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Emulation-based stabilization of networked control systems implemented on FlexRay

We investigate the emulation controller design approach for nonlinear networked control systems (NCS) with FlexRay. FlexRay is a deterministic communication protocol which is increasingly used in the automotive industry as it provides a high bandwidth and allows for safety critical applications. It is characterized by pre-set communication cycles that are subdivided into static and dynamic segments; the data transmissions are scheduled by different rules depending on the segment. We propose for the first time a hybrid model of NCS with FlexRay for this purpose. We show, under reasonable assumptions, that the asymptotic stability property ensured by the controller in the absence of communication constraints is preserved when the latter is implemented over FlexRay with sufficiently frequent data transmission. In particular, we assume that on each communication segment, the data transmissions are governed by uniformly globally exponentially stable protocols. This covers the case when the round-robin protocol is implemented on the static segment and the try-once-discard protocol is implemented on the dynamic segment. We provide explicit maximum allowable transmission interval bounds that guarantee stability.

Introduction

Networked control systems (NCS) is a new generation of control systems in which the controller and the plant communicate via a digital network. The network is typically modeled as a serial communication channel with a finite bandwidth. NCS attract a lot of attention due to the benefits they offer in terms of reduced cost, weight and volume and ease of maintenance and installation. On the other hand, the communication channel induces undesirable constraints like time-varying sampling, time delays, scheduling, quantization and packet dropouts, which complicate the analysis and the design and in general adversely affect the behavior of NCS. In the present paper, we concentrate on the effect of time-varying data sampling and scheduling. Many solutions have been proposed to handle these constraints for NCS, see [START_REF] Heemels | Stability and stabilization of networked control systems[END_REF] for a good summary. However, it is not clear whether these Supported by the Australian Research Council under the Discovery Project and Future Fellow program, the ANR under the grant COMPACS (ANR-13-BS03-0004-02) and the European 7th Framework Network of Excellence "Highlycomplex and networked control systems" (HYCON2 No.
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Email addresses: wei.wang@unimelb.edu.au (Wei Wang), dnesic@unimelb.edu.au (Dragan Nešić), romain.postoyan @univ-lorraine.fr (Romain Postoyan). theoretical results can be directly applied to NCS with some specific communication networks. This paper aims to bridge this gap between theory and practice by considering NCS with Flexray. There are works that deal with feedback control systems implemented on FlexRay, see [START_REF] Goswami | Reengineering cyber-physical control applications for hybrid communication protocols[END_REF][START_REF] Naghshtabrizi | Analysis of distributed control systems with shared communication and computation resources[END_REF] for instance. We generalise these results by considering nonlinear systems (as opposed to linear) and we propose a novel model of NCS with FlexRay, which we believe would be very useful in future studies of this important class of systems.

FlexRay was developed by BMW, Daimler-Chrysler, Philips and Freescale in 2000 [START_REF]FlexRay Communications System -Protocol Specification V2[END_REF][START_REF] Schmidt | Message scheduling for the flexray protocol: the dynamic segment[END_REF] to provide appropriate communications for implementing x-by-wire technology in automotive control. FlexRay network sends data packets in pre-set communication cycles that consist of a static segment and a dynamic segment that are periodically repeated [START_REF]FlexRay Communications System -Protocol Specification V2[END_REF]. During the static segment, the network capacity is assigned to nodes in a prefixed manner: we say that the scheduling rule is static. The dynamic segment enables messages to be sent whenever it is required which helps meet varying bandwidth requirements that can emerge at system run time. A dynamic policy schedules transmissions of the nodes in this case based on the online information.

Our first contribution is a novel hybrid model for NCS with FlexRay based on the formalism of [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] that we derive under some simplifying but reasonable assumptions. Our goal is to provide a high fidelity model that is amenable to controller design and stability analysis; the main challenge is to model the data transmissions on the one hand and the switches between the static and the dynamic segments on the other hand. To achieve this, we first describe in detail the Flexray communication cycles and then introduce two clock variables in our model which respectively represent the time elapsed since the last data transmission and the time elapsed since the last segment switch.

Our second contribution is an emulation result for NCS with FlexRay. The main idea in emulation is to first design a controller that stabilizes the plant in the absence of the network; at this step, one can use any nonlinear continuous-time design technique to construct the controller. Then, in the second step, the controller is implemented over the network and it is shown that the stability of the system is preserved for sufficiently high communication bandwidth, which is measured in terms of the so-called maximal allowable transmission interval (MATI). This approach is applicable to a wide class of nonlinear NCS and network protocols, see [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF][START_REF] Heemels | Stability and stabilization of networked control systems[END_REF][START_REF] Nešić | Input-output stability properties of networked control systems[END_REF][START_REF] Tabbara | Networked control systems: emulation-based design[END_REF][START_REF] Walsh | Scheduling of networked control systems[END_REF] and the references therein. However, none of the available results in the literature are directly applicable to the model of NCS with FlexRay that we propose; this is mainly due to the complexity of the FlexRay communication cycle that requires more complicated models not considered in prior works. Hence, we develop novel emulation results that are applicable in this case. In particular, we assume that, for instance, Round-Robin (RR) protocol is implemented during the static segment and Try-Once-Discard (TOD) protocol is implemented during the dynamic segment of the FlexRay communication cycle. We show that asymptotic stability of the system in the absence of network is maintained when the controller is implemented over FlexRay provided that the MATI of each segment satisfies a given bound.

The analysis relies on an original hybrid Lyapunov function construction which generalizes the one proposed in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. Moreover, we derive segment-dependent MATI bounds which seems to be more adequate in practice. We believe that the results of this paper, in particular the hybrid model and the constructed Lyapunov function, could be used as a starting point to investigate other problems such as estimation or tracking control for NCS over FlexRay. A preliminary version of this work is presented in [START_REF] Wang | Emulation-based stabilization of networked control systems implemented on flexray[END_REF].

The paper is organized as follows. Preliminaries and definitions related to hybrid systems are given in Section 2. We explain the emulation approach for controller design in Section 3 and describe FlexRay in more detail in Section 4. We present the hybrid model in Section 5. The stability results are stated in Section 6 and an example is proposed in Section 7. Conclusions are given in Section 8. Most proofs are postponed to the Appendix.

Preliminaries

Let Z >0 := {1, 2, • • • }, Z ≥0 := {0, 1, 2, • • • } and R ≥0 := [0, ∞).
Let |x| denote the Euclidean norm of the vector x ∈ R n and I n be the identity matrix of dimension n. For (x, y) ∈ R n+m , (x, y) stands for [x T , y T ] T . Given a closed set A ⊂ R n and x ∈ R n , we define the distance of a vector x to A as

|x| A := inf y∈A |x -y|. A set- valued mapping M : R m ⇒ R n is locally bounded at x ∈ R m if there exists a neighborhood U x of x such that M (U x ) ⊂ R n is bounded. The mapping M is locally bounded if it is locally bounded at each x ∈ R m . A set- valued mapping M : R m ⇒ R n is outer semi-continuous (OSC) if and only if its graph {(y, z) : y ∈ R m , z ∈ M (y)} is closed, see Lemma 5.10 in [4]. A continuous function γ : R ≥0 → R ≥0 is of class-K if it is zero at zero and strictly increasing and it is of class-K ∞ if, in addition, it is unbounded. A continuous function γ : R 2 ≥0 → R ≥0 is of class-KL if for each r ∈ R ≥0 , γ(•, r) is of class-K, and, for each s ∈ R ≥0 , γ(s, •) is decreasing to zero. For x, v ∈ R n and U : R n → R, let U • (x; v) be the Clarke's derivative of the function U at x in the direction v: U • (x; v) := lim sup y→x,λ↓0 U(y+λv)-U(y) λ .
We will show that NCS with FlexRay can be represented by the following hybrid system ( [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF])

H : ξ = F (ξ) ξ ∈ C ξ + = G(ξ) ξ ∈ D, (1) 
with state ξ ∈ R n and where C, D ⊂ R n are respectively the flow and the jump sets. We assume that the following basic assumptions ([4]) hold for system H:

(i) The sets C and D are subsets of R n and are closed.

