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ABSTRACT: This paper presents a large neighborhood search and compares it to the other methods used to
solve the Shift Design and Personnel Task Scheduling Problem. Basically, this problem aims at designing a
roster while assigning fixed tasks to an heterogeneous workforce. Such a problem may occur in several contexts,
where industrial activity requires a sharp and efficient management of workers. In this paper, we focus on the
particular case of a company specialized in drug evaluation. This company is facing a scheduling problem that
may be modelized as a Shift Design and Personnel Task Scheduling Problem. Based on realistic instances of
this particular problem, we compare the relative performances of three different methods : A two-phase method,
a constraint-based approach and the large neighborhood search derived from the constraint-based model.
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1 INTRODUCTION

In this paper, we study the SDPTSP (Shift De-
sign and Personnel Task Scheduling Problem), ini-
tially introduced in (Lapègue, Bellenguez-Morineau
& Prot 2013a). This problem consists in designing in-
dividual schedules for heterogeneous workers, which
amounts to fixing days-off, designing shifts and as-
signing fixed tasks within these shifts. This problem
shares some characteristics with other problems, such
as the Nurse Rostering Problem (Burke, De Caus-
maecker, Berghe & Landeghem 2004) and the Tour
Scheduling Problem (Mabert & Watts 1982, Alfares
2004). These problems also deal with the design of
employee rosters, but they do not consider the as-
signment of fixed tasks that cannot be preempted.
This particular point is considered in other problems
such as the Fixed Job Scheduling Problem (Kolen,
Lenstra, Papadimitriou & Spieksma 2007, Kovalyov,
Ng & Cheng 2007) and the Personnel Task Scheduling
Problem (Krishnamoorthy & Ernst 2001), but these
problems do not consider the design of employee ros-
ters. In the SDPTSP both aspects have to be taken
into account, which explains the need of dedicated
approaches. The first section of this paper introduces
the industrial background of the real-life case study
we focus on. The second section gives a formal de-
scription of the SDPTSP. Then, we present the dif-
ferent resolution methods, and finally compare them
on a set of instances, inspired by the real-case study.

2 INDUSTRIAL BACKGROUND

New drugs have to be tested on human body in or-
der to get a marketing authorization. These tests are
performed on behalf of pharmaceutical laboratories
by independent companies, certified by the Ministry
of Health. The real-case study of this article is based
on the scheduling problem of such a company. The
testing protocol of a new drug is a dedicated proce-
dure, very detailed, that gives a description of all the
clinical tasks to be performed, along with their rela-
tive starting time and duration. These tasks are per-
formed on volunteers, i.e. people who are recruited
by the company and hospitalized during the study.
Each week, all the tasks related to the ongoing pro-
tocols have to be assigned to qualified and available
employees. The individual rosters resulting from this
assignment have to respect a set of legal and organi-
zational constraints. Moreover, they are expected to
be as fair as possible.

While assigning clinical tasks, the chief nurse has to
consider compulsory tasks and administrative activi-
ties because they have an impact on the availability
of workers and also on the clinical workload a worker
may be assigned to compulsory tasks, such as meet-
ings and trainings, are fixed in time, already assigned
to employees and cannot be preempted. Administra-
tive activities, such as writing medical reports, are not
fixed in time, may be preempted and they require a
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large experience but no specific skills. Therefore, the
sharing of the administrative and compulsory work-
loads, which is performed by the chief nurse before
dealing with clinical tasks, is not well-balanced. As a
consequence, the only way to get a fair roster is to bal-
ance administrative and compulsory workloads with
clinical workload, which means that workers should
be assigned to different clinical workloads. To capture
that, we associate to each employee a targeted clinical
workload, defined on a weekly basis by the chief nurse.
Then, a roster is all the more fair than workers are
close to their targeted clinical workload. Indeed, if
a worker is above his/her targeted clinical workload,
then he/she will have great difficulties to perform all
his/her administrative activities. On the contrary, a
worker that is under his/her targeted workload, will
have a lot of free time. But in that case, the workload
is probably not well-balanced among workers, mean-
ing that some of them would be above their target,
or simply feel having an unfair timetable.

