
HAL Id: hal-01166678
https://hal.science/hal-01166678

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SHORTEST PATH RESOLUTION USING HADOOP
Sabeur Aridhi, Vincent Benjamin, Philippe Lacomme, Libo Ren

To cite this version:
Sabeur Aridhi, Vincent Benjamin, Philippe Lacomme, Libo Ren. SHORTEST PATH RESOLUTION
USING HADOOP . MOSIM 2014, 10ème Conférence Francophone de Modélisation, Optimisation et
Simulation, Nov 2014, Nancy, France. �hal-01166678�

https://hal.science/hal-01166678
https://hal.archives-ouvertes.fr


MOSIM’14 - 5  au 7 novembre 2014-Nancy - France 

 

SHORTEST PATH RESOLUTIONUSING HADOOP 

 

Sabeur Aridhi, Vincent Benjamin, Philippe Lacomme, Libo Ren 

 

Laboratoire d'Informatique de Modélisation et d‟Optimisation des Systèmes 

 (LIMOS, UMR CNRS 6158), 

Campus des Cézeaux, 63177 Aubière Cedex, France 

{aridhi, benjamin.vincent, placomme, ren}@isima.fr 

ABSTRACT: The fast growth of scientific and business data has resulted in the evolution of the cloud computing. The MapReduce 

parallel programming model is a new framework favoring design of algorithms for cloud computing. Such framework favors 

processing problems across huge datasets using a large number of computers. Hadoop is an implementation of MapReduce 

framework that becomes one of the most interesting approaches for cloud computing. Our contribution consists in investigating how 

the MapReduce framework can create new trend in design of operational research algorithms and could define a new methodology to 

adapt algorithms to Hadoop. Our investigations are directed on the shortest path problem on large-scale real-road networks. The 

proposed algorithm is tested on a graph modeling French road network using the OpenStreetMap data. The computational results 

push us into considering that Hadoop offers a promising approach for problems where data are so large that numerous memory 

problems and excessive computational time could arise using a classical resolution scheme. 
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1 INTRODUCTION 

The rapid growth of internet since last decades has led to 

a huge amount of information which has created a trend 

in design of modern data center and massive data 

processing algorithms especially in the cloud. Hadoop is 

one of the most interesting approaches for cloud 

computing which is an implementation of MapReduce 

framework first introduced and currently promoted by 

Google. In this article, we are interested in evaluating 

how hadoop framework offers a promising approach for 

operational research algorithms. Here we consider the 

shortest path problem (SPP) on large-scale real-road 

networks. The adaptation of shortest path algorithms 

(commonly used in resolution of scheduling problems or 

routing problems) for the clouds, required attention since 

the applications must be tuned to frameworks which take 

advantages of the cloud resources (Srirama et al., 2012). 

 

1.1 Shortest path problems 

Shortest path problems drawn attention for use in various 

transportation engineering applications. Without any 

doubt it could be directly attributed to the recent 

developments in Intelligent Transportation Systems 

(ITS), particularly in the field of Route Guidance System 

(RGS). The current RGS field in both North America 

and Europe has generated new interest in using heuristic 

algorithms to find shortest paths in a traffic network for 

vehicle routing operations. (Guzolek and Koch, 1989) 

discussed how heuristic search methods could be tuned 

for vehicle navigation systems. (Kuznetsov, 1993) 

debates applications of an A* algorithm, a bi-directional 

search methods, and a hierarchical search one.  

 

Several researchers have been addressed the definition of 

efficient search strategies and mechanisms. For example, 

the multi-objective shortest path problem is addressed by 

Umair et al. in 2014 (Umair et al., 2014). They 

introduced an evolutionary algorithm for the MOSP 

(Multi-Objective Shortest Path). They have also 

presented a state of the art on the MOSP where 

publications are gathered into classes depending on the 

approaches. Some authors including, but not limited to 

(Tadao, 2014), introduced new advance in complexity 

improvement in classical shortest path algorithms based 

on bucket approaches. (Cantone and Faro, 2014) 

introduced lately a hybrid algorithms for the Single 

Source Shortest Paths (and all-pairs SP) which is 

asymptotically fast in some special graph configurations. 

