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SUMMARY

Turnover of actin networks in cells requires the fast
disassembly of aging actin structures.While ADF/co-
filin and Aip1 have been identified as central players,
how their activities aremodulated by the architecture
of the networks remains unknown. Using our ability
to reconstitute a diverse array of cellular actin organi-
zations, we found that ADF/cofilin binding and ADF/
cofilin-mediated disassembly both depend on actin
geometrical organization. ADF/cofilin decorates
strongly and stabilizes actin cables, whereas its
weaker interaction to Arp2/3 complex networks is
correlated with their dismantling and their reorgani-
zation into stable architectures. Cooperation of
ADF/cofilin with Aip1 is necessary to trigger the full
disassembly of all actin filament networks. Additional
experiments performed at the single-molecule level
indicate that this cooperation is optimal above a
threshold of 23 molecules of ADF/cofilin bound as
clusters along an actin filament. Our results indicate
that although ADF/cofilin is able to dismantle selec-
tively branched networks through severing and de-
branching, stochastic disassembly of actin filaments
by ADF/cofilin and Aip1 represents an efficient alter-
native pathway for the full disassembly of all actin
networks. Our data support a model in which the
binding of ADF/cofilin is required to trigger a struc-
tural change of the actin filaments, as a prerequisite
for their disassembly by Aip1.

INTRODUCTION

Cells change shape at a microscopic or mesoscopic scale by

exerting internal forces based on dynamical actin networks

[1]. The turnover of actin is characterized by a rapid, organized,

and localized polymerization of actin filaments, followed by

their controlled disassembly. However, in an apparent contra-

diction, actin is a very stable polymer, with a limited capacity

to disassemble by itself [1]. The assembly of different types

of actin networks in vitro indicates that actin structures can

remain stable for long periods of time [2, 3]. Therefore, an

essential requirement for cells to perform a rapid actin turnover

is to be able to trigger a fast disassembly of aging actin net-
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works, which can only be performed with the contribution of

accessory proteins [1, 4].

A central player in actin disassembly is ADF/cofilin, a 13- to 21-

kDa protein conserved in all eukaryotes [5]. ADF/cofilin binds to

the side of actin filaments and induces important structural

changes, which renders them more compliant to bending and

twisting [6, 7]. A large body of literature describes how important

these structural changes are for the activity of ADF/cofilin. Cur-

rent models propose that actin filaments fully decorated by

ADF/cofilin are stable; however, actin filaments decorated by

sub-stoichiometric densities of ADF/cofilin are severed because

they accumulate some mechanical stress at the boundaries be-

tween bare and ADF/cofilin-decorated segments [6–8].

Severing, by itself, is not sufficient to explain how every actin

network can be disassembled in cells (reviewed in [4]). Therefore,

other molecular players, including Aip1, have been suggested to

cooperate with ADF/cofilin to disassemble actin networks effi-

ciently [9–19]. Aip1 has binding sites for both actin and ADF/co-

filin and was recently identified as a crucial factor to destabilize

freely fluctuating cofilin-saturated actin filaments [17, 18]. How-

ever, (1) how these proteins interact with organized actin net-

works and how they contribute, individually or together, to their

disassembly, have yet to be determined, and (2) how the activ-

ities of ADF/cofilin and Aip1 are coordinated at the molecular

level to disassemble actin filaments remains unclear.

Here we studied the impact of these families of disassembly

factors on actin networks of various architectures. We per-

formed this characterization by using protein micropatterning

technologies, which permit the geometrical-control of defined

actin organization, combined with total internal reflection fluo-

rescence microscopy and triple-color imaging. We found that

the efficiency of actin disassembly factors is dependent on the

organization of the filaments. Hence, rather than identifying a

unique and general mechanism for the disassembly of actin net-

works in cells, our work suggests that cells may have alternative

pathways for the disassembly of actin networks. In addition, our

work at the molecular level indicates a possible unidentified

function for ADF/cofilin, as marker to maintain actin filaments

or networks in a pre-disassembly state.