Note that clinical tasks are fixed in time to the
minute, with durations ranging from 5 minutes to 5
hours. To cover this workload, decision makers want
to keep a high level of flexibility to build complete
schedules more easily. This lack of fixed shifts is a
strong characteristic of the problem: Employees could
start and end their shifts whenever it is necessary,
provided the resulting shifts and individual rosters
respect the set of constraints derived from work regu-
lation, company organization, and nurses agreements.
Consequently, shifts refer to continuous working pe-
riods that may overlap two calendar days. This flex-
ibility must be preserved because it is mandatory to
cover all the clinical tasks that may arise whenever
during the week. Even with such a high flexibility, it
occurs that the regular workforce has to be strength-
ened with externals in order to be able to perform
all tasks. This comes from the clinical tasks which
are fixed in time and may induced a clinical workload
that cannot be covered by regular workers only. In
this case the decision maker tries to evaluate the needs
on externals, by looking at the tasks left unassigned.
Then, the required number of externals is hired for a
few days so that all the clinical tasks are assigned to
qualified and available workers.

The scheduling process is currently hand-performed
on a weekly basis by two decision makers for a work-
force of about 30 workers. This process is quite dif-
ficult to manage and it requires highly skilled deci-
sion makers with a large experience. In this context,
the use of a decision-support system may ease and
speed up the whole process, leading to improvements
regarding workload sharing, hence a higher equity.
Moreover, in case of an important work overload, such
a tool may be used to minimize the amount of exter-
nal workers required to cover the workload.

3 FORMAL DESCRIPTION

In the following, we define some important notions
used all along the paper. A task is a fixed interval
of work which cannot be preempted and requires a
specific skill. A task is assignable to a worker if the
worker masters the required skill and is available dur-
ing the whole task. A day is a period of 24 hours start-
ing every calendar days at 6 a.m, e.g. Monday from
6 a.m. to Tuesday 6 a.m. A day-off corresponds to a
day without any work. A shift is a working time in-
terval assigned to a worker during a day. The weekly
set of shifts and days-off of a worker is called an indi-
vidual roster. The set of all individual rosters is then
simply called a roster. The daily set of clinical and
compulsory tasks assigned to a worker during his/her
shift is called a daily schedule. The weekly set of daily
schedules and days-off of a worker is called an indi-
vidual schedule, and the set of all schedules is called a
schedule. The clinical workload of a daily schedule is
given by the sum of the processing times of the corre-
sponding clinical tasks. The working time of a shift is
given by its duration minus the duration of the lunch
break. When all the tasks are assigned to workers,
the schedule is complete, otherwise it is partial. All
schedules have to be feasible, which means that they
respect constraints (O1) to (L7).

O1: Employees have at most one shift per day

O2: Employees only perform tasks assignable to them

O3: Employees are not assigned to overlapping tasks

O4: Compulsory assignments must be respected

O5: Tasks cannot be preempted

O6: Tasks cannot be assigned to more than one employee

O7: Tasks starting in different days belong to different
daily schedules

L1: Shifts do not last more than 11 hours

L2: Shifts are followed by a rest of at least 11 hours

L3: Daily working times do not exceed 10 hours

L4: Weekly working times do not exceed 48 hours

L5: Over 7 days, employees have a break of 35 hours

L6: Over 7 days, employees have at leat one day-off

L7: One hour of break occurs within shifts longer than 5
hours, starting before 12 a.m. and ending after 2.30 p.m.

Without (O7), it would be possible to build
daily schedules starting in the middle of the night
and ending in the middle of the morning, which is
forbidden by decision-makers because it does not
meet nurses agreements. About (L7), note that this
break may be splitted if required, which corresponds
to the way the lunch break is currently handled by
decision makers to get a complete schedule more
easily.
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Given this set of hard constraints, it may be im-
possible to find a complete schedule. In this case,
the decision-maker hires additionnal externals to
strengthen the regular workforce so as to be able to
cover the overall workload. Of course, the decision-
maker tries to hire as few as possible externals,
while having acceptable schedules for regular workers.
Therefore, the main goal is to minimize the number of
tasks left unassigned, noted U. As a consequence, we
allow partial schedules, which are useful to managers
because they provide insights regarding to the need
of externals. However, a complete schedule is always
better than a partial one. Schedules with the same
number of unassigned tasks, are distinguished based
on their inequity, noted ∆. Given a set of workers N ,
the inequity is defined as the difference between the
highest and the lowest worker’s gap value, itself being
the difference ∆n between the targeted clinical work-
load and the clinical workload assigned to the worker
n ∈ N . Based on these notations, ∆ is defined as
follow:

∆ = max
n

(∆n)−min
n

(∆n)

.