A recent survey of (Garroppo et al., 2010) focuses on the 

multi-constrained approximated shortest path algorithms 

representing by recent publications of (Gubichev et al., 

2010) or (Willhalm, 2005). 

 

1.2 Parallel data-processing paradigm with hadoop 

Hadoop is an open-source Apache project which 

provides solutions for storage and large-scale distributed 

computing. It relies on two components: the first one 

Hadoop Distributed File System (HDFS) which allows 

to store large files across multiple computers; the second 

component is the wide spread MapReduce engine (Dean 

J. and S. Ghemawat, 2008) which provides a 

programming model for large-scale distributed 

computing.  
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As stressed in the figure 1, a hadoop system consists of a 

master and several slave nodes. The master should 

consist a NameNode and a JobTracker to manage 

respectively data storage and computation jobs 

scheduling. A slave node could be a DataNode for data 

storage or/and a TaskTracker for processing computation 

jobs. A secondary NameNode can be used to replicate 

data of the NameNode to provide a high quality of 

service. 

 

HDFS

Datanode

Datanode

Slave nodes

NameNode

Job Tracker

TaskTracker

TaskTracker

Data local file

Copy to HDFS

Copy from HDFS

Result local file

Datanode

Slave nodes

Master Node

 
Figure 1: Typical component of one hadoop cluster 

 

Hadoop uses the MapReduce engine as the parallel data-

processing paradigm. Cohen in 2009 (Cohen, 2009) 

prove that MapReduce could be successfully applied for 

specific graph problems, including but not limited to 

computation of graph components, clustering, 

rectangles/triangles enumeration. MapReduce has also 

been used for scientific problems by (Bunch et al., 2009) 

proving that it could be used to solve problems including 

the Marsaglia polar method for generating random 

variables and integer sort. In (Sethia and Karlapalem, 

2011), the authors explore the benefits hadoop-based 

multi-agents simulation framework implementation. 

 

1.3 Hadoop terminology 

In hadoop terminology, by „job‟ we mean execution of a 

Mapper and Reducer across a data set and by „task‟ we 

mean an execution of a Mapper or a Reducer on a slice 

of data. Hadoop distributes the Map invocations across 

several computers by partitioning the input data 

automatically into a set of independent splits. Those 

input splits are processed in parallel as Mapper tasks on 

slave nodes. 

 

Hadoop invokes a Record Reader method on the input 

split to read one record per line until the entire input split 

has been consumed. Each call of the Record Reader 

leads to another call to the Map function of the Mapper. 

Reduce invocations are distributed by splitting the key 

space into   pieces using a splitting function. One more 

thing to mention here is that some problems require a 

succession of MapReduce steps to accomplish their 

goals. 

Partition 1

HDFS
Partition 2

Partition n

Map ()

Map by Data ID

Map by Data ID

Map by Data ID

Execute job on 
node

Reduce ()

Collect Data ID

Collect Data ID

Collect Data ID

Generate the 
output data

 
Figure 2: MapReduce Flow 

 

As shown in figure 2, a MapReduce task consists in two 

following steps: first the Map tasks are scheduled and 

second the Reduce tasks. It gets periodic updates from 

the datanodes about the average time on each datanode. 

The information on average time permits distribution of 

tasks favoring the faster datanodes. 
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Hadoop is a new trend in parallel and distributed 

computing. Providing a full integration into cloud 

architectures, hadoop permits to operational researchers 

to focus on the parallelization of algorithms without 

consideration of the network infrastructure required to 

achieve the computation. Hadoop is now proposed in 

numerous public and private cloud solutions including 

AWS, Google, IBM and Azure. Hadoop is a very 

interesting solution since it permits for a reasonable 

effort to create new parallel implementation of various 

algorithms.  

 

This paper is organized as follow. In the next section, 

we present the proposed MapReduce-based method for 

large-scale shortest path problem. In Section 3, we 

describe the experimental study using large real-world 

road networks. In Section 4, we conclude the work and 

we highlight some future works. 

