
HAL Id: hal-01166678
https://hal.science/hal-01166678

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SHORTEST PATH RESOLUTION USING HADOOP
Sabeur Aridhi, Vincent Benjamin, Philippe Lacomme, Libo Ren

To cite this version:
Sabeur Aridhi, Vincent Benjamin, Philippe Lacomme, Libo Ren. SHORTEST PATH RESOLUTION
USING HADOOP . MOSIM 2014, 10ème Conférence Francophone de Modélisation, Optimisation et
Simulation, Nov 2014, Nancy, France. �hal-01166678�

https://hal.science/hal-01166678
https://hal.archives-ouvertes.fr

MOSIM’14 - 5 au 7 novembre 2014-Nancy - France

SHORTEST PATH RESOLUTIONUSING HADOOP

Sabeur Aridhi, Vincent Benjamin, Philippe Lacomme, Libo Ren

Laboratoire d'Informatique de Modélisation et d‟Optimisation des Systèmes

 (LIMOS, UMR CNRS 6158),

Campus des Cézeaux, 63177 Aubière Cedex, France

{aridhi, benjamin.vincent, placomme, ren}@isima.fr

ABSTRACT: The fast growth of scientific and business data has resulted in the evolution of the cloud computing. The MapReduce

parallel programming model is a new framework favoring design of algorithms for cloud computing. Such framework favors

processing problems across huge datasets using a large number of computers. Hadoop is an implementation of MapReduce

framework that becomes one of the most interesting approaches for cloud computing. Our contribution consists in investigating how

the MapReduce framework can create new trend in design of operational research algorithms and could define a new methodology to

adapt algorithms to Hadoop. Our investigations are directed on the shortest path problem on large-scale real-road networks. The

proposed algorithm is tested on a graph modeling French road network using the OpenStreetMap data. The computational results

push us into considering that Hadoop offers a promising approach for problems where data are so large that numerous memory

problems and excessive computational time could arise using a classical resolution scheme.

KEYWORDS: Shortest path, cloud, hadoop, MapReduce.

1 INTRODUCTION

The rapid growth of internet since last decades has led to

a huge amount of information which has created a trend

in design of modern data center and massive data

processing algorithms especially in the cloud. Hadoop is

one of the most interesting approaches for cloud

computing which is an implementation of MapReduce

framework first introduced and currently promoted by

Google. In this article, we are interested in evaluating

how hadoop framework offers a promising approach for

operational research algorithms. Here we consider the

shortest path problem (SPP) on large-scale real-road

networks. The adaptation of shortest path algorithms

(commonly used in resolution of scheduling problems or

routing problems) for the clouds, required attention since

the applications must be tuned to frameworks which take

advantages of the cloud resources (Srirama et al., 2012).

1.1 Shortest path problems

Shortest path problems drawn attention for use in various

transportation engineering applications. Without any

doubt it could be directly attributed to the recent

developments in Intelligent Transportation Systems

(ITS), particularly in the field of Route Guidance System

(RGS). The current RGS field in both North America

and Europe has generated new interest in using heuristic

algorithms to find shortest paths in a traffic network for

vehicle routing operations. (Guzolek and Koch, 1989)

discussed how heuristic search methods could be tuned

for vehicle navigation systems. (Kuznetsov, 1993)

debates applications of an A* algorithm, a bi-directional

search methods, and a hierarchical search one.

Several researchers have been addressed the definition of

efficient search strategies and mechanisms. For example,

the multi-objective shortest path problem is addressed by

Umair et al. in 2014 (Umair et al., 2014). They

introduced an evolutionary algorithm for the MOSP

(Multi-Objective Shortest Path). They have also

presented a state of the art on the MOSP where

publications are gathered into classes depending on the

approaches. Some authors including, but not limited to

(Tadao, 2014), introduced new advance in complexity

improvement in classical shortest path algorithms based

on bucket approaches. (Cantone and Faro, 2014)

introduced lately a hybrid algorithms for the Single

Source Shortest Paths (and all-pairs SP) which is

asymptotically fast in some special graph configurations.