(ii) The mapping F is OSC and locally bounded, and F (ξ) is nonempty and convex for each ξ ∈ C. (iii) The mapping G is OSC and locally bounded, and G(ξ) is nonempty for each ξ ∈ D.

These conditions ensure the well-posedness of system (1), see Chapter 6 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] for more details. These conditions are satisfied by the hybrid model we will construct. We now recall some definitions from [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF]. A set

S ⊂ R ≥0 × Z ≥0 is called a compact hybrid time domain if S = J-1 j=0 ([t j , t j+1 ], j) for some finite sequence of times 0 = t 0 ≤ t 1 ≤ t 2 ≤ • • • ≤ t J . The set S is a hybrid time domain if for all (T, J) ∈ S, S ∩ ([0, T ] × {0, 1, • • • , J}) is a compact hybrid time domain. A function ξ : S → R n is a hybrid arc if S is a hybrid time domain and ξ(•, j) is locally absolutely continuous for each j. A hybrid arc ξ : dom ξ → R n is a solution to the hybrid system H if ξ(0, 0) ∈ C ∪ D and
(1) for all j ∈ Z ≥0 and almost all t such that (t, j) ∈ dom ξ, ξ(t, j) ∈ C and ξ(t, j) ∈ F(ξ(t, j));

(2) for all (t, j) ∈ dom ξ such that (t, j + 1) ∈ dom ξ, ξ(t, j) ∈ D and ξ(t, j + 1) = G(ξ(t, j)).

A solution is maximal if it cannot be extended. and it is complete when dom ξ is unbounded. We also recall the definition of uniform global pre-asymptotical stability (UGpAS) of a closed set for system [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], see Definition 3.6 and Theorem 3.40 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF].

Definition 1 Consider system (1), the closed set A ⊂ R n is UGpAS if there exists β ∈ KL such that all solu- tions ξ satisfy |ξ(t, j)| A ≤ β(|ξ(0, 0)| A , t + j) ∀(t, j) ∈ dom ξ. ( 2 
)
Note that UGpAS implies that system H may generate maximal solutions, which are not complete.

Emulation for NCS

The purpose of this section is twofold. First, we explain the emulation method for controller design for NCS as proposed in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF][START_REF] Nešić | Input-output stability properties of networked control systems[END_REF][START_REF] Nešić | Input-to-state stability of networked control systems[END_REF] that we follow in this paper. Second, we present an impulsive model and a hybrid model of NCS that was considered in prior work [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF][START_REF] Nešić | Input-output stability properties of networked control systems[END_REF][START_REF] Nešić | Input-to-state stability of networked control systems[END_REF] and explain why that the modeling approach is also pertinent to NCS with FlexRay. Our main observation is that NCS models considered in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF][START_REF] Nešić | Input-output stability properties of networked control systems[END_REF][START_REF] Nešić | Input-to-state stability of networked control systems[END_REF] are not general enough to cover NCS with FlexRay and, hence, prior results cannot be used directly for this case. Therefore, in the rest of the paper, we first develop a high fidelity model of NCS with FlexRay and then develop new emulation results for this important case. The first step in the emulation approach is to design a controller for the plant while ignoring the network. The controller can be designed using any of the available nonlinear control techniques for continuous-time systems, such as those in e.g., [START_REF] Isidori | Nonlinear control systems[END_REF][START_REF] Isidori | Nonlinear control systems: part II[END_REF] and the references cited therein. Consider the plant model

ẋp = f p (x p , u) y = g p (x p ), (3) 
where x p ∈ R np is the state, u ∈ R nu is the control input and y ∈ R ny is the measured output. We suppose that the following controller has been designed for (3) while ignoring the network

ẋc = f c (x c , y) u = g c (x c ), (4) 
where x c ∈ R nc is the state of the controller. The goal is to implement the designed controller over FlexRay network, as illustrated in Figure 1, and to demonstrate that under reasonable assumptions, the assumed stability of system (3)-(4) will be preserved for the NCS if data is transmitted sufficiently frequent over the network.

As shown in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], the implementation of the controller (4) over a digital network leads to the following dynamics for almost all time between two successive transmissions, as in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF][START_REF] Nešić | Input-output stability properties of networked control systems[END_REF][START_REF] Nešić | Input-to-state stability of networked control systems[END_REF],

ẋp = f p (x p , û) t ∈ [t i , t i+1 ] ẋc = f c (x c , ŷ) t ∈ [t i , t i+1 ] ẏ = fp (x p , x c , ŷ, û) t ∈ [t i , t i+1 ] u = fc (x p , x c , ŷ, û) t ∈ [t i , t i+1 ] y = g p (x p ) u = g c (x c ) (5) 
where the data transmission instants t i , i ∈ Z >0 , depend on the network. We have that 0 < ε ≤ t i+1t i ≤ τ MATI , where τ MATI > 0 is a measure of the network bandwidth and it would typically need to be small in the emulation method, and ε represents the minimum achievable transmission interval given by the hardware constraints. The variables û ∈ R nu and ŷ ∈ R ny respectively denote the networked versions of u and y available at the plant and the controller. Between the transmission instants, ŷ and û are generated according to the in-network processing implementations defined by fp and fc in [START_REF] Goswami | Reengineering cyber-physical control applications for hybrid communication protocols[END_REF]. Note that all the arguments of the functions fp and fc might not be available in all nodes. They are presented as in [START_REF] Goswami | Reengineering cyber-physical control applications for hybrid communication protocols[END_REF] for the sake of generality. Different implementations lead to different algorithms. For instance, the implementation of the controller using zero-order-hold devices gives fp = 0 and fc = 0.

We also introduce the network-induced error e := (e y , e u ) with e y := ŷy and e u := ûu. The error vector e is partitioned as e = (e 1 , e Using Assumption 1, it was shown in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF] that a large class of network protocols can be modeled as

e(t + i ) = h(i, e(t i )), (6) 
where h(•, •) depends only on the network protocol and is independent of the plant and controller dynamics. We present the map h(•, •) for two such protocols that were modeled for the first time in form [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF] in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]: Round Robin (RR) 2 and Try Once Discard (TOD) 3 protocols. These protocols are important for this paper since we will show that FlexRay allows us to switch between these two protocols; this situation is analysed in detail in the sequel. Using Assumption 1, we can write the model of RR protocol as follows

h RR (i, e) := (I -Δ(i))e, (7) 
with An impulsive model for NCS with scheduling protocols of the form ( 6) is given by ( [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF])

Δ(i) = diag{δ 1 (i)I n1 , • • • , δ (i)I n }, δ s (i) = 1 when s -1 = i mod and δ s (i) = 0 otherwise, n s ∈ Z >0
ẋ = f (x, e) t ∈ [t i , t i+1 ] ė = g(x, e) t ∈ [t i , t i+1 ] (9a) x(t + i ) = x(t i ) e(t + i ) = h(i, e(t i )) (9b) 
where x := (x p , x c ). The expressions of f and g are obtained by direct calculations from (3) and (4), see [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. Furthermore, it was shown in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] that the above impulsive model can be embedded in a hybrid model of the 2 RR protocol assigns access to network in a predetermined and cyclic manner.

3 TOD protocol gives access to the node with the largest mismatch between the current signal value and the last transmitted one, see [START_REF] Walsh | Scheduling of networked control systems[END_REF].

form of (1) that is more amenable for analysis

ẋ = f (x, e) ė = g(x, e) τ = 1 κ = 1 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ τ ∈ [0, τ MATI ] (10a) x + = x e + = h(κ, e) τ + = 0 κ + = κ + 1 ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ τ ∈ [ε, τ MATI ] , (10b) 
The clock variable τ ∈ R ≥0 is used to generate jumps in the hybrid model that correspond to data transmissions and the variable κ ∈ Z ≥0 counts the number of transmissions that is needed to implement certain protocols, such as Round Robin.

It turns out that the models ( 9) and ( 10) are not general enough to cover the case of NCS with FlexRay because of the switches incurred by the scheduling rules. We develop more general impulsive and hybrid models for NCS with FlexRay in the following sections.