The problem studied in this paper is refereed to as
the SDPTSP||U,∆. It consists in building an over-
all schedule which minimizes the number of tasks left
unassigned and the inequity among workers in a lex-
icographique way : Given two solutions S1 and S2,
along with their number of unassigned tasks U1 and
U2, and their inequity ∆1 and ∆2, then S1 is better
than S2 if U1 < U2 or if U1 = U2 and ∆1 < ∆2. Since
tasks are fixed in time, a solution to this problem cor-
responds to an assignment of tasks to workers. This
problem is addressed by three methods: A two-phase
method, a constraint programming (CP) method and
a large neighborhood search based on the CP model.
Moreover, a local descent, noted H∆, is used by these
methods to reduce the inequity.

4 METHODS

4.1 H∆: A local descent to reduce ∆

Recall that ∆ depends on the highest and smallest
gaps to the targeted clinical workload. As a conse-
quence, in most cases, it depends on a few schedules
only. Therefore, a good way to reduce the inequity is
to focus on these schedules to try to improve them.
To do so, one has to move and swap some tasks so
that the clinical workload of workers who are the most
below (respectively the most above) their target is in-
creased (respectively decreased). While moving and
swapping tasks, one has to consider legal and orga-
nizational constraints in order to keep feasible sched-
ules.

We propose a local descent, noted H∆, which reduces
the inequity in four steps repeated untill a local op-

timum is reached. The first step is to move tasks
from workers with a big positive gap to workers with
the biggest negative gap in order to increase their
clinical workload. Likewise, the second step is is to
move tasks from workers with a big negative gap to
workers with the biggest positive gap in order to re-
duce their clinical workload. Steps three and four are
based on the same ideas, but they perform swaps in-
stead of simply moving one task, which may unlock
some improvements. Each step is repeated as long as
it reduces ∆.

All moves and swaps are performed with fixed shifts,
meaning that tasks which are not fully contained in a
shift cannot be assigned to the corresponding worker.
Since shifts are very flexible, they may be quite small.
Indeed, as a preprocessing step, H∆ starts by comput-
ing the smallest possible shifts, which allow workers
to perform the tasks assigned to them. Consequently,
after this reduction, H∆ extends all shifts to their
maximum, which depends on legal constraints. This
extension increases the number of considered moves,
which brings more flexibility to H∆. The initial re-
duction allows Moreover, to speed up the descent, we
compute for each worker the set of tasks that may
be assigned to him/her, based on his/her extended
shifts and skills. Then, for each worker, only moves
involving tasks from this subset of feasible tasks are
considered.

From a general point of view, H∆ presents several
interesting properties. First, it does not lead to the
optimum of ∆. Second, applying H∆ several times
to its own output, may reduce ∆ even more. Indeed,
during its initialization, H∆ starts by extended shifts
randomly. Therefore, applying H∆ several times may
unlock some improvements due to changes on shifts
during the preprocessing step. Finally, H∆ does not
maintain the ordering of solutions. Given two solu-
tions S1 and S2, along with their inequity ∆1 and
∆2, such that ∆1 < ∆2. After using H∆ on these
solutions, we obtain new solutions, noted S’

1 and S’
2,

along with their inequity ∆’
1 and ∆’

2. Then, we do
not necessarily have ∆’

1 < ∆’
2.

4.2 TWO-PHASE METHOD

A two-phase method has been introduced in (Prot,
Lapègue & Bellenguez-Morineau 2014) to solve the
SDPTSP. Recall that two-phase methods are a com-
mon way of handling problems that mixes different
kinds of decisions, such as the design of shifts and
the assignment of tasks. The method introduced
in (Prot et al. 2014) starts by computing a set of in-
teresting rosters (Phase 1), then, each roster is used
to build a schedule by assigning tasks to workers
(Phase 2). Roughly speaking, one may say that the
first phase handles legal constraints, while the sec-
ond one handles organizational constraints leading to
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simpler problems. The interest of considering sim-
pler problems is to be able to iterate quickly on the
two phases so as to find improving solutions. At the
end of each iteration, the roster leading to the best
local schedule is used to generate a new set of in-
teresting rosters, based on neighborhood operators.
During the resolution, shifts tend to increase to cover
tasks that were previously not well covered. How-
ever, after a few iterations, shifts tend to be too big
to be extended, which reduces the flexibility of the
roster and the ability of the method to build inter-
esting rosters. To handle this problem, after a few
iterations, all shifts are reduced so as to contain only
the tasks within their corresponding daily schedule.
Finally, when the time limit is reached, H∆ is used
to reduce the inequity. The overall design of the ap-
proach is given at the Algorithm 1.