A recent survey of (Garroppo et al., 2010) focuses on the

multi-constrained approximated shortest path algorithms

representing by recent publications of (Gubichev et al.,

2010) or (Willhalm, 2005).

1.2 Parallel data-processing paradigm with hadoop

Hadoop is an open-source Apache project which

provides solutions for storage and large-scale distributed

computing. It relies on two components: the first one

Hadoop Distributed File System (HDFS) which allows

to store large files across multiple computers; the second

component is the wide spread MapReduce engine (Dean

J. and S. Ghemawat, 2008) which provides a

programming model for large-scale distributed

computing.

mailto:sabeur.aridhi@isima.fr
mailto:placomme@isima.fr
mailto:ren@isima.fr

MOSIM’14 - 5 au 7 novembre 2014-Nancy - France

As stressed in the figure 1, a hadoop system consists of a

master and several slave nodes. The master should

consist a NameNode and a JobTracker to manage

respectively data storage and computation jobs

scheduling. A slave node could be a DataNode for data

storage or/and a TaskTracker for processing computation

jobs. A secondary NameNode can be used to replicate

data of the NameNode to provide a high quality of

service.

HDFS

Datanode

Datanode

Slave nodes

NameNode

Job Tracker

TaskTracker

TaskTracker

Data local file

Copy to HDFS

Copy from HDFS

Result local file

Datanode

Slave nodes

Master Node

Figure 1: Typical component of one hadoop cluster

Hadoop uses the MapReduce engine as the parallel data-

processing paradigm. Cohen in 2009 (Cohen, 2009)

prove that MapReduce could be successfully applied for

specific graph problems, including but not limited to

computation of graph components, clustering,

rectangles/triangles enumeration. MapReduce has also

been used for scientific problems by (Bunch et al., 2009)

proving that it could be used to solve problems including

the Marsaglia polar method for generating random

variables and integer sort. In (Sethia and Karlapalem,

2011), the authors explore the benefits hadoop-based

multi-agents simulation framework implementation.

1.3 Hadoop terminology

In hadoop terminology, by „job‟ we mean execution of a

Mapper and Reducer across a data set and by „task‟ we

mean an execution of a Mapper or a Reducer on a slice

of data. Hadoop distributes the Map invocations across

several computers by partitioning the input data

automatically into a set of independent splits. Those

input splits are processed in parallel as Mapper tasks on

slave nodes.

Hadoop invokes a Record Reader method on the input

split to read one record per line until the entire input split

has been consumed. Each call of the Record Reader

leads to another call to the Map function of the Mapper.

Reduce invocations are distributed by splitting the key

space into pieces using a splitting function. One more

thing to mention here is that some problems require a

succession of MapReduce steps to accomplish their

goals.

Partition 1

HDFS
Partition 2

Partition n

Map ()

Map by Data ID

Map by Data ID

Map by Data ID

Execute job on
node

Reduce ()

Collect Data ID

Collect Data ID

Collect Data ID

Generate the
output data

Figure 2: MapReduce Flow

As shown in figure 2, a MapReduce task consists in two

following steps: first the Map tasks are scheduled and

second the Reduce tasks. It gets periodic updates from

the datanodes about the average time on each datanode.

The information on average time permits distribution of

tasks favoring the faster datanodes.

MOSIM’14 - 5 au 7 novembre 2014-Nancy - France

Hadoop is a new trend in parallel and distributed

computing. Providing a full integration into cloud

architectures, hadoop permits to operational researchers

to focus on the parallelization of algorithms without

consideration of the network infrastructure required to

achieve the computation. Hadoop is now proposed in

numerous public and private cloud solutions including

AWS, Google, IBM and Azure. Hadoop is a very

interesting solution since it permits for a reasonable

effort to create new parallel implementation of various

algorithms.

This paper is organized as follow. In the next section,

we present the proposed MapReduce-based method for

large-scale shortest path problem. In Section 3, we

describe the experimental study using large real-world

road networks. In Section 4, we conclude the work and

we highlight some future works.