RESULTS

ADF/Cofilin-Induced Actin Disassembly Depends
on Actin Architecture
We first aimed to characterize the effects of critical components

of actin disassembly on different actin architectures. Recently,

protein micropatterning has been developed to reconstitute



in vitro, within the same field of observation, the three main

cellular actin organizations (i.e., Arp2/3 branched networks, par-

allel cables, or cables of mixed polarity) [20]. In this study, we

micropatterned motifs of Las17 at the surface of coverslips (Fig-

ure 1A). Las17 is the homolog of WASP in yeast, a nucleation-

promoting factor (NPF) of the Arp2/3 complex able to trigger

the formation of actin networks in the presence of a polymerizing

mixture containing the Arp2/3 complex and actin [21, 22]. We

chose a type of geometry with two parallel bars (of 20-mm length)

of Las17 separated by 30 mm.With thismotif, branched networks

are assembled on the patterns and parallel cables emerged from

the free elongation of the filaments away from the patterned

areas (Figures 1B and 1C and Movie S1). Cables of mixed polar-

ity are formed between the bars, whereas parallel cables

are assembled in other areas. We also pasted on top of the

coverslips a 6-mm-thick layer of polydimethylsiloxane (PDMS)

pinched with a 6-mm-diameter hole (Figure 1A). PDMS created

wells and gave the possibility to bring sequentially additional fac-

tors in solution. Actin networks were imaged at the surface of the

coverslips with total internal reflection fluorescence microscopy

(TIRFM) in order to limit the noise generated by the other fluores-

cent molecules present in solution [23–25].

When actin assembly from the micropatterned area reached a

steady state, we added 2-mM Alexa-488-labeled yeast ADF/co-

filin to the reaction mixture (Figure 1D). Although ADF/cofilin in-

teracted with all actin networks, it bound more sparsely on the

Arp2/3 networks than on the different populations of cables (Fig-

ures 1D and S1A). Binding of ADF/cofilin was correlated with a

decrease of the actin fluorescence signal, corresponding to actin

disassembly (Figure S1B). The level of disassembly was archi-

tecture dependent. Indeed, the actin fluorescence signal after

450 s had decreased more on branched networks than on paral-

lel cables or on cables of mixed polarity (Figures 1D, S1B, and

S1C). Experiments performed at different concentrations of

ADF/cofilin revealed that even for equivalent binding densities

of ADF/cofilin, branched actin networks disassembled better

than all the actin cables (Figure S1C). Together, these results

indicate a strong dependence of the actin architectures in

ADF/cofilin-driven actin network disassembly. ADF/cofilin bind-

ing is able to destabilize branched networks but is not sufficient

to disassemble bare parallel or antiparallel bundles.

ADF/Cofilin and Aip1 Collaborate to Disassemble Actin
Networks Rapidly and Completely
Genetic and biochemical observations indicate that additional

disassembly factors, including Aip1, cooperate with ADF/cofilin

in vivo [9–11, 13, 18, 26]. Therefore, we tested the synergy be-

tween ADF/cofilin and Aip1 on actin network disassembly (Fig-

ure 2A). In our experimental system, Aip1 alone was able to

bind slowly and homogenously to actin networks (Figures S2A

and S2B), but it did not contribute to their disassembly, as re-

vealed by constant fluorescence actin intensity (Figure S2C).

The presence of ADF/cofilin on actin networks accelerated the

binding of Aip1 (Figures 2B and S2B and Movie S2). In these

conditions, Aip1 was able to trigger the disassembly of all actin

networks, including parallel and antiparallel actin organizations.

Actin network disassembly was very rapid, as >98% of the

actin fluorescence signal had disappeared after 20 s. The fluo-

rescence signal of Aip1 was correlated with the amount of
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ADF/cofilin bound to actin networks during disassembly (Fig-

ure 2B). This suggests that the simultaneous presence of actin

and ADF/cofilin is required for a fast and efficient binding of

Aip1 to actin networks and their disassembly.

We compared the previous experimental situation, where Aip1

disassembles ADF/cofilin bound actin networks (Figures 2 and

S2C), with an experimental condition in which ADF/cofilin and

Aip1 are introduced simultaneously (Figure S3). While the extent

of disassembly is equivalent for both conditions, disassembly

occurred over several minutes, on average 15 timesmore slowly.