Several neighborhood operators have been used in or-
der to avoid being locked in local optima. Some of
these operators such as the operators Add, Remove
and Extend are quite natural. Indeed, they respec-
tively add, remove and extend one shift. Operators
Add and Extend select one worker among a subset of
workers that were not working enough in the previous
solution (according to the targeted clinical workload
indicator), and they try to add a new shift to this
worker or to extend an existing one. Workers that
were not working enough in the previous solution are
favored by these operators, so that it will be easier in
the second phase to increase the clinical workload of
these workers. On the contrary, the operator Remove
focuses on workers that were working too much in the
previous solution. Besides, two dedicated operators,
called Cover and Equity, are also used to improve re-
spectively U and ∆. Note that each operator is used
several times on the previous best roster in order to
obtain a neighborhood of the previous roster.

The Cover operator selects a task t among the set
of tasks that were not well covered in the previous
solution. For instance, if some tasks are unassigned,
then t will be one of these tasks. On the contrary,
if all tasks are assigned, then t will be chosen among
the tasks which are covered by the smallest number of
shifts. Once t is selected, the Cover operator tries to
add a shift to a worker so as to increase the number
of shifts covering t. In this way, some of the tasks
that were not assigned or difficult to assign will be
easier to handle, which aims at easing the building of
complete schedules.

The Equity operator selects a worker w1 among a
subset of workers that were working too much in the
previous schedule. Then, it tries to add a shift to
a worker w2 6= w1, so that the new shift contains
at least one task that was assigned to w1. In this
way, some of the tasks that were assigned to a worker
working too much will be easier to assign to other

workers, leading to reduce the inequity.

The second phase of the method, which consists in as-
signing tasks to workers based on a given roster, is ad-
dressed by a heuristic that successively assigns a sub-
set of tasks to workers, until no tasks may be added to
the assignment. Each subset of tasks is chosen among
the set of maximal sets of overlapping tasks and is
consequently a maximal clique in the incompatibility
graph. Consequently, tasks of the same clique have
to be assigned to different workers (L7). Therefore,
the problem amounts to maximizing the matching be-
tween the set of tasks in the current clique and the set
of skilled and available workers. Moreover, to favor
assignments that seem promising, we add different
weights on the edges of the assignment graph. Those
weights are computed by heuristics in order to evalu-
ate, a priori, how much a person could be critical or
not for the tasks assignment. Therefore, the problem
amounts to solving a maximum weighted matching
problem, with the hungarian algorithm (Kuhn 1955).

Computational experiments lead to keep four differ-
ent ways of computing weights and three different
ways of sorting cliques, which leads to twelve differ-
ent settings for the second phase. Weights computing
is mainly based on the remaining targeted workload
of workers, along with their local criticality. The re-
maining targeted workload of a worker w is defined
as the difference between the targeted clinical work-
load of w and the clinical workload already assigned
to w. The higher the remaining targeted workload,
the higher the interest of edges linked to w. The
local criticality of a worker w, depending on a task
t, is defined as the opposite of the number of tasks
that w is able to do and that overlap t. It may also
be weighted by the processing times of these tasks.
The lower the criticality, the higher the interest of
the edge between w and t. Maximal cliques of over-
lapping tasks may be sorted by chronological order,
by decreasing task duration (the clique containing the
longest task comes first) or by increasing task cover-
ing (the clique containing the task that is covered by
the smallest number of shifts comes first).