2 SHORTEST PATH RESOLUTION WITH

HADOOP

2.1 Framework description

In the proposed framework for the shortest path

computation, each iteration represents a single

MapReduce pass. As stressed by (Srirama et al., 2012),

such type of resolution scheme is difficult to benefit

efficiently from parallelization, and the proposed

framework does not guarantee to solve optimally the

shortest path problem but lead to high quality solutions.

Data local file
Partition of the
straight line on

the graph into nb
subgraphs

I : Inital node
J : Final node
L : Subgraph size
Ne : maximal number of iterations

HDFS

Compute shortest
path in the
subgraph 1

Compute shortest
path in the

subgraph nb

Wait until
node

achieved
job

Step 1 : Create initial data Step 2 : Computaton of one
initial shortest path

Retrieved
the

shortest
path

Partition
into

subgraph
HDFS

Compute shortest
path in the
subgraph 1

Compute shortest
path in the

subgraph nb

Wait until
node

achieved
job

Retrieved
the

shortest
path

Step 3 : Improvement Step 4 : Retreived solution

Ne iterations

The Shortest path

Figure 3: Hadoop based framework for the shortest path

2.2 Proposed algorithm

The hadoop-based shortest path resolution framework

consists of 4 steps (see figure 3). The first step consists

in uploading data to the hadoop file system. It consists

also in specifying parameters like the initial/final

positions, the maximal number of iterations and the

subgraphs size. The second step aims to calculate one

shortest path (Initial Shortest Path) which is iteratively

improved in the next step. The initial shortest path

computation begins with the creation of subgraphs which

leads to jobs parallelization since computation of the

shortest path on each subgraph (noted as local shortest

path) is considered as a job in hadoop. This step 2 is

fully achieved when all local shortest paths have been

uploaded from slave nodes. The initial shortest path is

obtained by concatenating all local shortest paths.

The step 3 is an iterative improvement. In this step, a

subgraph is defined by the middle points of two adjacent

local shortest paths. One can note that the number of

subgraphs depends the iteration number. It alternates

between and where the number of

subgraphs in step 2. The process is stopped when the

number of iterations is reached. The step 4 consists in

MOSIM’14 - 5 au 7 novembre 2014-Nancy - France

downloading the results from the hadoop file system to a

local directory. In the following, we present the

algorithm of our approach (see Algorithm 1).

Algorithm 1. Hadoop shortest path framework
1. Procedure SSP_Hadoop_Framework

2. Input parameters

3. L : subgraph size in km

4. Ix, Iy : Initial latitude and longitude

5. Jx, Jy : Final latitude and longitude

6. Ne : maximal number of iterations

7. begin

8. // Step 1. Create initial data

9. (G,Dx,Dy,Ax,Ay):= Partition_Into_Subgraph(L,Ix,Iy,Jx,Jy);

10. nb := |G|;

11. // Step 2. Computation of the initial shortest path

12. for j:=1 to nbdo

13. << copy G[j] from local to HDFS >>

14. << G[j] will be copied from HDFS to a slave node >>

15. SP”[j] = Start_Node_Job(G[j],Dx[j],Dy[j],Ax[j],Ay[j]);

16. end for

17. << wait until hadoop nodes have achieved work >>

18. SP:= Retrieved_Shortest_Path(SP”);

19.

20. // Step 3. Improvement of the shortest path

21. for i:=2 to Ne do

22. if (i%2=0) Then

23. for j:=1 to|SP| -1 do

24. (Mx[j], My[j]):= the middle of the shortest path SP[j];

25. (Mx[j+1], My[j+1]):= the middle of the shortest path SP[j+1];

26. G[j] := Create_Graph(Mx[j], My[j], Mx[j+1], My[j+1]);

27. << copy G[j] from local to HDFS>>

28. << G[j] will be copied from HDFS to a slave node >>

29. SP”[j]:= Start_Node_Job(G[j], Mx[j], My[j], Mx[j+1], My[j+1]);

30. end for

31. << wait until hadoop nodes have achieved work >>

32. SP’:= Retrieved_Shortest_Path(SP”);

33.

