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ABSTRACT: The main tool for the development of hazardous chemical syntheses in the field of fine chemicals and 
pharmaceuticals remains the batch reactor. Nevertheless, even if it offers the required flexibility and versatility, this 
reactor presents technological limitations. In particular, poor transfer of the heat generated by exothermic chemical 
reactions is a serious problem with regard to safety. In this context, a simple failure is considered as prejudicial. So, 
fault detection and diagnosis are studied with a particular attention in the scientific and industrial community. The 
major idea is that the fault must not be undergone but must be controlled. So, this work presents a fault detection and 
isolation methodology for the monitoring of Hybrid Dynamic Systems. The developed methodology rests on a mixed 
approach which combines a model-based method for the fault detection and an approach based on data (pattern 
matching) for the identification of fault(s). It is integrated within a hybrid dynamic simulator. In this paper, the 
approach is tested during the operation of an exothermic reaction. The major risk of this system is a cooling failure. 
The objective of the present work is to detect and diagnosis a fault, before it becomes more serious. In this purpose, two 
simulations are studied, during which a fault of the material feed and a fault of the energy feed are respectively 
introduced. 
 
KEYWORDS: Fault Detection and Isolation, Extended Kalman Filter, Dynamic Hybrid Simulation, Object 
Differential Petri Nets Hybrid, Risk assessment 
 

1 INTRODUCTION 

Batch and semi-batch processes play an important role in 
the pharmaceutical and fine chemical process industry. 
They are the prevalent production modes for low vol-
umes of high added value products. Such systems are 
characterized not only by a small scale flexible produc-
tion, but also by complex chemical reaction (Grau et al., 
2000). Generally, these processes are complex and not 
entirely known. For this reason, batch or fed-batch reac-
tors are frequently used for the development of hazard-
ous chemical synthesis. Even if it offers the required 
flexibility and versatility, this reactor has technological 
limitations. Particularly, during the exothermic chemical 
reactions, the poor heat transfer can become a serious 
safety problem (Stoessel, 2008). 
 
Numerous methods of risk analysis such as HAZOP (In-
ternational standard IEC 61882) can be exploited for the 
identification of the main events or potentially dangerous 
deviations. Then, corrective measures can be taken in 
order to improve the process safety. However, these 
studies cannot prevent the occurrence of failures during 
the chemical reaction. For instance, these failures can be 
due to the malfunction of a sensor or of an actuator. 
There are also the structural changes, which refer to 

changes in the process itself (Venkatasubramanian et al., 
2003). These failures occur due to hard failures in 
equipment, such as a stuck valve, a broken or leaking 
pipe. 
 
Consequently, fault detection and diagnosis are the pur-
pose of a particular attention in the scientific and indus-
trial community. The major idea is that the defect must 
not be undergone but must be controlled. Nowadays, 
these subjects remain a large research field. The litera-
ture quotes as many fault detection and diagnosis meth-
ods as many domains of application (Chang and Chen, 
2011; Venkatasubramanian, et al., 2003). A notable 
number of works has been devoted to fault detection and 
isolation, and the techniques are generally classified as: 
- Methods without models such as quantitative pro-
cess history based methods (neural networks (Venka-
tasubramanian, et al., 2003), statistical classifiers  (An-
derson, 1984)), or qualitative process history based 
methods (expert systems (Venkatasubramanian, et al., 
2003)), 
- Model-based methods which are composed of quan-
titative model-based methods (such as analytical redun-
dancy (Chow and Willsky, 1984), parity space (Gertler 
and Singer, 1990), state estimation (Willsky, 1976), or 
fault detection filter (Franck, 1990)) and qualitative 
model-based methods (such as causal methods: digraphs 
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(Shih and Lee, 1995), or fault tree (Venkatasubramanian, 
et al., 2003)). 
 
In this paper, the proposed approach to fault detection 
and isolation is a model-based approach, applied to 
chemical processes. The first part of this communication 
focuses on the main fundamental concepts in the field of 
a batch reactor and of runaway scenarios. Next, the 
studied reaction is presented. This is the oxidation of 
sodium thiosulfate with hydrogen peroxide. Then, its 
protocol is underlined. The third part illustrates the 
proposed model-based diagnosis approach. It uses the 
extended Kalman Filter, in order to generate a fault 
indicator. The high robustness and real-time ability of 
observer is well-known for industrial applications (Ding, 
2014). Next, this approach is enlightened exploited 
through the simulation of an exothermic reaction 
monitoring. Finally, section 5 summarizes the 
contributions and achievements of the paper and some 
future research works are suggested. 