2 SHORTEST PATH RESOLUTION WITH 

HADOOP 

2.1 Framework description 

In the proposed framework for the shortest path 

computation, each iteration represents a single 

MapReduce pass. As stressed by (Srirama et al., 2012), 

such type of resolution scheme is difficult to benefit 

efficiently from parallelization, and the proposed 

framework does not guarantee to solve optimally the 

shortest path problem but lead to high quality solutions.  
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L : Subgraph size
Ne : maximal number of iterations
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Compute shortest 
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Retrieved 
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shortest 
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Step 3 : Improvement Step 4 : Retreived solution

Ne iterations
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Figure 3: Hadoop based framework for the shortest path 

 

 

2.2 Proposed algorithm  

The hadoop-based shortest path resolution framework 

consists of 4 steps (see figure 3). The first step consists 

in uploading data to the hadoop file system. It consists 

also in specifying parameters like the initial/final 

positions, the maximal number of iterations and the 

subgraphs size. The second step aims to calculate one 

shortest path (Initial Shortest Path) which is iteratively 

improved in the next step. The initial shortest path 

computation begins with the creation of subgraphs which 

leads to jobs parallelization since computation of the 

shortest path on each subgraph (noted as local shortest 

path) is considered as a job in hadoop. This step 2 is 

fully achieved when all local shortest paths have been 

uploaded from slave nodes. The initial shortest path is 

obtained by concatenating all local shortest paths.  

 

The step 3 is an iterative improvement. In this step, a 

subgraph is defined by the middle points of two adjacent 

local shortest paths. One can note that the number of 

subgraphs depends the iteration number. It alternates 

between    and       where    the number of 

subgraphs in step 2. The process is stopped when the 

number of iterations is reached. The step 4 consists in 
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downloading the results from the hadoop file system to a 

local directory. In the following, we present the 

algorithm of our approach (see Algorithm 1).  

 

 

Algorithm 1. Hadoop shortest path framework   
1. Procedure SSP_Hadoop_Framework 

2. Input parameters 

3.    L  : subgraph size in km 

4.    Ix, Iy : Initial latitude and longitude 

5.    Jx, Jy : Final latitude and longitude 

6.    Ne : maximal number of iterations  

7. begin 

8.    // Step 1. Create initial data 

9.    (G,Dx,Dy,Ax,Ay):= Partition_Into_Subgraph(L,Ix,Iy,Jx,Jy);  

10.    nb := |G|; 

11.    // Step 2. Computation of the initial shortest path 

12.    for j:=1 to nbdo  

13.       << copy G[j] from local to HDFS >> 

14.       << G[j] will be copied from HDFS to a slave node >> 

15.       SP”[j] = Start_Node_Job(G[j],Dx[j],Dy[j],Ax[j],Ay[j]); 

16.    end for 

17.    << wait until hadoop nodes have achieved work >> 

18.    SP:= Retrieved_Shortest_Path(SP”); 

19.  

20.    // Step 3. Improvement of the shortest path 

21.    for i:=2 to Ne do 

22.       if (i%2=0) Then 

23.          for j:=1 to|SP| -1 do 

24.             (Mx[j], My[j]):= the middle of the shortest path SP[j];  

25.             (Mx[j+1], My[j+1]):= the middle of the shortest path SP[j+1]; 

26.             G[j] := Create_Graph(Mx[j], My[j], Mx[j+1], My[j+1]); 

27.             << copy G[j] from local to HDFS>> 

28.             << G[j] will be copied from HDFS to a slave node >> 

29.             SP”[j]:= Start_Node_Job(G[j], Mx[j], My[j], Mx[j+1], My[j+1]);      

30.          end for 

31.          << wait until hadoop nodes have achieved work >> 

32.          SP’:= Retrieved_Shortest_Path(SP”); 

33.  