34. // Step 4. Load output files from the HDFS to local directory

35. Load SP’ from the HDFS to local directory

36. else

37. for j:=0 to|SP’|do // size of SP’ = nb-1

38. if(j=0)

39. (Mx[j], My[j]):= (Ix, Iy);

40. else

41. (Mx[j], My[j]):= the middle of the shortest path SP’[j];

42. end if

43. if(j = |SP’|)

44. (Mx[j+1], My[j+1]):= (Jx, Jy);

45. else

46. (Mx[j+1], My[j+1]):= the middle of the shortest path SP’[j+1];

47. end if

48. G[j+1]:= Create_Graph(Mx[j], My[j], Mx[j+1], My[j+1]);

49. << copy G[j+1] from local to HDFS>>

50. << G[j+1] will be copied from HDFS to a slave node >>

51. SP”[j+1]:= Start_Node_Job(G[j], Mx[j], My[j], Mx[j+1], My[j+1]);

52. end for

53. << wait until hadoop nodes have achieved work >>

54. SP:= Retrieved_Shortest_Path(SP”);

55.

56. // Step 4. Download data from HDFS

57. Load SP from the HDFS to local directory

58. end if

59. end for

60. return Concat(SP, SP’, Ne);

In algorithm 1, lines 8-10 describe the first step. In

which, the procedure Partition_Into_Subgraph

consists in creation of subgraphs by dividing the

“straight line” from an origin to a destination into several

subgraphs according the predefined length (the diagonal

length of subgraph). The subgraph data is created by

extracting road information from the OpenStreetMap

data. Figure 4 gives an example of subgraphs creation. It

consists in using the "straight line" from node and to

create 4 subgraphs. A subgraph is defined by its origin

node and destination node and the origin node of

subgraph is the destination node of subgraph.

One can note that the origin position of subgraph is

the destination of subgraph, ,

where the number of subgraphs.

MOSIM’14 - 5 au 7 novembre 2014-Nancy - France

I

J

Subgraph 1

Subgraph 2

Subgraph 3

Subgraph 4

Figure 4: First partition and shortest path

Lines 11-18 illustrate the step 2 of algorithm. The

procedure Start_Node_Job allows starting the

computation of local shortest path on subgraphs using

MapReduce engine. The procedure requires a subgraph

 and the GPS coordinates of the origin and destination

positions. In this step, it is possible that an origin or a

destination does not correspond to a node of the

subgraph. Therefore, a projection step is necessary to

compute the nearest node of the subgraph form each

GPS position before starting the shortest path

computation. A Dijkstra algorithm is adapted here for

the shortest path computation. As known, a classical

shortest path problem can be solved using Dijkstra's

algorithm in nnO log with a priority queue such as a

Fibonacci heap (Fredman and Tarjan, 1987) or 2-3 heaps

(Takaoka, 1999). The obtained local shortest paths are

saved into a vector denoted . One assumes that
is the shortest path of the subgraph.

Lines 21-32 and lines 36-54 describe the improvement

step. The call of the procedure Create_Graph

consists in creation the subgraphs induced by the middle

of the shortest path of the current iteration (lines 24-25).

As mentioned before, the subgraph number is different

between an odd iteration and an even iteration. As shown

in figure 5 (a), we assumes that each square is one

subgraph. At one odd iteration , concatenating of the set

of local shortest paths gives the initial shortest path from

 to .

Figure 5 (b) gives a solution at the even iteration .

Considering the set of local shortest paths obtained at

iteration and , a node (with its

coordinates) is the node corresponds to the

middle of in terms of kilometers (the nearest node

to the middle of the path). The subgraph creation

consists in encompassing the nodes and . In this

example, 3 subgraphs have been created. The obtained

set of local shortest paths is denoted . One can note

that the concatenations of all local shortest paths do not

give the path from to . It is necessary to include the

path from the node to and the path from to in

order to form a solution to the initial problem. To do so,

we have to use the set of local shortest paths obtained at

iteration .