This suggests that the binding of ADF/cofilin to actin networks is

the limiting factor for fast disassembly in this system.

Severing of Actin Filaments Requires the Clustering of a
Threshold Number of ADF/Cofilin Molecules
Our observations performed at the whole-network level indicate

that ADF/cofilin binding is a pre-requisite for the Aip1-enhanced

disassembly of actin structures. Therefore, a deeper under-

standing of how actin networks are disassembled by the coor-

dination of ADF/cofilin and Aip1 must come from single-fila-

ment-scale observations. For that purpose, we updated our

TIRFM setup to the observation of single molecules [27].

Calibration of the fluorescence intensity of individual Alexa mol-

ecules was performed prior to every experiment, with the mea-

surement of the fluorescence intensity loss of molecules bound

to the coverslips during their photobleaching (Figure S4). As a

control of our measurement, we compared the average intensity

of individual Alexa-labeled actin monomers with the total inten-

sity of actin filaments with different degrees of labeling (data not

shown).

We focused our analysis first on the effect of ADF/cofilin on

actin filaments. ADF/cofilin binds cooperatively to the side of

actin filaments (Figure 3A, white arrows; [6, 8, 28]). At a low con-

centration of ADF/cofilin (180 nM; Movie S3), the accumulation

of ADF/cofilin was slow (about 1.4 molecules , min�1), reaching

a maximum of 5 ± 1 molecules, and fragmentation of the fila-

ments rarely occurred (Figures 3A and 3B). At an intermediate

concentration of ADF/cofilin (360 nM; Movie S4), it accumulated

faster (32 ± 18 molecules , min�1), and fragmentation occurred

when the intensity of the ADF/cofilin spots reached a threshold

level (Figure 3A, blue arrows; Figure 3B). We quantified the in-

tensity of the spots on the last images before fragmentation,

and determined that a number of Nc = 23 ± 8 ADF/cofilins was

necessary at the time of severing (Figure 3C). At a high concen-

tration of ADF/cofilin (2 mM), growing actin filaments were fully

decorated with ADF/cofilin and were resistant to fragmentation

as described previously in the literature (Figure 3A, Movie S5,

and [2, 29]).

Actin Filament Severing by ADF/Cofilin Is Polarized
When we performed actin filament severing experiments at an

intermediate concentration of ADF/cofilin (360 nM), we noticed

that fragmentation events occurred systematically in a polarized

manner (Figure 3A, blue arrows). In other words, for every part of

the filaments decorated by a stretch of ADF/cofilin, severing

systematically occurred at one of the boundaries between deco-

rated and bare sections of the filaments. After severing, one frag-

ment remained practically free of ADF/cofilin at its severed end

(<4% of the ADF/cofilin present before severing), while the other
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Figure 1. Effect of ADF/Cofilin on Different Actin Network Architectures

(A) Schematic description of the experiment performed in Figure 1.

(B) Left: time course of Alexa-568-labeled actin (2 mM) assembly on Las-17-coatedmicropatterns in the presence of Arp2/3 complex (20 nM), prior to the addition

of ADF/cofilin. Right: color-coded cartoon of actin network architectures.

(C) Quantification of (B). Actin network normalized fluorescence intensity along the yellow linescan indicated in (B) after a 115 min polymerization time is shown.

(D) Left: time course of Alexa-488-labeled ADF/cofilin (2 mM; green) binding to actin networks (red). Right: quantification of actin (red) and ADF/cofilin (green)

fluorescence intensities, normalized to their peak intensities.

Scale bars represent 30 mm. See also Figure S1 and Movie S1.
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Figure 2. Effect of Aip1 on ADF/Cofilin-Bound Actin Networks

(A) Schematic description of the experiment performed in Figures 2A and 2B and 2C.