During one iteration, only one of the twelve settings
of the second-phase is used. The choice of this set-
ting is performed while computing the initial solution.
However, after several non-improving iterations, all
settings are tested once again to replace the current
one by the one that performs best. In order to com-
pute the initial schedule, we use a heuristic that takes
into account workers skills and availabilities, but also
the workload profile, so as to place shifts were they
are required. Once the initial roster is designed, the
second-phase method is run once for each setting in
order to get the best possible initial solution.
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Algorithm 1: Two-Phase Method
Input: An instance, noted I,

Best and local best rosters, noted Rb and Rbl

Best and local best schedules, noted Sb and Sbl
Choice of cliques and weights, noted C∗c and C∗w

Output: The best schedule (Sb)
(Rb,Rbl)← initializeRoster(I)
(Sb,Sbl,C∗c ,C∗w)← initializeSchedule(Rb)
while ( time limit not reached ) do
NR ← generateNeighborhood(Rbl)

for (R ∈ NR) do
S ← buildSchedule(R,C∗c ,C∗w)
if (S better than Sbl) then

(Sbl,Rbl)← (S,R)
if (S better than Sb) then

(Sb,Rb)← (S,R)

reduceShifts(Rbl,Sbl)
update(C∗c,C

∗
w)

Sb ← H∆(Sb)
return Sb

4.3 CONSTRAINT-BASED APPROACH

A Constraint Programming (CP) method has been
introduced in (Lapègue et al. 2013a) to solve the
SDPTSP. Recall that CP is a powerful program-
ming paradigm wherein relations between variables
are stated through constraints. It is based on the ex-
ploration of a search tree that is truncated during the
search by the filtering algorithms of constraints. The
approach introduced in (Lapègue et al. 2013a) relies
on a CP model along with dedicated search strate-
gies. Once the time limit is reached, H∆ is used to
reduce the inequity.

The overall idea is to solve simultaneously the prob-
lems of assigning a set of tasks T to a set of workers
N , so that the resulting schedule respect legal and or-
ganizational constraints. Decision variables are given
by a matrix of set variables (a variable that represents
a set) which gives for each worker n ∈ N , and for
each day d ∈ D, the set of tasks Td,n ⊂ T performed
by worker n during day d, i.e. the daily schedule
of worker n. These variables are also used to ob-
tain the matrix of shifts, which gives for each worker
n ∈ N , and for each day d ∈ D, the start Fid,n and
the end Lad,n of the corresponding shift. The start
(respectively the end) of a shift of a worker is given by
an integer variable which corresponds to the earliest
start (respectively the latest end) among the tasks
of the corresponding daily schedule. The link be-
tween Td,n, Fid,n and Lad,n is ensured by constraints
minOverSet and maxOverSet. Based on Fid,n and
Lad,n variables, legal constraints related to maximal
working time and minimal rest duration are easily
stated through arithmetic constraints. If a variable
Td,n is empty, then Fid,n and Lad,n are instantiated

to special values that guarantee the consistency of the
model. Note that variables Td,n correspond to a par-
tition of T , which is specified through the constraint
partition. In this way, most constraints related to the
assignment of tasks are respected.

To prevent employees from working simultaneously
on two tasks, the first step is to compute the set of
maximal sets of overlapping tasks C in pre-processing.
Actually, it amounts to finding all maximal cliques in
the corresponding incompatibility graph. Then, for
each clique K ∈ C, it is possible to state that the in-
tersection between K and any Td,n contains at most
one element. Remaining constraints related to skills
requirements and workers availabilities are handled
during pre-processing. A dummy worker is added to
the workforce in order to allow partial schedules: All
the tasks can be assigned to the dummy worker with-
out any constraint violation. Consequently, the num-
ber of unassigned tasks correspond to the number of
tasks assigned to the dummy worker. Based on vari-
ables Td,n the clinical workload of each worker is eas-
ily computed with the constraint sumOverSet. Once
the clinical workload of each worker is known, the in-
equity objective is easily obtained through arithmetic
constraints.

Several search strategies designed to find fair sched-
ules or complete schedules are proposed in (Lapègue
et al. 2013a). The strategy that gives the best results
regarding the inequity of schedules is called LW-BT,
which stands for ”Less Working, Biggest Tasks”: At
each branching node, it selects the worker who is cur-
rently the most under his/her targeted clinical work-
load and assigns to this worker the longest task he/she
may perform. One can easily see that LW-BT tries
to reduce the inequity among workers at each branch-
ing node. The strategy that finds the highest num-
ber of complete schedules is called MW-LN, which
stands for ”Most Working, Lack of Nurse”. At each
branching node, it selects the worker who is currently
the most above his/her targeted clinical workload and
assigns to this worker the task that may be assigned
to the smallest number of workers. One can easily
see that MW-LN tries to handle tasks that require
rare skills at the beginning of the search, but also,
it tries to keep room for further assignments by as-
signing tasks to workers who are already quite buzy.
In this way, the inequity among workers will be high,
but complete schedules will be find more easily.