34.          // Step 4. Load output files from the HDFS to local directory 

35.          Load SP’ from the HDFS to local directory  

36.       else 

37.          for j:=0 to|SP’|do     // size of SP’ = nb-1 

38.             if(j=0)  

39.               (Mx[j], My[j]):= (Ix, Iy); 

40.             else  

41.               (Mx[j], My[j]):= the middle of the shortest path SP’[j]; 

42.             end if 

43.             if(j = |SP’|)  

44.               (Mx[j+1], My[j+1]):= (Jx, Jy); 

45.             else  

46.               (Mx[j+1], My[j+1]):= the middle of the shortest path SP’[j+1]; 

47.             end if 

48.             G[j+1]:= Create_Graph(Mx[j], My[j], Mx[j+1], My[j+1]); 

49.             << copy G[j+1] from local to HDFS>> 

50.             << G[j+1] will be copied from HDFS to a slave node >> 

51.             SP”[j+1]:= Start_Node_Job(G[j], Mx[j], My[j], Mx[j+1], My[j+1]);      

52.          end for 

53.          << wait until hadoop nodes have achieved work >> 

54.          SP:= Retrieved_Shortest_Path(SP”); 

55.  

56.          // Step 4. Download data from HDFS 

57.          Load SP from the HDFS to local directory 

58.       end if        

59. end for 

60. return Concat(SP, SP’, Ne); 

 
In algorithm 1, lines 8-10 describe the first step. In 

which, the procedure Partition_Into_Subgraph 

consists in creation of subgraphs by dividing the 

“straight line” from an origin to a destination into several 

subgraphs according the predefined length (the diagonal 

length of subgraph). The subgraph data is created by 

extracting road information from the OpenStreetMap 

data. Figure 4 gives an example of subgraphs creation.  It 

consists in using the "straight line" from node   and   to 

create 4 subgraphs. A subgraph is defined by its origin 

node and destination node and the origin node of     

subgraph is the destination node of         subgraph. 

One can note that the origin position of     subgraph is 

the destination of         subgraph,         , 

where    the number of subgraphs. 



MOSIM’14 - 5  au 7 novembre 2014-Nancy - France 

I

J

Subgraph 1

Subgraph 2

Subgraph 3

Subgraph 4

 
Figure 4: First partition and shortest path 

 

Lines 11-18 illustrate the step 2 of algorithm. The 

procedure Start_Node_Job allows starting the 

computation of local shortest path on subgraphs using 

MapReduce engine. The procedure requires a subgraph 

  and the GPS coordinates of the origin and destination 

positions. In this step, it is possible that an origin or a 

destination does not correspond to a node of the 

subgraph. Therefore, a projection step is necessary to 

compute the nearest node of the subgraph form each 

GPS position before starting the shortest path 

computation. A Dijkstra algorithm is adapted here for 

the shortest path computation. As known, a classical 

shortest path problem can be solved using Dijkstra's 

algorithm in  nnO log with a priority queue such as a 

Fibonacci heap (Fredman and Tarjan, 1987) or 2-3 heaps 

(Takaoka, 1999). The obtained local shortest paths are 

saved into a vector denoted   . One assumes that       
is the shortest path of the     subgraph. 

 

Lines 21-32 and lines 36-54 describe the improvement 

step. The call of the procedure Create_Graph 

consists in creation the subgraphs induced by the middle 

of the shortest path of the current iteration (lines 24-25). 

As mentioned before, the subgraph number is different 

between an odd iteration and an even iteration. As shown 

in figure 5 (a), we assumes that each square is one 

subgraph. At one odd iteration  , concatenating of the set 

of local shortest paths gives the initial shortest path from 

  to  .  
 

Figure 5 (b) gives a solution at the even iteration    . 

Considering    the set of local shortest paths obtained at 

iteration   and        , a node    (with its 

coordinates            ) is the node corresponds to the 

middle of       in terms of kilometers (the nearest node 

to the middle of the path). The subgraph creation 

consists in encompassing the nodes    and     . In this 

example, 3 subgraphs have been created. The obtained 

set of local shortest paths is denoted    . One can note 

that the concatenations of all local shortest paths do not 

give the path from   to  . It is necessary to include the 

path from the node   to    and the path from    to   in 

order to form a solution to the initial problem. To do so, 

we have to use the set of local shortest paths obtained at 

iteration  .  
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(a) set of LSP at an odd iteration   (b) set of LSP at an even iteration     

 

Figure 5: Two adjacent iterations of shortest paths computation  

 

Line 34 and line 57 describe the last step which consists 

in downloading the results of last of two iterations from 

the hadoop file system. The shortest path is obtained by 

calling the procedure concat which takes 3 parameters 

including the number of iterations and the solutions of 

two last iterations. 
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3 NUMERICAL EXPERIMENTS 

All tests were conducted using hadoop 0.23.9 with a 

cluster of 8 homogenous nodes. Each node is a PC with 

AMD Opteron processor (2.3 GHz) under Linux 

(CentOS 64-bit). The number of cores used for 

experiments is limited to 1. The iteration number of 

algorithm is set to 2. 