(B) Left panels: Time course of Aip1-SNAP-Alexa-647 (1 mM; in blue) binding to ADF/cofilin-decorated actin networks. Right panels: Quantification of actin (in red),

ADF/cofilin (in green) and Aip1 (in blue) fluorescence intensities, normalized to their peak intensities. Scale Bar represents 30 mm.

See also Movie S2.
fragment kept themajority of the ADF/cofilin molecules (>88%of

the ADF/cofilin present before severing). After many severing

events, a large number of fragments decorated with a stretch

ADF/cofilin at one of their ends remained on the coverslips (Fig-

ure 3D). Photobleaching (FRAP) of the ADF/cofilin stretches

showed an absence of fluorescence recovery (Figure 3E). This

indicates that ADF/cofilin molecules are bound to actin filaments

for long periods of time, without any exchange with the ADF/

cofilin molecules in solution [6, 8].

Next, we aimed to determine the nature of the actin filament

ends after fragmentation. We imaged the elongation of the frag-

ments, and we observed that actin monomer addition always

occurred at the end of the filaments that was left free of ADF/

cofilin (Figures 3F and 3G). Altogether, these observations indi-

cate that the fragmentation of actin filaments by ADF/cofilin is

a polarized event. After severing, the ADF/cofilin molecules

remain on the pointed end of the new fragments, whereas the

barbed ends are bare and free to elongate.
4

The Number of ADF/Cofilin Bound to Actin Regulates
Aip1-Induced Disassembly
We focused next on the effect of Aip1 at the filament scale. We

polymerized actin filaments in the presence of different concen-

trations of ADF/cofilin for 5 min, and then injected 1-mM Aip1

(Figure 4A). Our results indicate that the number of ADF/cofilin

molecules that accumulated along the actin filamentsmodulated

the activity of Aip1. In the absence or at a low concentration of

ADF/cofilin, Aip1 did not show any effect, and ADF/cofilin

stretches remained stable along the actin filaments over long pe-

riods of time (>2 min) (Figures 4B and 4C and Movie S6). At an

intermediate concentration of ADF/cofilin, Aip1 did not catalyze

the severing reaction (Figure 4D). However, when a severing

event occurred, we observed a progressive decrease of the

number of ADF/cofilins bound at the pointed ends of the actin

fragment (Figures 4B and 4C and Movie S7). Since the ADF/

cofilin stretches are stable in the absence of Aip1, this decrease

indicates that Aip1 unloads several ADF/cofilin molecules from
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Figure 3. Quantitative Measurement of ADF/Cofilin Accumulation along the Side of Individual Actin Filaments
(A) Time course of Alexa-488-labeled ADF/cofilin (green) binding to individual actin filaments (800 nM; red), at the indicated concentrations. White arrowheads

show representative examples of ADF/cofilin cooperative binding to actin filaments. Blue arrowheads show a representative example of a severing event, where

ADF/cofilin molecules remain mainly on one end of the fragments. The scale bar represents 5 mm.

(B) Quantification of (A). A time course of four representative molecular accumulations of ADF/cofilin along actin filaments for 180 nM (dotted lines) or 360 nM

(continuous lines) of ADF/cofilin is shown. Curves are plotted in blue prior to fragmentation and in red after fragmentation occurred.

(C) Quantification of (A) and (B). Distribution of the number of ADF/cofilin molecules bound to actin filaments prior to severing is shown (23 ± 11molecules; n = 46).

Error bars indicate the SD.

(D) Representative field of observation after many fragmentation events with 360-nM ADF/cofilin. The scale bar represents 10 mm.

(E) Fluorescence recovery after photobleaching (FRAP) of ADF/cofilin accumulations after severing.

(F) Time course of actin filament elongation after severing. The scale bar represents 5 mm.

(G) Kymograph of (D), plotted along the axis of the filament.

See also Figures S2–S4 and Movies S3, S4, and S5.
the severed ends or triggers the disassembly of a short part of

the filament. Aip1 showed its most dramatic effect at a high con-

centration of ADF/cofilin, where it was very effective in disas-
5

sembling actin filaments fully decorated with ADF/cofilin (Fig-

ure 4B and Movie S8). Disassembly was complete within 4 s.