4.4 LARGE NEIGHBORHOOD SEARCH

The global idea of the Large Neighborhood Search
(LNS) method dedicated to the SDPTSP has been
presented in (Lapègue, Bellenguez-Morineau & Prot
2013b). Recall that LNS methods iterate on two main
steps. Given a schedule, it first consists in a par-
tial destruction of this schedule, followed by a repair



MOSIM14 - November 5-7-2014 - Nancy - France

step that consists in exploring the resulting neighbor-
hood in order to find improving schedules. The LNS
proposed in (Lapègue et al. 2013b) relies on the CP
model explained in the previous section. More pre-
cisely, both the initial schedule and the repair step
are handled by the CP model. The use of an exact
method to repair the current schedule allows to find
local optima in each neighborhood. However, in order
to be able to explore quickly several neighborhoods,
the exploration of each neighborhood is bounded.
Since the SDPTSP is composed of a tasks assign-
ment problem along with a shift design problem, it is
natural to consider two different neighborhoods, one
that focuses more on the assignment part, and one
that focuses more on the design of shifts. Therefore,
the proposed LNS uses two dedicated neighborhoods.
The overall design of the approach is given at the
Algorithm 2.

The first neighborhood operator, noted Top, selects
randomly an initial task t ∈ T and destroys the as-
signment of all the tasks that are simultaneous or
closed to t. This neighborhood destroys at least all
assignments of tasks that overlap t, but the neigh-
borhood may be even larger, depending on its cur-
rent size. When working on a partial schedule, t is
preferably selected among unassigned tasks.

The second neighborhood operator, called Pop, selects
randomly a set of workers W, depending on its cur-
rent size, and destroys all assignments related to these
workers. When working on a complete schedule,W is
preferably composed of workers who are the furthest
from their targeted clinical workload.

Note that both operators rely on a parameter that
gives its size. Depending on the chosen neighborhood,
the size is not defined in the same way. When con-
sidering the Top neighborhood, it corresponds to the
number of assignments that are going to be destroyed.
On the contrary, when considering the Pop neighbor-
hood, it corresponds to the number of workers whose
assignments are going to be destroyed. The Top neigh-
borhood allows to change completely the assignment
of tasks during a particular time interval, whereas
the Pop neighborhood allows to change completely
the shifts performed by a subset of workers. After a
given number of non improving iterations, their sizes
are increased.

At each iteration of the LNS, a large part of the
schedule is frozen, which means that search strate-
gies presented in the previous section may be too de-
terministic to be able to find different schedules. To
handle this problem, the strategy used in the LNS is
a generic CP strategy that relies highly on random
branching and exploration, combined with a restart
criterion. Moreover, U and ∆ are handled in two
different ways. The exploration of the neighborhood

is designed to find new schedules with a number of
unassigned tasks at least as good as the previous so-
lution, regardless of the equity. Therefore, U is min-
imized, but not strictly, while ∆ is not constrained.
Potentially, it enables to find all optima on U, which
enables to find several solutions with the same num-
ber of unassigned tasks, but with different values of
∆. This feature is interesting, because H∆ may lead
to good results even when ∆ is not very good. Thus,
H∆ is used at each iteration to reduce the inequity of
complete schedules. On the whole, this exploration
strategy has two different goals: First it improves the
number of unassigned tasks by filtering worst sched-
ules, second it finds many different complete sched-
ules, each one being improved by H∆. Therefore, it
benefits from two different strengths of CP, being its
ability to filter based on strong global constraints and
its ability to find feasible schedules. One may won-
der why non improving schedules are kept during the
second step, whereas they are filtered during the first
step. This comes from two facts: First the filtering
of CP model on U is more efficient that the one on
∆, second the local search is very effective even on
schedules that have a high inequity. Note that neigh-
borhoods are computed on best schedules after the
use of H∆. Therefore, the LNS is able to converge on
improving schedules.