 
3.1 Instances 

A graph of French road network has been created using 

the OpenStreetMap data. The road profile is fixed to 

pedestrian. A group of 15 instances are created using the 

same graph. Each instance contains an origin and a 

destination (see table 1). The subgraph size   
                          km is addressed. Note 

that the graph will not be split into subgraphs when 

     . The used graph can be downloaded from: 

http://www.isima.fr/~lacomme/hadoop_mosim/. 

 Origin Destination 

Instance City GPS position City GPS position 

1 Clermont-Ferrand 45.779796 3.086371 Montluçon 46.340765 2.606664 

2 Paris 48.858955 2.352934 Nice 43.70415 7.266376 

3 Paris 48.858955 2.352934 Bordeaux 44.840899 -0.579729 

4 Clermont-Ferrand 45.779796 3.086371 Bordeaux 44.840899 -0.579729 

5 Lille 50.63569 3.062081 Toulouse 43.599787 1.431127 

6 Brest 48.389888 -4.484496 Grenoble 45.180585 5.742559 

7 Bayonne 43.494433 -1.482217 Brive-la-Gaillarde 45.15989 1.533916 

8 Bordeaux 44.840899 -0.579729 Nancy 48.687334 6.179438 

9 Grenoble 45.180585 5.742559 Bordeaux 44.840899 -0.579729 

10 Reims 49.258759 4.030817 Montpellier 43.603765 3.877974 

11 Reims 49.258759 4.030817 Dijon 47.322709 5.041509 

12 Dijon 47.322709 5.041509 Lyon 45.749438 4.841852 

13 Montpellier 43.603765 3.877974 Marseille 43.297323 5.369897 

14 Perpignan 42.70133 2.894547 Reims 49.258759 4.030817 

15 Rennes 48.113563 -1.66617 Strasbourg 48.582786 7.751825 

Table 1: Instances data 

3.2 Influence of the subgraphs size on the results 
quality 

Table 2 contains the computational results for different 

subgraph sizes from 15 to 200 kilometers. In which, the 

optimal solutions is obtained using      which lead 

to computation of a shortest path on the whole graph. 

Column “Ins.” contains the instance; column “Opt.” 

contains the optimal solution (execution of a Dijkstra 

algorithm in the whole graph); columns “Val.” reports 

the obtained value with 2 iterations; and “Gap” is the gap 

(%) the best found solution to the optimal value. As 

shown in in the table 2, the average Gap is improved 

when we increase subgraph size. More precisely, the 

average Gap is improved from 9.55% to 1.11%. When 

      km, the optimal solution were obtained for 6 

instances out of 15. On the other hand, when      

km, no feasible solution is found for several instances. 

Since the nodes distribution could arise several problems 

of connectivity in small subgraphs. 
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Ins. Opt. Val. Gap Val GAP Val. GAP Val. GAP Val. Gap Val. GAP 