FlexRay Network

In this section, we provide a detailed description of the FlexRay communication cycle and introduce the modeling assumptions that allow us to represent NCS with FlexRay as a hybrid system of the form (1).

Communication cycle

We investigate the scenario where a FlexRay network is used to connect the plant and the controller, as depicted in Figure 1. The vector (u, y) in Figure 1 is partitioned into nodes. Data is coded into packets and a packet is sent at each transmission instant t s i and is received at a reception instant t r i for i ∈ Z >0 , as illustrated in Figure 2. The transmission time t r i -t s i depends on the size of the packet: the larger the packet, the longer the transmission time. 

Fig. 2. FlexRay communication cycle

FlexRay is characterized by pre-set communication cycles of length T > 0, see [START_REF]FlexRay Communications System -Protocol Specification V2[END_REF]. Each cycle contains a static segment, a dynamic segment and two protocol segments called a symbol window and a network idle time, which are of respective lengths T 1 , T 2 , T 3 and

T 4 > 0, see Fig- ure 2.
Distinct network access techniques are applied for the static and the dynamic segments [START_REF]FlexRay Communications System -Protocol Specification V2[END_REF][START_REF]FlexRay Automotive Communication Bus Overview[END_REF][START_REF] Pop | Timing analysis of the Flexray communication protocol[END_REF]. In particular, the static segment relies on a time division multiple access (TDMA) approach and the network capacity is assigned to the nodes by a static protocol such as RR.

The dynamic segment employs the flexible time division multiple access (FTDMA) technique [START_REF] Cena | On the properties of the flexible time division multiple access technique[END_REF], which enables nodes to compete for accessing the network and a dynamic protocol such as TOD can be implemented to select nodes to transmit messages based on the online information. The symbol window is a time slot for transmitting data for network management purposes and the network idle time is a communication-free period that is required for clock synchronization. Compared to the lengths of the static and the dynamic segments, the lengths of the symbol window and the network idle time are small [START_REF]FlexRay Communications System -Protocol Specification V2[END_REF]. Consequently, we make the following assumption.

Assumption 2

The lengths of the symbol window and the network idle time are negligible compared to T 1 and

T 2 , hence T 3 = T 4 = 0. A consequence of Assumption 2 is that T = T 1 + T 2 .
Note that the length of the cycle as well as T 1 and T 2 can be configured but are fixed once the network is implemented [START_REF]FlexRay Communications System -Protocol Specification V2[END_REF]. Let t m j , j ∈ Z >0 denote the segments switching instants; note that prior work in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF][START_REF] Nešić | Input-output stability properties of networked control systems[END_REF] did not require this level of complexity to model the network. Assume that FlexRay cycles start with the static segment without loss of generality, as in Figure 2 (this assumption will be later relaxed). It is very useful to introduce a state variable q ∈ {1, 2} which keeps track of whether we are in the static segment (q = 1) or in the dynamic segment (q = 2). Hence, we can write

q(t) = 1, ∀ t ∈ [t m j , t m j + T 1 ), j = 2n -1 q(t) = 2, ∀ t ∈ [t m j , t m j + T 2 ), j = 2n (11) 
for all n ∈ Z >0 . In order to impose this constraint on our model in a manner consistent with the hybrid model (1), we claim that (11) can be equivalently be written as

τ2 = 1 q = 0 (12) (τ 2 , q) ∈ [0, T 1 ] × {1} ∪ [0, T 2 ] × {2} τ + 2 = 0 q + = 3 -q (13) (τ 2 , q) ∈ {T 1 } × {1} ∪ {T 2 } × {2} ,
where τ 2 ∈ R ≥0 is a clock which corresponds to the time elapsed since the last segment switch. If we interpret the sequence of switching times for this hybrid model as t m i , we can see that during the time intervals [t m i , t m i+1 ] we have that q(t, i) is a constant in {1, 2} and τ 2 (t, i) = tt m i . Switches can only occur when (τ 2 , q) = (T 1 , 1) or (τ 2 , q) = (T 2 , 2). At every switch, q toggles between 1 and 2 whereas τ 2 is reset to zero. This implies that (11) holds if q(0, 0) = 1. Note that the hybrid model also covers the case when q(0, 0) = 2, which relaxes our assumption that cycles starts with the static segment.

We next focus on modeling the data transmissions during the static and the dynamic segments.

Static segment

The static segment consists of time slots of equal length τ st > 0, as illustrated in Figure 3. At the beginning of each time slot, a single node is chosen by the protocol, codes its data and sends it over the communication channel. The coding time is denoted by Item (a) is reasonable when the packets are short. Otherwise, the effects of transmission time t r i -t s i and coding time μ st i can be modeled as a time-delay and we believe that the results presented hereafter can be extended to cover this case using [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF]. We do not consider this generalization here to concentrate on the challenges due to the switches between the static and dynamic segments. Item (b) can be enforced in practice. Item (c) comes from the FlexRay configuration, see Chapter 9.1 in [START_REF]FlexRay Communications System -Protocol Specification V2[END_REF].

μ st i , i ∈ Z >0 . st τ st τ s t 1 r t 1 s t 2
According to Assumption 3, the MATI during the static segment is given by the length of the time slots τ st , hence we let τ s MATI := τ st . Note that item (c) ensures that for any given T 1 > 0, there exists k ∈ Z >0 such that T 1 = kτ s MATI holds. The lemma below follows directly from Assumption 3.

Lemma 1 Suppose Assumption 3 holds. Then the transmission instants sequence {t

i } i∈Z>0 , satisfies t i+1 -t i = τ s MATI ∀ t i , t i+1 ∈ [t m 2n-1 , t m 2n ), ( 14 
)
where n ∈ Z >0 and the segment switching instants sequence t m j , j ∈ Z >0 , satisfies [START_REF] Laila | Lyapunov based small-gain theorem for parameterized discrete-time interconnected ISS systems[END_REF].

In order to develop a hybrid model of NCS with FlexRay in the formalism of [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF], we introduce a clock variable τ 1 which describes the time elapsed since the last transmission, as τ does in [START_REF] Isidori | Nonlinear control systems: part II[END_REF]. This variable has the following dynamics during the static segment.

τ1 = 1 (τ 1 , τ 2 , q) ∈ C 1 τ + 1 = 0 (τ 1 , τ 2 , q) ∈ D trans 1 ( 15 
)
with

C 1 := [0, τ s MATI ] × [0, T 1 ] × {1} D trans 1 := {τ s MATI } × [0, T 1 ] × {1}. (16) 
Equations ( 15) and ( 16) simply mean that the transmission clock τ 1 is reset to 0 when it reaches τ s MATI during the static segment, i.e. when q = 1 and τ 2 ∈ [0, T 1 ]. It is not hard to check that the switching time instants t i , i ∈ Z >0 , for the solutions of the hybrid system (15) satisfy the constraint in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF] and are indeed consistent with Assumption 3.

As mentioned before, a static TDMA scheme is used to arbitrate the transmission during the static segment. The length of static time slots is first configured and the latter are assigned to the nodes in a predetermined way. As a consequence, we can only implement static protocols, such as the RR protocol, during the static segments. In this case, the protocol equation during the static segment is given by (7).

Dynamic segment

The dynamic segments are composed of minislots, which are substantially shorter than the static time slots and do not necessarily correspond to the transmission of a packet. Data is coded into packets before being sent to the physical channel and to transmit a packet typically requires more than one minislot. Nodes compete to transmit their packets and the scheduling rule associated to the dynamic segment grants the priority based on the online information. The node with the highest priority is assigned with the 'earliest' minislot, that is the minislot with the lowest number. An illustration is given in Figure 4, where the minislots indexed by 2, 3 and 11 to 13 are dedicated to transmissions. On the other hand, the minislots are idle when no nodes compete for access; see the minislots indexed by 1, 4 to 10 and 14 to 23 in Figure 4. We denote by τ dy,i , i ∈ Z >0 , the times during which the network is idle and we introduce μ dy j , j ∈ Z >0 to represent the data coding time. For modeling purposes, we summarize the assumptions we make on the dynamic segment. Items (a) corresponds to item (a) of Assumption 3. Item (b) can be enforced by design, see Remark 1 for more detail. Item (c) of Assumption 4 is justified by the fact that, when a node has been granted access, the other ones need to wait for at least the next minislot of length ε to possibly transmit. Furthermore, we suppose that the network is such that two transmissions occur at most every τ d MATI units of time. The lemma below follows from Assumption 4.