I

P1

J

P3

P2

Subgraph 1

Subgraph 2

Subgraph 3

Subgraph 4

SP[1]

SP[2]

SP[3]

SP[4]

I

P1

J

P3

P2

Subgraph 1

Subgraph 2

Subgraph 3

SP’[1]

SP’[2]

SP’[3]

M1

M2

M3

M4

(a) set of LSP at an odd iteration (b) set of LSP at an even iteration

Figure 5: Two adjacent iterations of shortest paths computation

Line 34 and line 57 describe the last step which consists

in downloading the results of last of two iterations from

the hadoop file system. The shortest path is obtained by

calling the procedure concat which takes 3 parameters

including the number of iterations and the solutions of

two last iterations.

MOSIM’14 - 5 au 7 novembre 2014-Nancy - France

3 NUMERICAL EXPERIMENTS

All tests were conducted using hadoop 0.23.9 with a

cluster of 8 homogenous nodes. Each node is a PC with

AMD Opteron processor (2.3 GHz) under Linux

(CentOS 64-bit). The number of cores used for

experiments is limited to 1. The iteration number of

algorithm is set to 2.

3.1 Instances

A graph of French road network has been created using

the OpenStreetMap data. The road profile is fixed to

pedestrian. A group of 15 instances are created using the

same graph. Each instance contains an origin and a

destination (see table 1). The subgraph size
 km is addressed. Note

that the graph will not be split into subgraphs when

 . The used graph can be downloaded from:

http://www.isima.fr/~lacomme/hadoop_mosim/.

 Origin Destination

Instance City GPS position City GPS position

1 Clermont-Ferrand 45.779796 3.086371 Montluçon 46.340765 2.606664

2 Paris 48.858955 2.352934 Nice 43.70415 7.266376

3 Paris 48.858955 2.352934 Bordeaux 44.840899 -0.579729

4 Clermont-Ferrand 45.779796 3.086371 Bordeaux 44.840899 -0.579729

5 Lille 50.63569 3.062081 Toulouse 43.599787 1.431127

6 Brest 48.389888 -4.484496 Grenoble 45.180585 5.742559

7 Bayonne 43.494433 -1.482217 Brive-la-Gaillarde 45.15989 1.533916

8 Bordeaux 44.840899 -0.579729 Nancy 48.687334 6.179438

9 Grenoble 45.180585 5.742559 Bordeaux 44.840899 -0.579729

10 Reims 49.258759 4.030817 Montpellier 43.603765 3.877974

11 Reims 49.258759 4.030817 Dijon 47.322709 5.041509

12 Dijon 47.322709 5.041509 Lyon 45.749438 4.841852

13 Montpellier 43.603765 3.877974 Marseille 43.297323 5.369897

14 Perpignan 42.70133 2.894547 Reims 49.258759 4.030817

15 Rennes 48.113563 -1.66617 Strasbourg 48.582786 7.751825

Table 1: Instances data

3.2 Influence of the subgraphs size on the results
quality

Table 2 contains the computational results for different

subgraph sizes from 15 to 200 kilometers. In which, the

optimal solutions is obtained using which lead

to computation of a shortest path on the whole graph.

Column “Ins.” contains the instance; column “Opt.”

contains the optimal solution (execution of a Dijkstra

algorithm in the whole graph); columns “Val.” reports

the obtained value with 2 iterations; and “Gap” is the gap

(%) the best found solution to the optimal value. As

shown in in the table 2, the average Gap is improved

when we increase subgraph size. More precisely, the

average Gap is improved from 9.55% to 1.11%. When

 km, the optimal solution were obtained for 6

instances out of 15. On the other hand, when

km, no feasible solution is found for several instances.

Since the nodes distribution could arise several problems

of connectivity in small subgraphs.