1 87.1 96.8 11.11 92.3 5.95 87.1 0.00 87.1 0.00 87.1 0.00 87.1 0.00 

2 841.2 - - - - 934.7 11.12 908.7 8.02 854.7 1.60 850.5 1.09 

3 537.4 574.3 6.87 557.7 3.78 549.5 2.25 542.4 0.93 542.0 0.85 537.4 0.00 

4 355.6 381.6 7.31 375.1 5.49 369.6 3.95 361.5 1.67 355.6 0.00 358.0 0.68 

5 883.8 954.4 7.99 933.2 5.59 926.4 4.82 912.9 3.29 913.1 3.31 908.7 2.82 

6 948.2 1032.0 8.84 1007.5 6.25 989.6 4.37 971.8 2.48 970.3 2.33 965.1 1.78 

7 349.6 377.0 7.85 372.4 6.55 361.8 3.51 356.1 1.88 352.4 0.81 349.6 0.00 

8 750.1 814.3 8.56 792.5 5.65 782.7 4.35 774.0 3.19 761.6 1.53 750.9 0.11 

9 611.7 639.2 15.14 682.2 11.52 639.7 4.57 658.5 7.64 632.3 3.36 630.8 3.12 

10 737.1 852.5 15.65 828.2 12.35 806.6 9.42 793.0 7.58 774.4 5.06 763.5 3.57 

11 264.2 282.6 6.95 273.1 3.36 272.2 3.00 268.2 1.50 264.2 0.00 264.2 0.00 

12 192.6 206.8 7.36 199.0 3.31 197.8 2.72 198.0 2.81 192.6 0.00 192.6 0.00 

13 152.4 - - 167.7 10.01 163.1 7.01 160.9 5.53 152.4 0.00 152.4 0.00 

14 872.3 974.4 11.70 941.3 7.91 921.0 5.59 893.7 2.45 900.1 3.19 878.8 0.74 

15 763.3 830.8 8.84 824.2 7.97 807.9 5.84 785.7 2.94 784.9 2.82 784.4 2.76 

AVG. Gap 9.55  6.84  4.83  3.46  1.66  1.11 

Table 2: Influence of the subgraphs size

3.3 Influences of the number of slave hadoop 
nodes 

Table 3 reports the computational time with different 

number of nodes: column “1-sn” for time consumption 

with one slave node, column “4-sn” for 4 slave nodes 

resolution time, and column “8-sn” for 8 slave nodes 

resolution time. One can note that the average 

computational time varies strongly between the different 

numbers of slaves and the size of subgraph. For the 

instance 2, the computation time decreased from 613 

seconds to 76 seconds with      km. For several 

instances, increasing of the salve nodes number does not 

improve the computational time. For the instance 8with 

      km, the computational time is equal between 4 

nodes and 8 nodes. Such analysis pushes us into 

considering that there exists an optimal configuration on 

the number of nodes and the subgraph size for resolution 

of each instance. 

 
                       

Ins. 1-sn 4-sn 8-sn 1-sn 4-sn 8-sn 1-sn 4-sn 8-sn 1-sn 4-sn 8-sn 

1 84 49 54 55 54 49 51 48 48 60 60 59 

2 613 127 76 247 62 55 177 58 58 194 92 92 

3 457 106 65 181 61 55 129 59 60 132 78 78 

4 281 75 52 122 52 52 97 58 56 80 72 68 

5 689 138 76 277 73 58 192 65 63 179 91 88 

6 746 149 87 318 75 56 250 74 62 244 92 90 

7 274 73 51 119 52 49 88 53 53 81 73 72 

8 573 121 69 228 65 51 160 56 54 159 78 81 

9 444 102 108 171 55 51 119 55 55 114 75 75 

10 530 110 65 203 56 49 142 56 56 152 80 80 

11 216 61 49 87 50 51 65 55 51 68 63 64 

12 179 54 51 81 52 55 62 58 58 68 67 66 

13 137 47 48 66 52 51 60 59 59 59 59 58 

14 614 119 76 234 69 53 167 59 53 125 62 64 

15 601 122 73 221 61 51 160 63 64 146 72 74 

AVG. 429.2 96.9 66.7 174.0 59.3 52.4 127.9 58.4 56.7 124.1 74.3 73.9 

Table 3: Impact of slave nodes number on the computation time 
 

4 CONCLUDING REMARKS 

The MapReduce framework is a new approach for 

operational research algorithms and our contribution 

stands at the crossroads of optimization research 

community and map-reduce community. Our 

contribution consists in proving there is a great interest 

in defining approaches taking advantages of research 

coming from information system and parallelization.  

As future work, we are interested in adapting the 

operational research algorithms to such framework, 

especially for those which could be more easily to take 

advantages of parallel computing platform as GRASP or 

Genetic algorithm. 
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