Overall, these results were confirmed with a measurement of
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Figure 4. Effect of Aip1 on Individual ADF/Cofilin-Bound Actin Filaments

(A) Schematic description of the experiment performed in Figure 4.

(B) Time course of Aip1’s (1 mM) effect on individual actin filaments (800 nM; red) decorated with various amounts of ADF/cofilin (green). White arrowheads track

representative examples of ADF/cofilin stretches bound to the side of actin filaments (non-severing events). Red arrowheads track representative examples of

ADF/cofilin stretches bound to the pointed end of actin filaments (subsequent to a severing event). Scale bars represent 5 mm.

(C) Quantification of (B). A time course of three representative ADF/cofilin stretches along actin filaments at 180 nM (black curve) and 360 nM (red and blue curves)

of ADF/cofilin after injection of Aip1 is shown. Clusters of ADF/cofilin are observed either before (blue curve) or after (red curve) the fragmentation occurred.

Fluorescence signal decrease of end-binding ADF/cofilin clusters were fitted with a monoexponential decay (Tdecay = 1.3 ± 1.1 s; n = 14).

(D) Quantification of the filament lengths as a function of ADF/cofilin concentration, in the presence of 800 nM actin alone or in the presence of 800 nM actin and

1 mM Aip1, normalized to the maximum values. Error bars indicate the SD.

See also Figures S4 and S5 and Movies S6, S7, and S8.
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Figure 5. Actin Filament Elongation Assay in the Presence of ADF/Cofilin and Aip1
(A) Time course of Alexa-568-actin filament (800 nM; red) elongation in the presence of 360 nM ADF/cofilin after injection of 800 nM Alexa-647-actin monomers

(blue) and 20 nM capping protein.

(B) Time course of Alexa-568-actin filament (800 nM; red) elongation in the presence of 360 nM ADF/cofilin after injection of 800 nM Alexa-647-actin monomers

(blue) and 1 mM Aip1. The scale bar represents 5 mm.
the average length of the actin filaments. The length of the fila-

ments was comparable for concentrations of ADF/cofilin up to

300 nM, whether Aip1 was present in solution or not. However,

the length of the filaments rapidly dropped to sizes below the

diffraction limit of our microscope for higher concentrations of

ADF/cofilin in the presence of Aip1 (Figure 4D).

The effect of Aip1 on ADF/cofilin-bound actin filaments was

dose dependent. Indeed, a low concentration of Aip1 (5 nM)

changed the kinetic of actin filament disassembly, but not its

extent (Figure S5). Slower disassembly allowed us to track

the fate of the disassembling filaments. We observed a frequent

severing of the filaments until they were too short to be de-

tected, but we did not convincingly observe any fast depolymer-

ization or bursting of the filaments ends as previously reported

[18, 30].

We also performed these experiments with various concentra-

tions of Alexa-labeled Aip1, but we failed to detect any interac-

tion of Aip1 with either ADF/cofilin or single actin filaments prior

to disassembly (data not shown). This suggests that a very tran-

sient interaction of a low number of Aip1 molecules with ADF/co-

filin and/or actin is sufficient to trigger the disassembly of the

filaments.

Effect of ADF/Cofilin and Aip1 on Actin Filaments
Barbed Ends
In the past, a number of genetic and biochemical observations

suggested that ADF/cofilin and Aip1 may have the ability to

inhibit the elongation of actin filament barbed ends [11, 31, 32].

However, whether these two proteins are sufficient for this effect

remains controversial [17, 18, 33]. A difficulty in detecting such

an inhibition arises from the simultaneous efficiency of ADF/co-

filin and Aip1 in disassembling filaments into non-polymerizable

low-molecular-weight species [34]. Therefore, in this study, we

could only test barbed-end capping on Alexa-568-actin fila-

ments pre-assembled in the presence of an intermediate con-

centration of ADF/cofilin (Figures 5A and 5B). Although simulta-

neous addition of Alexa-647-actin monomers and 20-nM

capping protein induced a rapid and strong capping of the

Alexa-568-actin filaments (Figure 5A), simultaneous addition of

Alexa-647-actin monomers and 1-mM Aip1 (which corresponds

roughly to the concentration of Aip1 in cells [32]) did not induce

barbed-end capping, even at sites where fragmentation events

occurred (Figure 5B). In these conditions, the simultaneous pres-

ence of ADF/cofilin and Aip1 did notmodify the elongation rate of

actin filaments (data not shown).
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In vivo, capping protein sterically limits the barbed-end elon-