Algorithm 2: LNS Method
Input: An instance, noted I

Current and best schedules, noted Sc and Sb

Time neighborhood operator, noted Top

Personnel neighborhood operator, noted Pop

Current neighborhood operator, noted op
Size of op, noted size

(Sc, Sb)← initializeSchedule(I)
while ( time limit not reached ) do

op← select(Top, Pop)
Sc ← destroy(Sb, op, size)
Sc ← repair(Sc)
Sc ← H∆(Sc)
counter← counter + 1
if (Sc better than Sb) then

Sb ← Sc

counter← 0

size← updateSizeOfNeighborhoods(counter, size)

5 EXPERIMENTS

The three methods mentionned in this paper can be
applied to solve the SDPTSP. In order to compare
these methods, extensive experiments have been per-
formed on instances inspired by the industrial case
study. This section is dedicated to computational ex-
periments validating each approach, and comparing
their relative performances. All tests have been per-
formed on an Intel Core i3-540 (3.06 GHz & 8G RAM)
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with a time limit of five minutes. Tests are performed
on a set of 720 instances introduced in (Lapègue
et al. 2013a). Each set of 30 instances corresponds
to a given combination of a number of tasks, a tight-
ness, and a skills setting. The number of tasks is
taken from 100 to 400. The tightness, which evaluates
the average clinical workload of workers, is considered
from 600 minutes to 1000 minutes, knowing that the
common tightness for a classical week is around 800
minutes. Two skills settings are considered: The com-
mon skills setting, i.e. skills are mastered by most of
the nurses, and the common and rare skills setting.
Within this last setting, 5% of the skills are consid-
ered to be rare and thus are mastered by only 20% of
the nurses, as opposed to 80% for the common ones.
Repartition and length of the tasks all along the week
is done to follow activity peaks in the company.

Results are compared with the following indicators:
C: Complete schedules.

I: Inequity, in minutes, of complete schedules.

A: Percentage of Assigned tasks, over partial schedules.

T: CPU Time, in seconds, of best schedules.

Note that 102 instances are known to admit no com-
plete schedules. Therefore, the number of complete
schedules is given over the number of instances that
may admit a complete schedule. One may wonder
why we consider these instances within our tests. Ac-
tually, they are very interesting because they allow to
evaluate the ability of methods to reach a schedule as
complete as possible, which may be used to evaluate
sharply the number of required externals. Results are
given in appendices 1 to 4.

Regarding the number of complete schedules, the
LNS performs better (581), followed by the two-phase
method (544). The constraint-based approach comes
last with respectively 473 and 194 complete schedule
for strategies MW-LN and LW-BT. Note also that all
methods encounter difficulties to find complete sched-
ules when the tightness of instances is high. More-
over, among instances with a high tightness, those
who have 100 tasks are the most difficult ones to
solve. Regarding the average inequity, LW-BT per-
forms best (29), followed by the LNS (27), the two-
phase method (40) and finally MW-LN (130). Note
also that instances with a small number of tasks are
generally solved in a better way regarding to the av-
erage inequity. On the whole, the LNS provides very
good schedules regarding both the number of com-
plete schedules and the average inequity among work-
ers. The constraint-based approach, which is the only
exact method tested in this comparison does not com-
pete with the LNS or the two-step method.

6 CONCLUSIONS

We have compared three methods, which solves the
SDPTSP in different ways : First, a two-phase
method, which relies on a classical decomposition,
second, a constraint-based approach, which handles
simultaneously the design of rosters and the assign-
ment of tasks, and finally, a large neighborhood
search based on this constraint-based approach. The
constraint-based approach is able to quickly find good
schedules, but it encounters difficulties to improve
them, because the flexibility policy regarding to the
design of shifts leads to a very combinatorial problem.
On the contrary, the large neighborhood search ben-
efits from the filtering of the constraint model along
with an enhanced ability to explore different parts
of the search space, leading to quick improvements
of initial solutions. The two-phase method is also
very effective to improve initial solutions, but since it
works in two steps, some schedules may be very dif-
ficult to build. Therefore, the method leads to very
good results, but it does not compete with the large
neighborhood, which handles the building of rosters
and the assignment of tasks simultaneously, even if
only a small part of the problem is considered. Fi-
nally, the use of a local descent enables to reduce
the inequity of schedules. This descent is very ef-
fective because well adapted to the problem. Indeed,
since administrative activities are not scheduled, most
schedules are not very dense, making it easier to move
and swap tasks. To benefit from this descent, the
most effective way seems to generate many schedules
so as to diversify the schedules which are then im-
proved with the descent. This idea turned out to be
quite effective on the SDPTSP, but it may also be
adapt to other problems.