MOSIM’14 - 5 au 7 novembre 2014-Nancy - France

Ins. Opt. Val. Gap Val GAP Val. GAP Val. GAP Val. Gap Val. GAP

1 87.1 96.8 11.11 92.3 5.95 87.1 0.00 87.1 0.00 87.1 0.00 87.1 0.00

2 841.2 - - - - 934.7 11.12 908.7 8.02 854.7 1.60 850.5 1.09

3 537.4 574.3 6.87 557.7 3.78 549.5 2.25 542.4 0.93 542.0 0.85 537.4 0.00

4 355.6 381.6 7.31 375.1 5.49 369.6 3.95 361.5 1.67 355.6 0.00 358.0 0.68

5 883.8 954.4 7.99 933.2 5.59 926.4 4.82 912.9 3.29 913.1 3.31 908.7 2.82

6 948.2 1032.0 8.84 1007.5 6.25 989.6 4.37 971.8 2.48 970.3 2.33 965.1 1.78

7 349.6 377.0 7.85 372.4 6.55 361.8 3.51 356.1 1.88 352.4 0.81 349.6 0.00

8 750.1 814.3 8.56 792.5 5.65 782.7 4.35 774.0 3.19 761.6 1.53 750.9 0.11

9 611.7 639.2 15.14 682.2 11.52 639.7 4.57 658.5 7.64 632.3 3.36 630.8 3.12

10 737.1 852.5 15.65 828.2 12.35 806.6 9.42 793.0 7.58 774.4 5.06 763.5 3.57

11 264.2 282.6 6.95 273.1 3.36 272.2 3.00 268.2 1.50 264.2 0.00 264.2 0.00

12 192.6 206.8 7.36 199.0 3.31 197.8 2.72 198.0 2.81 192.6 0.00 192.6 0.00

13 152.4 - - 167.7 10.01 163.1 7.01 160.9 5.53 152.4 0.00 152.4 0.00

14 872.3 974.4 11.70 941.3 7.91 921.0 5.59 893.7 2.45 900.1 3.19 878.8 0.74

15 763.3 830.8 8.84 824.2 7.97 807.9 5.84 785.7 2.94 784.9 2.82 784.4 2.76

AVG. Gap 9.55 6.84 4.83 3.46 1.66 1.11

Table 2: Influence of the subgraphs size

3.3 Influences of the number of slave hadoop
nodes

Table 3 reports the computational time with different

number of nodes: column “1-sn” for time consumption

with one slave node, column “4-sn” for 4 slave nodes

resolution time, and column “8-sn” for 8 slave nodes

resolution time. One can note that the average

computational time varies strongly between the different

numbers of slaves and the size of subgraph. For the

instance 2, the computation time decreased from 613

seconds to 76 seconds with km. For several

instances, increasing of the salve nodes number does not

improve the computational time. For the instance 8with

 km, the computational time is equal between 4

nodes and 8 nodes. Such analysis pushes us into

considering that there exists an optimal configuration on

the number of nodes and the subgraph size for resolution

of each instance.

Ins. 1-sn 4-sn 8-sn 1-sn 4-sn 8-sn 1-sn 4-sn 8-sn 1-sn 4-sn 8-sn

1 84 49 54 55 54 49 51 48 48 60 60 59

2 613 127 76 247 62 55 177 58 58 194 92 92

3 457 106 65 181 61 55 129 59 60 132 78 78

4 281 75 52 122 52 52 97 58 56 80 72 68

5 689 138 76 277 73 58 192 65 63 179 91 88

6 746 149 87 318 75 56 250 74 62 244 92 90

7 274 73 51 119 52 49 88 53 53 81 73 72

8 573 121 69 228 65 51 160 56 54 159 78 81

9 444 102 108 171 55 51 119 55 55 114 75 75

10 530 110 65 203 56 49 142 56 56 152 80 80

11 216 61 49 87 50 51 65 55 51 68 63 64

12 179 54 51 81 52 55 62 58 58 68 67 66

13 137 47 48 66 52 51 60 59 59 59 59 58

14 614 119 76 234 69 53 167 59 53 125 62 64

15 601 122 73 221 61 51 160 63 64 146 72 74

AVG. 429.2 96.9 66.7 174.0 59.3 52.4 127.9 58.4 56.7 124.1 74.3 73.9

Table 3: Impact of slave nodes number on the computation time

4 CONCLUDING REMARKS

The MapReduce framework is a new approach for

operational research algorithms and our contribution

stands at the crossroads of optimization research

community and map-reduce community. Our

contribution consists in proving there is a great interest

in defining approaches taking advantages of research

coming from information system and parallelization.

