

viewpoint simulation actually makes it possible to estimate

a pose in situations where the standard SIFT-based matching

simply fails, either because of a strong difference in the view

angle, or in the distance to the scene. Second, viewpoint

simulation also gives a more reliable pose when the standard

approach would need a large number of RANSAC iterations.

The homography model performs significantly better than the

affine one : it produces sets of 2D/3D correspondences with

higher inlier ratio and bigger RANSAC consensus sets, the

two models requiring a similar computation time.

Further works are also needed in the definition of the

2D/3D matching, since the pose accuracy is not directly

linked to the number of prior correspondences but also de-

pends on their distribution in the scene. A heuristic criterion

for two-view SfM is proposed in [33]. It would be interesting

to extend such a criterion to the problem of interest.
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