To solve the SDPTSP||U,∆ effectively, it is a priori
better to find the optimum on U before looking at
∆. In this way, we do not have to distinguish sched-
ules that are not optimal regarding to U, leading to a
smaller search space. However, proving optimality on
U without a good lower bound is very difficult. There-
fore, future work may focus on finding good lower
bounds on the number of unassigned tasks.
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APPENDIX 1
S
iz

e

C
ri

t. Tightness
600 800 1 000 Total

C 53/54 33/47 5/21 91/122

1
0
0 I 95 151 216 122

A 97,71 97,89 96,05 96,74
T 161 152 96 136
C 59/60 42/55 9/35 110/150

2
0
0 I 95 144 192 122

A 99,00 98,78 97,71 98,00
T 171 142 95 136
C 58/58 50/58 21/56 129/172

3
0
0 I 89 131 261 133

A 99,67 99,23 98,92 99,01
T 201 178 99 159
C 59/59 54/59 34/56 147/174

4
00

I 83 111 256 133
A 99,75 99,63 99,07 99,19
T 171 171 129 157

C 229/231 179/219 069/168 477/618

T
o
ta

l

I 90 132 246 128
A 98,37 98,54 97,66 97,91
T 176 161 105 147

Table 1: CP-MW-LN-H∆

APPENDIX 2

S
iz

e

C
ri

t. Tightness
600 800 1 000 Total

C 31/54 5/47 1/21 37/122

1
00

I 26 34 46 28
A 97,76 96,89 92,22 95,14
T 55 73 75 68
C 41/60 5/55 0/35 46/150

2
00

I 29 32 - 30
A 99,26 98,05 94,92 96,82
T 34 26 29 30
C 46/58 11/58 0/56 57/172

30
0 I 29 34 - 30

A 99,57 98,82 97,13 98,08
T 25 25 32 27
C 41/59 12/59 1/56 54/174

40
0 I 25 40 30 29

A 99,68 99,03 97,60 98,46
T 21 22 25 23

C 159/231 033/219 002/172 194/618

T
ot

al I 28 36 38 29
A 98,88 98,15 95,47 97,05
T 34 36 40 37

Table 2: CP-LW-BT-H∆

APPENDIX 3

S
iz

e

C
ri

t. Tightness
600 800 1 000 Total

C 53/54 42/47 11/21 106/122

1
00

I 28 35 72 35
A 97,50 97,78 96,71 97,05
T 145 155 167 156
C 59/60 50/55 22/35 131/150

2
00

I 34 35 42 36
A 99,00 98,60 97,72 97,93
T 166 138 156 154
C 58/58 53/58 42/56 153/172

3
00

I 40 38 46 41
A 99,67 99,19 98,76 98,94
T 191 186 174 184
C 59/59 55/59 40/56 154/174

40
0 I 47 44 51 47

A 99,75 99,70 99,01 99,17
T 236 202 196 211

C 229/231 200/219 115/168 544/618

T
ot

a
l

I 38 38 49 40
A 98,28 98,47 97,68 97,90
T 184 170 173 176

Table 3: Two-phase method results

APPENDIX 4

S
iz

e

C
ri

t. Tightness
600 800 1 000 Total

C 54/54 46/47 20/21 120/122

10
0 I 17 14 17 16

A 97,67 98,07 97,10 97,38
T 144 117 128 127
C 59/60 53/55 29/35 141/150

20
0 I 27 24 26 26

A 99,00 98,71 98,90 98,13
T 73 175 162 162
C 58/58 54/58 47/56 159/172

30
0 I 33 26 29 29

A 99,67 99,33 98,90 99,10
T 180 170 171 172
C 59/59 58/59 44/56 161/174

40
0 I 34 31 38 34

A 99,75 99,75 99,27 99,34
T 278 289 195 209

C 230/231 211/219 139/168 581/618

T
ot

al I 28 24 30 27
A 98,41 98,60 97,95 98,12
T 158 154 155 155

Table 4: LNS results
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