gation of actin filaments before they are disassembled. Two pub-

lications questioned a potential inhibitory effect of barbed-end

capping for the fast disassembly of actin filaments, leading to

contradictory results [30, 33]. We tested this hypothesis in our

system by adding capping protein to a solution of actin filaments

polymerizing in the presence of 2-mMAlexa-488-cofilin (Figure 6).

We verified that actin filament elongation was interrupted before

addition of Aip1. Actin filaments disassembled in the presence of

capping protein and in its absence, showing that barbed-end

capping is not an obstacle to filament disassembly.

DISCUSSION

In this study, we have detailed the interplay between ADF/cofilin

and Aip1 to disassemble actin, both at the filament scale and at

the level of the different cellular actin organizations.

Actin Disassembly and Network Architecture
Specificities
Several lines of evidence indicate that in vivo, disassembly fac-

tors act on different actin networks with variable efficiency and

provide disassembly rates over different time scales. One

example comes from observations in yeast, which contain three

types of actin organizations. At the cell cortex, endocytic actin

patches are composed of Arp2/3 branched networks. Their

average lifetime is about 15 s, with a disassembly phase of about

6 s [35–37]. Inside the cell body, actin cables are composed of

short parallel actin filaments, mostly of identical orientations

[38]. Actin cables are very dynamic and disappear within sec-

onds [36, 39]. At the division site, a cytokinetic ring is composed

of short parallel actin filaments, with identical orientations or

mixed polarities depending on the stage of cell division [40].

Most recent works indicate turnover values for the ring ranging

from 11 s to several minutes [36, 41, 42]. ADF/cofilin and Aip1

are mainly detected on actin patches, indicating an apparent af-

finity of these proteins that is higher for branched networks than

for linear networks [10, 43]. Interestingly, depletion of Aip1 in

budding yeast partially relocalizes ADF/cofilin from actin patches

to cables. In these mutants, decoration of actin cables by ADF/

cofilin is correlated with their stabilization [10, 13].

These cellular observations indicate the existence of important

rules linking actin structural organization with its disassembly.

Previous works have demonstrated that the effects of actin bind-

ing proteins are not necessarily the same when they interact with



Figure 6. Effect of ADF/Cofilin and Aip1 on Actin Filaments Blocked by Capping Protein

Top: time course of actin filament (800 nM) elongation in the presence of 2-mM Alexa-488-ADF/cofilin for 4 min, followed by a first injection of 20-nM capping

protein for 16 min and a second injection of 1-mM Aip1. The scale bar represents 5 mm. Bottom: kymograph of the experiment plotted along the axis of a

representative actin filament.
individual actin filaments or with different types of actin architec-

tures [36, 44]. Therefore, we hypothesized that network geomet-

rical organization could be one of the key parameters to explain

how actin disassembly is regulated in cells. Our results now indi-

cate that ADF/cofilin binding to actin is architecture dependent

(Figures 1 and 7A). ADF/cofilin can disassemble branched actin

networks but is unable to disassemble parallel cables or cables

of mixed polarity. A probable explanation arises from the fact

that ADF/cofilin’s binding accelerates the debranching of the

Arp2/3 complex [45, 46], which is expected to induce a progres-

sive loss of structural integrity of branched networks and their

faster dismantling (Figure 7A). However, even for branched actin

networks, ADF/cofilin is unable to fully convert actin networks

into actin monomers. At steady state, a population of fragments

loaded with ADF/cofilin remains stable over long periods of time

(Figures 1 and 7A). Moreover, on parallel cables or cables of

mixed polarity, ADF/cofilin induces only a marginal disassembly

and these structures remain highly decorated by ADF/cofilin. In

previous studies, this effect has been proposed to have a phys-

iological relevance for the stabilization of some cellular actin

structures [2]. Our work now suggests that ADF/cofilin loading

on to actin filaments could also be an essential prerequisite for

Aip1-mediated actin disassembly. From these results, we can

now propose a simple interpretation of the aip1D phenotypes

observed in cells. Our explanation is that ADF/cofilin-loaded

actin cables become unable to disassemble in the absence of

Aip1, whereas actin patchesmay still use debranching as an effi-

cient alternative for disassembly.