Lemma 2 Suppose Assumption 4 holds. Then the transmission instants sequence {t

i } i∈Z>0 , satisfies t i+1 -t i ∈ [ε, τ d MATI ] ∀t i , t i+1 ∈ [t m 2n , t m 2n+1 ) ( 17 
)
where n ∈ Z >0 and the segment switching instants sequence t m j , j ∈ Z >0 , satisfies [START_REF] Laila | Lyapunov based small-gain theorem for parameterized discrete-time interconnected ISS systems[END_REF].

Proof. Assumption 2 with [START_REF] Laila | Lyapunov based small-gain theorem for parameterized discrete-time interconnected ISS systems[END_REF] shows that [t m 2n-1 , t m 2n ] and [t m 2n , t m 2n+1 ] for n ∈ Z >0 respectively describe the static and the dynamic segments. Item (a) of Assumption 4 implies that τ dy,i denotes the (maximum) intertransmission time interval for these segments. Consequently, we deduce that the transmission instants satisfy (17) using items (b) and (c) of Assumption 4.

Remark 1 Two successive transmissions are spaced by ε units of time, in view of item (c) of Assumption 4.

The assumption that a transmission occurs at the end of the segments therefore excludes the case when a packet is transmitted during the last minislot of the dynamic segment, which is in agreement with how FlexRay works [START_REF] Shaw | An introduction to flexray as an industrial network[END_REF]. This approximation is fine as ε is typically very small. Hence, if a transmission does not occur at the very end of the dynamic segment but ε units of time before, that will induce a small delay, which we neglect.

The variable τ 1 introduced in Section 4.2 has the following dynamics during the dynamic segment in view of Assumption 4.

τ1 = 1 (τ 1 , τ 2 , q) ∈ C 2 τ + 1 = 0 (τ 1 , τ 2 , q) ∈ D trans 2 (18) 
with

C 2 := 0, τ d MATI × [0, T 2 ] × {2} D trans 2 := ε, τ d MATI × [0, T 2 ] × {2}. ( 19 
)
Contrary to the static segment, transmissions do not a priori occur periodically in the dynamic segment, which justifies the fact that both flow and jump are allowed when

τ 1 ∈ [ε, τ d MATI ]
as in [START_REF] Isidori | Nonlinear control systems: part II[END_REF]. It has to be noted that if a solution to [START_REF] Schmidt | Message scheduling for the flexray protocol: the dynamic segment[END_REF], [START_REF] Shaw | An introduction to flexray as an industrial network[END_REF] becomes such that τ 1 ∈ [0, ε) and τ 2 = T 2 , it stops to exist. This is not an issue because, first, the stability property we guarantee in Section 6 still holds in this case; second, because this situation does not occur in practice according to Remark 1.

The FTDMA scheme is employed to arbitrate the transmission during the dynamic segment, which enables packets to be sent whenever required, so that only dynamic protocols like TOD can be implemented. In this case, the protocol equation during the dynamic segment is given by (8).

Protocol equation

In view of Sections 4.2 and 4.3, we propose the following equation to model the protocol dynamics

e(t + i ) = h(i, e(t i ), q(t i )). ( 20 
)
We see that we need to make the mapping h depend on the variable q, which indicates the active segment. This is again justified by the fact that different protocols are used during the static and the dynamic segments. The mapping h can be further written as h(i, e, q) := (2q)h s (i, e) + (q -1)h d (i, e), [START_REF] Tabbara | Networked control systems: emulation-based design[END_REF] where h s and h d are defined by the scheduling rules of the static and the dynamic segments, respectively. In that way, the variable q generates switches of the scheduling policy between h s and h d ; that is, h(i, e, 1) = h s (i, e) and h(i, e, 2) = h d (i, e). Examples include h s = h RR and h d = h TOD where h RR and h TOD are respectively defined in ( 7) and ( 8).

Hybrid model of NCS with FlexRay

Impulsive model

In view of Section 4, NCS with FlexRay can be modeled by the impulsive system below under Assumptions 2-4,

ẋ = f (x, e) t ∈ [t i , t i+1 ] ė = g(x, e) t ∈ [t i , t i+1 ] q = 0 t ∈ [t m j , t m j+1 ] (22a) x(t + i ) = x(t i ) e(t + i ) = h(i, e(t i ), q(t i )) q(t + i ) = q(t i ) (22b) x(t m j + ) = x(t m j ) e(t m j + ) = e(t m j ) q(t m j + ) = 3 -q(t m j ) (22c) 
where x := (x p , x c ) ∈ R nx , i, j, m ∈ Z >0 , the vector fields f and g are obtained by direct calculations from (3) and ( 4) and are assumed to be continuous. We also assume that h is continuous, which is the case for RR and TOD protocols in view of ( 7) and ( 8), respectively.

Compared to the impulsive model for non-switched protocol in (9), system ( 22) is subject to two types of jumps, namely, the transmission jumps in (22b) and the segment switching jumps in (22c). In addition, we need to introduce the variable q as explained in Section 4.1, and the protocol equation is also different.

Hybrid model in the formalism of [4]

In order to proceed with the analysis, we map the model ( 22) into a hybrid system using the formalism of [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF]. We introduce the counter variable κ ∈ Z ≥0 as in [START_REF] Isidori | Nonlinear control systems: part II[END_REF] and let ξ := (x, e, κ, τ 1 , τ 2 , q). Using ( 15), ( 18) and ( 21), we model NCS with FlexRay as

ξ = F (ξ) ξ ∈ C ξ + = G(ξ) ξ ∈ D ( 23 
)
where

C := R nx × R ne × Z ≥0 × (C 1 ∪ C 2 ) D := R nx × R ne × Z ≥0 × (D 1 ∪ D 2 ) (24) 
with C 1 and C 2 coming respectively from ( 15) and ( 18 defined in ( 15) and ( 18) respectively, and

D seg 1 := {0} × {T 1 } × {1} D seg 2 := {0} × {T 2 } × {2}. ( 25 
)
The mapping F in ( 23) is defined as

F (ξ) := (f (x, e), g(x, e), 0, 1, 1, 0) (26) 
and the mapping G is given by

G(ξ) := G trans (ξ) (τ 1 , τ 2 , q) ∈ D trans 1 ∪ D trans 2 G seg (ξ) (τ 1 , τ 2 , q) ∈ D seg 1 ∪ D seg 2 , ( 27 
)
where G trans (ξ) := (x, h(κ, e, q), κ + 1, 0, τ 2 , q) corresponds to a transmission jump, G seg (ξ) := (x, e, κ, τ 1 , 0, 3q) corresponds to a segment switching jump. We can see that G generates two kinds of jumps whether it corresponds to a transmissions or a segment switch. Recall that a transmission jump is enforced at the end of segments from Assumptions 3-4, G trans maps the vector (τ 1 , τ 2 , q) to (0, T 1 , 1) or (0, T 2 , 2) when τ 2 = T 1 or T 2 . Consequently, another jump will immediately occur as (τ 1 , τ 2 , q) enters either D seg 1 or D seg 2 . This captures the fact that two kinds of jumps occur simultaneously at the end of the segments. The hybrid system defined above includes all possible solutions that system [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF] generates and it satisfies basic conditions listed in Section 2, as stated below.

Proposition 1 System (23) satisfies the basic assumptions defined in Section 2.