As future work, we are interested in adapting the

operational research algorithms to such framework,

especially for those which could be more easily to take

advantages of parallel computing platform as GRASP or

Genetic algorithm.

REFERENCES

Bunch C., B. Drawert and M. Norman,. Mapscale: a

cloud environment for scientific computing,

Technical Report, University of California, Computer

Science Department. 2009.

Cantone D. and S. Faro. Fast shortest-paths algorithms in

the presence of few destinations of negative-weight

arcs. Journal of Discrete Algorithms, Vol. 24, pp. 12-

25. 2014.

Cohen J., 2009. Graph twiddling in a MapReduce world,

Computing in Science and Engineering. Vol. 11, pp.

29–41. 2009.

http://www.sciencedirect.com/science/article/pii/S157086671300021X
http://www.sciencedirect.com/science/article/pii/S157086671300021X
http://www.sciencedirect.com/science/article/pii/S157086671300021X

MOSIM’14 - 5 au 7 novembre 2014-Nancy - France

Dean J. and S. Ghemawat. Mapreduce: simplified data

processing on large clusters. Communications of the

ACM, Vol. 51, pp. 107–113. 2008.

Fredman M.L. and R.E. Tarjan. Fibonacci heaps and

their uses in improved network optimization

algorithms, J. ACM, Vol. 34, pp. 596–615. 1987.

Garroppo R.G., S. Giordano and L. Tavanti. 2010. A

survey on multi-constrained optimal path

computation: Exact and approximate algorithms. The

International Journal of Computer and

Telecommunications Networking. Vol. 54(17), pp.

3081-3107. 2010.

Gubichev A., S. Bedathur, S. Seufert and G. Weikum.

2010. Fast and Accurate Estimation of Shortest Paths

in Large Graphs. CIKM’10, October 26–30, Toronto,

Ontario, Canada. 2010.

Guzolek J, Koch E. Real-time route planning in road

network. Proceedings of VINS, September Vol. 11–

13. Toronto, Ontario, Canada, pp. 165–9. 1989.

Kuznetsov T. High performance routing for IVHS.IVHS

America 3rd Annual Meeting, Washington, DC,

1993.

Sethia P. and Karlapalem K. A multi-agent simulation

framework on small Hadoop cluster. Engineering

Applications of ArticifialIntelligence. Vol. 24, pp.

1120-1127. 2011.

Srirama S.N., P. Jakovits and E.Vainikko. Adapting

scientific computing problems to clouds using

MapReduce. Future Generation Computer Systems.

Vol.28, pp. 184–192. 2012.

Tadao T. Sharing information for the all pairs shortest

path problem. Theoretical Computer Science, Vol.

520(6), pp. 43-50. 2014.

Takaoka T. Theory of 2–3 heaps. in: COCOON ‟99, in:

Lect. Notes Comput. Sci. 1999.

Umair F. Siddiqi, YoichiShiraishi, Mona Dahb and

Sadiq M. Sait. A memory efficient stochastic

evolution based algorithm for the multi-

objective shortest path problem. Applied Soft

Computing, Vol. 14, Part C, pp. 653-662. 2014.

Willhalm T. Engineering shortest paths and layout

algorithms for large graphs. Karlsruhe Institute of

Technology, pp. 1-130. 2005.

http://www.sciencedirect.com/science/article/pii/S0304397513006762
http://www.sciencedirect.com/science/article/pii/S0304397513006762
http://www.sciencedirect.com/science/article/pii/S1568494613002986
http://www.sciencedirect.com/science/article/pii/S1568494613002986
http://www.sciencedirect.com/science/article/pii/S1568494613002986
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003385
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000003385