New Insights about the Interaction of ADF/Cofilin with
Actin Filaments
At the filament scale, we found unexpected properties of ADF/

cofilin’s interaction with actin. Our single-molecule detection im-

aging capacity enabled us to quantify the number of ADF/cofilin

molecules bound to the side of actin filaments in real time. We

demonstrate that severing induced by ADF/cofilin is a much

more efficient and regulated mechanism than previously

thought. We measured that a minimal cluster of 23 ADF/cofilin

molecules along an actin filament is necessary for efficient
8

severing (Figures 3 and 7B). A large body of literature details

how the binding of ADF/cofilin to actin filamentsmodifies their ul-

tra-structural and -mechanical properties [6, 7, 47, 48]. We pro-

pose that a threshold number of 23 ADF/cofilin molecules in a

cluster is required to trigger a conformational change on actin fil-

aments and to provide enough mechanical stress for their frag-

mentation (Figure 7B).

Moreover, the dissymmetry in severing suggests that the me-

chanical stress created by the ADF/cofilin stretches is polarized.

These results are in line with observations performed at the ultra-

structural level. High-speed atomic force microscopy has

recently revealed that the helical pitch of ADF/cofilin-decorated

actin filaments is 25% shorter compared to bare filaments [49].

This conformational change is only propagated to the neigh-

boring bare segments on the pointed end side of the clusters,

but not on the barbed-end side. Consequently, this study found

that ADF/cofilin clusters only grow toward the pointed end of

actin filaments. This observation explains why clusters do not

accumulate more ADF/cofilin molecules at the pointed ends

of the fragments after a successful severing event in our

experiments.

A Step Forward in our Understanding of Actin Filament
Disassembly by ADF/Cofilin and Aip1
ADF/cofilin and Aip1 work in tandem to fully disassemble any

type of actin organization. In this study, we used triple-color sin-

gle-molecule imaging to dissect the effect of Aip1 on individual

actin filaments decorated by variable numbers of ADF/cofilin

molecules (Figure 4). We have integrated our results into amodel

based on the observation that Aip1 requires the same minimal

stretch of 23 ADF/cofilins bound to actin filaments to disas-

semble them efficiently (Figure 7B). We propose that Aip1-stim-

ulated disassembly requires the conformational change on actin

filaments induced by a minimal local density of ADF/cofilin. In

this model, actin filaments or higher-ordered organizations fully

decorated by ADF/cofilin become ideal substrates for Aip1.

How destabilization of actin filaments by Aip1 occurs remains

to be determined at the structural level, but an interesting hy-

pothesis is that actin filaments could disassemble through



A

B

Figure 7. Models for the Disassembly of Actin by ADF/Cofilin and Aip1

(A) Disassembly at the whole-network scale: architecture dependence. In this model, binding of ADF/cofilin to actin cables does not trigger their disassembly, but

switches actin filaments (blue filaments) to a pre-disassembly state (red filaments) (top). However, ADF/cofilin has an important effect for the dismantling of

branched networks, through its de-branching activity (bottom). For all actin networks, presence of Aip1 turns these stable ADF/cofilin-decorated structures into

unstable assemblies, prone to stochastic disassembly.