Proof. First, the sets C and D in (24) are closed. Second, the flow map F is continuous as so are f and g by assumption. Third, by defining the jump map G as ∅ on

R nx+ne × Z ≥0 × R 2 ≥0 × {1, 2} \ D,
we derive that G is OSC as its graph is closed. It is also locally bounded by continuity of G trans and G seg (recall that h is assumed to be continuous) and G(ξ) is nonempty for each ξ ∈ D in view of (27).

Asymptotic stability properties

In this section, we first state the assumptions we make on system [START_REF] Walsh | Scheduling of networked control systems[END_REF]. We then construct a novel Lyapunov function for the hybrid model [START_REF] Walsh | Scheduling of networked control systems[END_REF] which is shown to decrease on flows and not to increase at jumps, from which we derive that a global asymptotic stability property holds for system [START_REF] Walsh | Scheduling of networked control systems[END_REF].

Assumptions

We assume that, on each segment, the scheduling protocol is such that the following assumption holds.

Assumption 5

For each q ∈ {1, 2}, there exist W q : R ne × Z ≥0 → R ≥0 , which is locally Lipschitz in its first argument, a continuous function H q : R nx → R ≥0 , constants α Wq , ᾱWq > 0, L q ≥ 0 and ρ q ∈ [0, 1) such that for any κ ∈ Z ≥0 and e ∈ R ne [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] 

α Wq |e| ≤ W q (κ, e) ≤ ᾱWq |e|, (2) W q (κ + 1, h(κ, e, q)) ≤ ρ q W q (κ, e),
and for all x ∈ R nx , κ ∈ Z ≥0 and almost all e ∈ R ne [START_REF]FlexRay Communications System -Protocol Specification V2[END_REF] ∂Wq(κ,e) ∂e , g(x, e) ≤ L q W q (κ, e) + H q (x).

Items ( 1)-( 2) of Assumption 5 mean that the scheduling rules of each segment are uniformly globally exponentially stable (see [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]). As already pointed out, a possible choice is the RR protocol for the static segment and the TOD protocol for the dynamic segment, as given in ( 7) and [START_REF]FlexRay Automotive Communication Bus Overview[END_REF]. Item (3) of Assumption 5 is an exponential growth condition on the e-system. It is satisfied when W is globally Lipschitz in e, which is the case of the RR and the TOD protocol in view of [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], and when g(x, e) ≤ M (x) + M |e| for any (x, e) ∈ R nx+ne , with M > 0. In this case, item (3) of Assumption 5 holds with L q := SqM α Wq , H q (x) := S q M |x|, where S q is the Lipschitz constant of W q .

We also assume that controller ( 4) is designed such that the x-system in ( 23) is L 2 stable from W q to H q for q ∈ {1, 2}. This robustness property is similar to the corresponding assumption in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF][START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], where non-switched protocols are considered. This assumption may be ensured at the first step of the emulation design by investigating the robustness of the closed-loop system (3), ( 4) to the measurement and the input disturbances.

Assumption 6 There exist a continuously differentiable function V : R nx → R ≥0 and α V , α V ∈ K ∞ such that for each q ∈ {1, 2} there exist a positive definite continuous function q and γ q > 0 such that for all

x ∈ R nx , e ∈ R ne and κ ∈ Z ≥0 α V (|x|) ≤ V (x) ≤ α V (|x|) ∇V (x), f(x, e) ≤ -q (|x|) -q (|e|) -H 2 q (x) + γ 2 q W 2 q (κ, e) ( 28 
)
where the functions H q and W q come from Assumption 5.

The last assumption requires sufficiently small MATIs during the static and dynamic segments. A feature of the problem is that the MATI bounds we propose below depend on the length of the segments.

We first introduce some notations for the ease of presentation. Let ρ m ∈ (0, 1) and γ m > 0 come from Assumptions 5-6, π m := α W3-m /α Wm for m ∈ {1, 2} and the function4 c m : R >0 → R >0 be defined by, for s > 0,

c m (s) := γ m γ m /k m -d m (s) + δ m + 1 ρ m s , ( 29 
)
where

δ m := (M-1)γm ρ 2 m d m (s) := ⎧ ⎨ ⎩ kmM-γm km exp(kmρms) when M ≤ 2γm km γm km exp( γmkm ρm km M -γm s) when M ≥ 2γm km (30) with M := max 1, γ2ρ1ρ2 γ1π 2 2 , γ1ρ1ρ2 γ2π 2 1 , k m := max γ m , γ 2 m π 2 3-m γ3-mρ1ρ2 . Assumption 7 For each T 1 , T 2 > 0, τ s MATI = T 1 T 1 /τ MATI,1 τ d MATI = τ MATI,2 , ( 31 
)
where, for m ∈ {1, 2} The MATIs in (31) depend on the constants introduced in Assumptions 5-6 as well as on the segment lengths. The first equation in ( 31) is justified by the fact that T 1 has to be a multiple of τ MATI,1 according to Section 4.2.

τ MATI,m (32) 
Compared to the MATI bounds in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], the expression in (32) involve c m (T m ). The smaller T m the larger c m , which leads to a smaller τ MATI,m . In particular, when T 1 or T 2 goes to infinity which corresponds to the case there exists only one segment, the MATI bounds in (31) tend to finite values which agree with the MATI bounds in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], as explained below in Remark 2.

Hybrid Lyapunov function and stability results

Based on the assumptions listed above, we can study the stability of system (23) using the following Lyapunov function

U (ξ) := V (x) + γ 1 φ 1 (τ 1 )θ 1 (τ 2 )W 2 1 (κ, e)(2 -q) + γ 2 φ 2 (τ 1 )θ 2 (τ 2 )W 2 2 (κ, e)(q -1), (33) 
for any ξ ∈ C ∪ D, where V , W 1 and W 2 come from assumptions stated in the previous section. The scalar functions φ 1 , φ 2 , θ 1 and θ 2 are designed in the Appendix in such a way that the following proposition holds. Proposition 2 Consider system [START_REF] Walsh | Scheduling of networked control systems[END_REF], suppose Assumptions 5-7 hold and let A := {ξ : x = 0, e = 0}. Then, there exist α U , α U ∈ K ∞ and a continuous positive definite function : R ≥0 → R ≥0 such that the following holds for the function U in (33).

(1) U is locally Lipschitz in x, e, τ 1 and τ 2 .

(2

) For all ξ ∈ C ∪ D, α U (|ξ| A ) ≤ U (ξ) ≤ α U (|ξ| A ). (3) For all ξ ∈ C, U • (ξ; F (ξ)) ≤ -(|ξ| A ). (4) For all ξ ∈ D, U (G(ξ)) ≤ U (ξ).
Proposition 2 allows to derive the following stability result for the set A.

Theorem 1 Consider system [START_REF] Walsh | Scheduling of networked control systems[END_REF] and suppose Assumptions 5-7 hold, then the set A = {ξ : x = 0, e = 0} is UGpAS.

Remark 2

The Lyapunov function U in ( 33) is a generalization of the hybrid Lyapunov function in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], which is constructed for NCS with non-switched protocols. Compared with [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], we introduce new functions θ 1 and θ 2 in (33) to accommodate the influence of the length of segments. It is interesting to note that when there is a single segment (T 1 = ∞), we can let the function θ 1 satisfy θ 1 (s) ≡ 1 for all s ≥ 0 (since θ 1 is irrelevant in this case) and U becomes U (ξ) = V (x) + γ 1 φ 1 (τ 1 )W 2 1 (e, κ) as in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF]. In this case, we recover the MATI bounds in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] by taking M = 1 and k 1 = γ 1 , which is possible since we can choose parameters γ 2 , π 1 , π 2 , ρ 2 in an arbitrary way as the segment q = 2 will never be activated.

Illustrative example

In this section, we apply our results to stabilize the origin of a batch reactor in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF] over FlexRay. Consider the batch reactor plant of the form

x p = A p x p + B p u y = C p x p ,
and the PI controller given by ẋc 

= A c x c + B c y u = C c x c + D c y, (34) 
T1 = 0.5, T2 = 1.5
where

x p ∈ R 4 , x c ∈ R 2 , y ∈ R 2 and u ∈ R 2 , A p , B p , C p , A c , B c
, C c and D c are constant matrices that can be found in Section 4 of [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. We consider the scenario where the controller is directly connected to the actuator and the sensor measurements are transmitted via a FlexRay network. In this case, we can still model the NCS as [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF] although the output of the controller in (34) is of the form u = g c (x c , y) instead of u = g c (x c ) (see Remark 1 in [START_REF] Postoyan | Tracking control for nonlinear networked control systems[END_REF]).