(B) Severing and disassembly at the single-filament scale. In this model, binding of ADF/cofilin needs to reach a threshold level of 23 molecules to trigger a

conformational change of the filaments (represented by a change in their color, from blue to red). At a low concentration of ADF/cofilin (left), the threshold level is

not reached. At an intermediate concentration of ADF/cofilin (center), actin filaments decorated by sub-stoichiometric densities of ADF/cofilin but with N > 23
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cooperative strand separation [30]. Such mechanism was

described to induce in vitro shortening of actin filaments by

bursts at their ends. In our work, we have not been able to detect

any bursting event from the ends of the filaments and capping

protein was not an inhibitor of disassembly. Therefore, our re-

sults do not support the existence of any end bursting for the

fast disassembly of yeast actin filaments, although we do not

rule out the possibility that bursting could come from some iso-

form specificity. Nevertheless, the fact that Aip1 is sufficient in

our system to induce a disassembly of actin networks at cellular

rates does not support the necessity of any end bursting to

describe the synergy between ADF/cofilin and Aip1.

EXPERIMENTAL PROCEDURES

Protein expression, purification, and labeling are detailed in the Supplemental

Experimental Procedures.

Sample Preparation

Glass Cleaning

Glass slides and coverslips were cleaned by sonication at room temperature

for 15 min in 1 M aqueous NaOH and for 15 min in ethanol. They were exten-

sively rinsed with deionized Milli-Q (Millipore) filtered water after each sonicat-

ion step and were eventually dried and stored for up to 2 weeks at room

temperature.

Glass Passivation

Slides and coverslips were plasma treated for 3min at 80–90W (Femto; Diener

Electronic) and immediately incubated with a passivation agent. For the micro-

patterning-based experiments, slides and coverslips were incubated with

0.1 mg/ml Poly(L-lysine)-poly(ethyleneglycol) in 10 mM HEPES (pH 7.4) for

30 min at room temperature, washed gently in water, dried, and stored at

4�C for up to 1 week. For the single-filament-scale experiments, slides and

coverslips were incubated with 1 mg/ml Silane-PEG 5K in a solution of ethanol

complemented with 0.1% HCl for 18 hr at room temperature under gentle

shaking, washed extensively in ethanol and water, dried, and stored at 4�C
for up to 1 week.

PDMS Wells

PDMS wells were prepared by mixing 10 g of DMS (Sylgard 184 Silicone Elas-

tomer; DowCorning) for each gram of curing agent. Themixture was degassed

for a minimum of 45 min, spread into 7-mm-thick layers, and heated at 100�C
until it hardened (i.e., for about 20 min). PDMSwas cooled down, cut to appro-

priate shapes, and stuck to the coverslips. An additional cover of PDMS was

placed on top of the wells to avoid evaporation.

Las17 Micropatterning

Surface patterns were created by the deep UVmicropatterningmethod as pre-

viously described [20, 50]. 10 ml of a 200-nM solution of Las17 in its purification

buffer was incubated with the micropatterened areas inside the wells for

15 min at 4�C.
Actin Assembly

Yeast actin, rabbit actin, and labeled rabbit-muscle actin were mixed in G

buffer (5 mM Tris-HCl [pH 8], 0.2 mM ATP, 0.1 mM CaCl2, 0.5 mM DTT, and

1 mM NaN3) to a final ratio of 1:4 (rabbit actin:yeast actin), with an overall

10% labeling percentage. Actin polymerizationwas initiated bymixing the pro-

teins of interest in F buffer (10 mM imidazole-HCl [pH 7.0], 75 mM KCl, 1 mM

EGTA, 1 mM ATP, 1 mM MgCl2, 70 mM DTT, 2.5 mg/ml glucose, 15 mg/ml

catalase, 70 mg/ml glucose oxidase, 0.1% BSA, and 0.3% methylcellulose).

TIRF Microscopy and Data Analysis

Time course of actin assembly was acquired on aNikon Eclipse Ti microscope,

equipped with a 603 objective and an Evolve EMCCD camera (Photometrics)
molecules of ADF/cofilin are prone to an asymmetric severing event. After fragme

ends (BA) remain free to elongate. At a high concentration of ADF/cofilin (right), fi

model, the conformation of actin filaments regulates the activity of Aip1. Only a

stochastic disassembly.
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using Metamorph v.7.7.10.0. Data were analyzed with ImageJ v.1.48 and

plotted with GraphPad Prism 6.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and eight movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2015.04.011.
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