We consider the scenario where RR is implemented during the static segments, and TOD during the dynamic segments. To estimate MATIs, one needs to verify As- Given T 1 and T 2 > 0, we can estimate the MATI of the RR-TOD protocol using (31). Some numerical values are reported in Table 1. We also provide the MATIs for non-switching protocols RR and TOD from [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF] in Table 1. Compared with MATIs of non-switching protocols, the NCS over FlexRay requires more frequent transmissions to preserve stability of its closed-loop. This becomes evident when the lengths of the segments are small. For instance, consider the case when T 1 = 0.0186 and T 2 = 0.01084. Simulations show that x does not convergence to zero when we use the MATI bounds for non-switched RR and TOD protocols given in Table 1.

This issue does not occur with the MATI bounds obtained with (31), see Figure 5.

Conclusion

We have shown how the emulation approach can be used to design controllers implemented over FlexRay for nonlinear systems. In contrast with the previous related works [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF][START_REF] Nešić | Input-output stability properties of networked control systems[END_REF][START_REF] Tabbara | Networked control systems: emulation-based design[END_REF][START_REF] Walsh | Scheduling of networked control systems[END_REF], the protocol which governs transmissions in FlexRay switches in the sense that a different policy is used during the static and the dynamic segments. As a consequence, we needed to develop a novel hybrid model which describes NCS implemented on FlexRay under reasonable assumptions. We then proposed a hybrid Lyapunov function, which extends the one in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], to NCS with switched protocols. We used this Lyapunov function to derive MATI bounds which depends on the lengths of the static and the dynamics segments, based on which we ensured the uniform global asymptotic stability property of a closed set. Note that the presented result is only an illustration of what is possible in terms of stabilization. We can employ the technique presented in the paper, i.e. the modeling technique and the Lyapunov function, to investigate the observer design problem for nonlinear systems whose measurements are sent over a network governed by FlexRay, see [START_REF] Wang | Design of observers implemented over flexray networks[END_REF]. We may also take the present results as a starting point to consider other kinds of network-induced constraints such as quantization, time-delays, or packet drop-outs, by following similar lines as in [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF][START_REF] Nešić | A unified framework for design and analysis of networked and quantized control systems[END_REF][START_REF] Tabbara | Input-output stability of networked control systems with stochastic protocols and channels[END_REF].

A Technical lemmas

Lemma 3 Suppose that Assumption 7 holds. Then, the functions defined as ), where φm is given by the solution to

φ1(t) := ⎧ ⎨ ⎩ φ1(t) t ∈ [0, τ s MATI ] ρ1 t ∈ [τ s MATI , ∞) φ2(t) := ⎧ ⎨ ⎩ φ2(t) t ∈ [0, τ d MATI ] ρ2 t ∈ [τ d MATI , ∞) satisfy φ m (t) ∈ [ρ m , 1/ρ m ] for each m ∈ {1, 2} and all t ∈ [0, ∞
φm = -2Lm φm -γm φ2 m -cm(Tm) φm(0) = 1 ρm (A.1)
where c m (•) come from (29) and T m > 0.

Proof. We first consider the solution φm to (A.1) to determine the value of τ MATI,m such that φm (τ MATI,m ) = ρ m . In view of (A.1), 

τ MATI,m = - ρm 1/ρm d φm γ m φ2 m + 2L m φm + c m (T m ) (A.2) = - 1 γ m bm am dz z 2 -L 2 m /γ 2 m + c m (T m )/γ m = - 1 γ m
+ ν m (T m ) ≤ γ 3-m ρ 1 ρ 2 γ m π 2 3-m -d m (T m ) + ν m (T m ). (A.8)
We then derive that θ m (0) ≤ γ3-mρ1ρ2 γmπ 2

3-m

≤ M when ν m (s) ≤ d m (s) holds for any s > 0, which we now prove.

Case I: M ≤ 2γm km . Note that we can rewrite functions ν m and d m respectively as f m (x m ) and f m (y m ), where

x m := c m (T m ) -δ m , y m := k m and f m (x) := xM -γ m x exp(xρ m T m ) . (A.9) Since c m (T m ) -δ m ≥ k m for all T m > 0 as discussed in footnote 4, ν m (s) ≤ d m (s) holds for any s > 0 if f m (•) is non-increasing, which is true. Indeed, ∂fm(xm) ∂xm < 0 since M ≥ 1 and x m = c m (T m ) -δ m ≥ γ m + 1 ρmTm for all T m > 0, where ∂f m ∂x m = x m M -1 + x m ρ m T m x m M -γ m x 2 m exp(x m ρ m T m ) = γ m + ρ m T m γ 2 m 4 -ρ m T m x m -γm 2 2 x 2 m exp(x m ρ m T m ) + ρ m T m x 2 m (1 -M ) x 2 m exp(x m ρ m T m ) . (A.10)
Case II: M ≥ 2γm km . Note that we can rewrite (30) and obtain

d(s) = km M -γ m km exp km ρ m s when M ≥ 2γ m k m ,
with letting km := 

(0) ≤ θ m (0) ≤ γ3-mρmρ3-m γmπ 2 3-m that θ m (0) ≤ γ3-mρmρ3-m γmπ 2 3-m θ 3-m (T m ) since θ 1 (T 1 ) = θ 2 (T 2 ) = M and M ≥ 1.

B Proof of the main results

Proof of Proposition 2. Let T 1 , T 2 > 0 be given. Let

M := max 1, γ2ρ1ρ2 γ1π 2 2 , γ1ρ1ρ2 γ2π 2 1
, c 1 , c 2 : R >0 → R be defined as (29). We consider the function U defined in (33) with the functions θ 1 and θ 2 defined by the solution to the differential equations (A.3). The functions φ 1 and φ 2 are defined as

φ 1 (s) = φ1 (s) for s ∈ [0, τ s MATI ] and φ 1 (s) = ρ 1 for s ∈ [τ s MATI , ∞), φ 2 (s) = φ2 (s) for s ∈ [0, τ d MATI ] and φ 2 (s) = ρ 2 for s ∈ [τ d MATI , ∞)
, where φ1 and φ2 are solutions to (A.1). We note that U is continuous and locally Lipschitz in x, e, τ 1 , τ 2 in view of (A.1), (A.3), Assumption 5 and the continuity of F and G. We now show that item (2) of Proposition 2 holds. Let ξ ∈ C ∪ D with q = 1. In view of Lemmas 3 and 4 in Appendix A,

φ1 (τ 1 ) ∈ [ρ 1 , 1/ρ 1 ] ∀τ 1 ∈ [0, τ s MATI ] θ 1 (τ 2 ) ∈ [Γ(T 1 ), M] ∀τ 2 ∈ [0, T 1 ], (B.1)
where the function Γ 1 come from (A.4). Note that Γ 1 (s) ≥ γ1 c1(s)-δ1 + ν 1 (s) for all s > 0 as showed in the proof of Lemma 4. The two terms of the righthand side of the inequality are all strict positive functions (see footnote 4 and (A.7)). The function γ1 c1(s)-δ1 is nondecreasing when its argument grows, approaches to 0 when T 1 → 0 and γ1 k1 when T 1 → ∞. Moreover, the function ν 1 is non-increasing, ν 1 approaches M when T 1 → 0 and ν 1 (∞) = 0. Thus, with noting that M ≥ γ1 k1 since k 1 ≥ γ 1 and M ≥ 1 from the definition of M and k 1 , we have that Γ 1 (s) ≥ γ1 k1 for all s > 0. Then, in view of Assumptions 5-6,

α U (|(x, e)|) ≤ U (ξ) ≤ α U (|(x, e)|), (B.2)
where

α U : s → min α V s 2 , γ 2 1 ρ1 2k1 α 2 W s ∈ K ∞ and α U (s) : s → max 2α V (s), 2 γ1M ρ1 α 2 W s ∈ K ∞ .
The constructions of α U and α U use Remark 2.3 in [START_REF] Laila | Lyapunov based small-gain theorem for parameterized discrete-time interconnected ISS systems[END_REF], where it is shown that min α 1 s1+s2 2

, α 2 s1+s2 2 ≤ α 1 (s 1 )+α 2 (s 2 ) ≤ max {2α 1 (s 1 + s 2 ) , 2α 2 (s 1 + s 2 )} for any α 1 , α 2 ∈ K ∞ and s 1 , s 2 ≥ 0. By using similar arguments for the case where q = 2, we deduce that item 2) holds.

We now focus on item (3) of Proposition 2. We omit below the dependencies of φ 1 and θ 1 respectively on τ 1 and τ 2 for the sake of convenience. In view of pages 99-100 in [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF] and Assumption 6, and item (iii) of Assumption 5, for all ξ ∈ C with q = 1,

U • (ξ; F (ξ)) ≤ -1 (|x|) -1 (|e|) -H 2 1 (x) + γ 2 1 W 2 1 (e, κ) + γ 1 φ1 θ 1 W 2
1 (e, κ) + γ 1 φ 1 θ1 W 2 1 (e, κ) + 2γ 1 φ 1 θ 1 W 1 (e, κ)(L 1 W 1 (e, κ) + H 1 (x)) = -1 (|x|) -1 (|e|) -H 2 1 (x) + 2γ 1 φ 1 θ 1 W 1 (e, κ)H 1 (x)γ 2 1 φ 2 1 θ 1 W 2 1 (e, κ) + γ 1 φ1 + 2L 1 φ 1 + γ 1 φ 2 1 + c 1 (T 1 ) θ 1 W 2 1 (e, κ)

+ γ 1 φ 1 θ1 + γ 1 -c 1 (T 1 )θ 1 W 2 1 (e, κ).
Hence, in view of Lemmas 3-4 and the fact that γ 1 δ 1 θ 1 W 2 1 (e, κ) ≥ (M -1)γ 2 1 φ 2 1 θ 1 W 2 1 (e, κ) as δ 1 =

(M-1)γ1 ρ 2 1 from (30), we derive that We can derive a similar conclusion as in (B.4) for the case when q = 2 by following the same procedure. Hence, item 3) of Proposition 2 holds.

U • (ξ; F (ξ)) ≤ -1 (|x|) -1 (|e|) -H 1 (x) -γ 1 φ 1 θ 1 W 1 (e, κ) 2 + γ 2 1 φ 2 1 θ 2 1 W 2 1 (e, κ) -M γ 2 1 φ 2 1 θ 1 W 2 1 (e, κ) + γ 1 φ1 + 2L 1 φ 1 + γ 1 φ 2 1 + c 1 (T 1 ) θ 1 W 2 1 (e,
Let ξ ∈ D. We only present the analysis for the case when q = 1 as the proof follows the same lines when q = 2. Proof of Theorem 1. We use similar arguments as in Proposition 3.27 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] to show that the closed set A is UGpAS for system (23) (the only difference comes from the fact that the Lyapunov function U is not continuously differentiable but locally Lipschitz in x, e, τ 1 , τ 2 ).

We note that (3.7a), (3.7b) and (3.9) of Proposition 3.27 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] are verified in view of Proposition 2. We next show the following persistent flow condition holds: for any r > 0, there exists γ ∈ K ∞ and N ≥ 0 such that for every solution ξ to system [START_REF] Walsh | Scheduling of networked control systems[END_REF] with |ξ(0, 0)| A ∈ (0, r], (t, j) ∈ dom ξ, t + j ≥ K for any K > 0 imply t ≥ γ(K) -N . Consider any r, K > 0 and a solution ξ to [START_REF] Walsh | Scheduling of networked control systems[END_REF] with |ξ(0, 0)| A ∈ (0, r]. Recall that ε in [START_REF] Walsh | Scheduling of networked control systems[END_REF] is the length of a minislot and it is the lower bound of the intertransmission time for dynamic segments. Furthermore, note that ε is far less than the inter-transmission time interval τ s MATI for static segments, see Section 4.3. Thus, in view of the periodical segment switching behavior of system [START_REF] Walsh | Scheduling of networked control systems[END_REF] and noting that there are at most two segment jumps in one communication cycle, we have that

t ≥ ε j -1 -2 t T 1 + T 2 . (B.7)
Then, t 1 + 2ε t T1+T2 + 1 + ε ≥ εj and then t + j ≥ K implies that M t+1 ≥ K with M := 1 ε + 2 T1+T2 + 3 . Consequently, we derive that t ≥ γ(K) -N with γ(s) = s M and N = 1 M . Then, by using similar lines as in the proof of Proposition 3.27 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] and the results on pages 99-100 in [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF], we obtain that (2) holds.

Fig. 1 .

 1 Fig. 1. Block diagram of NCS over FlexRay

  and satisfies s=1 n s = n e . The model of TOD protocol takes the form h TOD (e) := (Iψ(e))e, (8) where ψ(e) := diag{ψ 1 (e)I n1 , ψ 2 (e)I n2 , • • • , ψ (e)I n }, ψ s (e) = 1 when s = min(arg max j∈{1,••• , } |e j |) and ψ s (e) = 0 otherwise, for s ∈ {1, . . . , } and i ∈ Z ≥0 .

Fig. 3 .

 3 Fig. 3. Static segment We use the following assumption. Assumption 3 (a) Data are transmitted instantaneously, i.e. t i := t s i = t r i for all i ∈ Z >0 ; data coding time is negligible, i.e. μ st i = 0 for all i ∈ Z >0 . (b) A transmission occurs at the end of all the static segments. (c) All static time slots are of equal length τ st > 0.

Fig. 4 .

 4 Fig. 4. Dynamic segment and minislots

Assumption 4 (

 4 a) Data are transmitted instantaneously, i.e. t i := t s i = t r i for all i ∈ Z >0 ; data coding time is negligible, i.e. μ dy i = 0 for all i ∈ Z >0 . (b) A transmission occurs at the end of all the dynamic segments. (c) The dynamic segments satisfy τ dy,i ∈ [ε, τ d MATI ] for some τ d MATI > 0 and for all i ∈ Z >0 , where ε > 0 refers to the length of a minislot.

), D 1 := D trans 1 ∪ D seg 1 , D 2 := D trans 2 ∪ D seg 2 with D trans 1 and D trans 2

 11122212 

1 2 m- 1

 121 Lmrm(Tm) arctanh(λ(T m )) γmcm(Tm) < Lm, with L m , γ m > 0 and ρ m ∈ (0, 1) coming from Assumptions 5 and 6, λ(s) := rm(s)(1-ρm) 2 ρm 1+ρm ( γm Lm -1)+1+ρm , r m (s) := γmcm(s) L and c m (s) come from (29) for s > 0.

sumptions 5 -

 5 7 to calculate (31) based on the obtained parameters. Let x = (x p , x c ) and e = ŷ -y. As shown in [1], Assumptions 5-6 hold with H 1 (x) = | √ 2A 21 x|, H 2 (x) := |A 21 x|, ρ 1 = 0.7071, L 1 = 15.73, γ 1 = 21.5275, ρ 2 = 0.7071, L 2 = 15.73 and γ 2 = 15.9222. Through calculations according to (30), we obtain that δ 1 = δ 2 = 0, k 1 = 232.853, k 2 = 31.844.

Fig. 5 .

 5 Fig. 5. Segments of length T1 = 0.0186 and T2 = 0.01084. τst = 0.0062 and τ dy = 0.01057 according to (31)

bm am dz z 2 - 2 m - 1 (L m r m /γ m ) 2 -z 2 = 1 LLemma 4

 2212214 sgn(Lmγmcm(Tm))(Lmrm/γm) 2 where z = φm + L m /γ m , a m := 1/ρ m + L m /γ m , b m := ρ m + L m /γ m , r m = γmcm(Tm) L and sgn(•) is the sign function with sgn(0) = 0. When γ m c m (T m ) > L m , (A.2) implies that τ MATI,m = -1 γm bm am dz z 2 +(Lmrm/γm)2 = -1 Lmrm arctan bmγm Lmrmarctan amγm Lmrm . In this case, we have that τ MATI,m agrees with (31) noting that arctan(k 2)arctan(k 1 ) = arctan k2-k1 1+k1k2 for all k 1 , k 2 ≥ 0. When γ m c m (T m ) = L m , (31) follows fromγ m c m (T m ) < L m , in view of (A.2), m r m arctanh b m γ m L m r m arctanh a m γ m L m r mand (31) holds since arctanh(k 2 )arctanh(k 1 ) = arctanh k2-k1 1-k1k2 . We then conclude the lemma by noting that φ m (s) = ρ m when s ≥ τ MATI,m .Let θ m for m ∈ {1, 2} be the solution toθm (s) = 1 φ m (s) γ m + (c m (T m )δ m )θ m (s) (A.3)with φ m : R ≥0 → R >0 being defined in Lemma 3 andθ m (0) = Γ m (T m ), where Γ m (T m ) := γ m c m (T m )δ m + ν m (T m ), (A.4) c m and δ m respectively come from (29) and (30). The function ν m : R ≥0 → R ≥0 is to be determined using the lemma below. For any T m > 0 and m ∈ {1, 2}, there exists a continuous function ν m : R ≥0 → R ≥0 such that the solution θ m to (A.3) satisfies the properties listed below. (1) θ m (T m ) = M and θ m (s) is non-decreasing on [0, M] when s increases, where s ∈ [0, T m ] and M = max 1, m (T 3-m ). Proof. To determine the function ν m , we study the following linear differential equations θm = ρ m -γ m + (c m (T m )δ m )θ m θm = 1 ρ m (-γ m + (c m (T m )δ m )θ m ) (A.5) with initial conditions θ m (0) = γm cm(Tm)-δm + ν m and θ m (0) = γm cm(Tm)-δm + ν m for some ν m , ν m > 0. The solutions to (A.5) satisfy for s ≥ 0 θm(s)= γm cm(Tm )-δm + νm exp ((cm(Tm)δm)ρms) θ m (s)= γm cm(Tm )-δm + ν m exp cm(Tm )-δm ρm s .(A.6)We select ν m , ν m such that θ m (T m ) = M, θ m (T m ) = M , i.e. νm(Tm)= (cm(Tm)-δm )M -γm (cm(Tm )-δm) exp((cm(Tm)-δm)ρmTm ) (A.7) ν m (Tm)= (cm(Tm)-δm )M -γm (cm(Tm )-δm) expcm(Tm)-δm ρm Tm , where δ m ≥ 0 and M ≥ 1 are constants. Note that ν m , ν m in (A.7) satisfies ν m , ν m ≥ 0 since M ≥ 1 and c m (T m ) ≥ γ m + δ m for any T m > 0 (see footnote 4 for explanations) and k m ≥ γ m from its definition. Consequently, the solutions θ m , θ m to (A.5) are nondecreasing. We next show θ m (0), θ m (0) ∈ [0, M] to conclude that θ m (s), θ m (s) ∈ [0, M] for all s ∈ [0, T m ]. From the definition of d m (s) in (30), it is straightforward that d m (s) < γm km for each s > 0 and M ≥ 2γm km . We can also get that d m (s) < kmM-γm km ≤ γm km for all s > 0 when M ≤ 2γm km . Recalling the definition of c m in (29), the fact that k m ≥ , d m (s) < γm km for all s > 0 and M ≥ 1, it follows that θ m (0) = γ m γm γm/km-dm(Tm) + 1 ρmTm

  kmγm kmM-γm . Note that km = kmγm kmM-γm ≤ k m in this case and consequently c m (s)δ m ≥ km for all s > 0 when M ≥ 2γm km . Applying the same technique as in Case I, we can conclude that ν m (s) ≤ d m (s) holds for any s > 0 and M ≥ 2γmkm , and hence it holds for all M ≥ 1.By now, we have that θm (0) ∈ [0, M], also θ m (0) ∈ [0, M] since 0 ≤ ν m (s) ≤ ν m (s) for all s ≥ 0. In view of Lemma 3 that φ m (s) ∈ [ρ m , 1/ρ m ]for all s ≥ 0, we therefore respectively upper-bound and lower-bound θ m , the solution to (A.3), by θ m and θ m in (A.6) and by selecting ν m such that ν m (s) ≤ ν m (s) ≤ ν m (s) for all s ≥ 0.As θ m (s) and θ m (s) ∈ [0, M], there exists a function ν m satisfying the above condition such that θ m (T m ) = M and θ m (s) ∈ [0, M] for all s ∈ [0, T m ]. Then, we can derive from θ m

κ) + γ 1 φ 1

 1 θ1 + γ 1 -(c 1 (T 1 )δ 1 )θ 1 W 2 1 (e, κ) ≤ -1 (|x|) -1 (|e|)γ 2 1 φ 2 1 θ 1 W 2 1 (e, κ)(Mθ 1 ) ≤ -1 (|x|) -1 (|e|). (B.3)Noting the fact that 1 is positive definite there exists a continuous, positive definite function such thatU • (ξ; F (ξ)) ≤ -(|ξ| A ). (B.4)

1 (recall that the set D trans 1 isρ 2 θ 2 γ2π 2 1 θ 1 (T 1 )≤

 112111 Case I: transmission jump. Let ξ ∈ R nx × R ne × Z ≥0 × D trans defined in[START_REF] Nešić | Input-to-state stability of networked control systems[END_REF]). In view of (27), using that φ 1 (0) = 1/ρ 1 , (B.1) and item 2) of Assumption 5, we obtainU (G(ξ)) = V (x) + γ 1 φ 1 (0)θ 1 (τ 2 )W 2 1 (h(κ, e, 1), κ + 1) ≤ V (x) + γ 1 1 ρ 1 ρ 2 1 θ 1 (τ 2 )W 2 1 (e, κ) ≤ V (x) + γ 1 φ 1 (τ 1 )θ 1 (τ 2 )W 2 1 (e, κ) = U (ξ). (B.5)13Case II: segment switch. Let ξ ∈ R nx ×R ne ×Z ≥0 ×D seg 1 . In view of (27) and Lemma 3,U (G(ξ)) = V (x) + γ 2 φ 2 (τ 1 )θ 2 (0)W 2 2 (e, κ) ≤ V (x) + γ 2 1 (0)W 2 2 (e, κ). (B.6)On the other hand, we deduce from Assumption 5 that W 2 (e, κ) ≤ π 1 W 1 (e, κ) with π 1 = α W2 /α W1 . Consequently, with the fact that τ 2 = T 1 and θ 2 (0) ≤ γ1ρ1ρ2 according to Lemmas 3-4, it follows thatU (G(ξ)) ≤ V (x) + γ 2 V (x) + γ 1 φ 1 (τ 1 )θ 1 (τ 2 )W 2 1 (e, κ) = U (ξ).This completes the proof noting thatD = R nx × R ne × Z ≥0 × (D 1 ∪ D 2 ) and D 1 = D trans 1 ∪ D seg 1 .

  [START_REF] Cena | On the properties of the flexible time division multiple access technique[END_REF] 

Table 1

 1 Comparison of MATIs for the batch reactor

		RR	TOD
	MATI for RR from [1]	0.0093	-
	MATI for TOD from [1]	-	0.01084
	MATI for RR-TOD via (31) 0.0062 0.01057
	T1 = 0.0186, T2 = 0.01084		
	MATI for RR-TOD via (31) 0.0082 0.01079

This assumption can be relaxed as demonstrated in[START_REF] Nešić | A unified framework for design and analysis of networked and quantized control systems[END_REF].

Note that cm in (29) is a strictly positive function since it decreases when its argument grows and cm(s) → km+δm > 0 when s → ∞.