2 EXOTHERMIC CHEMICAL REACTION 

The implementation of chemical reactions in batch or 
semi-batch reactors is strongly limited by the constraints 
linked to the dissipation of the heat generated by the 
reactions. Thus, this implementation can be made only 
after a complete risk analysis has been conducted to 
guarantee its safety, and the quality of its products 
(Chetouani et al., 2003). Consequently, we must firstly 
identify the risk in a chemical reactor. The main risk 
consists of a runaway scenario. 
 
2.1 Runaway scenario 

Normal
process
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Decomposition
reaction

Temperature

Time
t0 t1 t2
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ΔTad.r
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Figure 1: Runaway scenario 
R. Gygax (1988) proposed the following runaway 
scenario. He considers the case where a complete 
cooling failure occurs (Figure 1): 
- The reactor is initially at the process temperature TP. 

- Next, at t=t0, the cooling stops and so the tempera-
ture increases due to the completion of the reaction. 
This temperature increase depends on the process 
conditions (Stoessel, 2008). 

- A level called the Maximum Temperature of the 
Synthesis Reaction (MTSR) can be reached. At this 
temperature, a secondary decomposition reaction 
may be initiated, and the temperature of the mixture 
increases to reach the final temperature TEND. 

The runaway reaction can be induced by an increase of 
the reaction rate (in other words, of the heat production) 
or by a decrease of the cooling capacity. A heat increase 
may be initiated either by an increase of the 
concentrations (causes: feeding, evaporation…), either 
by a catalytic acceleration (origins: reactive specificities, 
autocatalysis…), or by a temperature rise (reasons: 
reaction heat, energy adding).  
 
A cooling capacity decrease may come from a decrease 
of the mixing efficiency (stopping of the stirring 
motor…), from a decrease of the heat transfer (causes: 
viscosity increase, etc.), from a quantity or potential 
increase (for example, due to the use of important 
quantities), or by a decrease of the power of the cooling 
system (origins: failures on the cooling system). 
 
The objective of this research work is so to prevent the 
reaction runaway by detecting the abnormal behaviour 
and diagnosing the causes of this behaviour. 
 
2.2 Choice of the reaction 

The chosen reaction is a very exothermic oxido-
reduction one, the oxidation reaction of sodium 
thiosulfate Na2S2O3 by hydrogen peroxide H2O2 
(Chetouani, 2004). Because of its characteristics, this 
reaction is particularly exploited for safety study 
(Xaumier et al., 2002; Chetouani et al., 2003; Prat et al., 
2005; Benaissa et al., 2008; Benkouider et al., 2012). 
The stoechiometric scheme is: 
Na2S2O3 + 2 H2O2 � ½ Na2S3O6 + ½ Na2SO4 + 2 H2O 

This liquid homogeneous reaction is irreversible, fast, 
and highly exothermic (Lo and Cholette, 1972). The 
kinetics can be described by: 

[ ] [ ] 
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The reaction heat is ΔHr = -586.2 kJ.mol-1. Some 
hypotheses are stated: 
- The reactor is perfectly mixed with a homogeneous 

temperature in the reaction mixture; 

- The feeding of the reactive does not induce volume 
contraction; 

- The heat capacity and the density of pure compo-
nents are constant in the range of the considered 
temperatures; 

- The physico-chemical properties of the mixture are 
constant; 

- The chemical reaction is performed in a pseudo-
homogeneous medium; 
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- The thermal losses between the reaction mixture and 
the ambient surroundings can be neglected. 

 
  Material feed 1 Material feed 2 

Weight percent 
Na2S2O3 15% - 

H2O2 - 30% 
H2O 75% 70% 

Temperature (K) 293.15 333.15 
Flowrate (L.h-1) 120.9 31.2 

Table 1: Operating Conditions 

The process consists of a standard batch reactor of 100L, 
connected with a cooling system. The water utility fluid 
is provided at a temperature of 288.15K. The tank is 
filled by two material feeds. The aqueous sodium 
thiosulfate is introduced through the main inlet process 
fluid. In order to avoid a possible side reaction, H2O2 is 
in excess. The weight percent in the inlet flows are 15% 
for Na2S2O3 and 30% for H2O2. The instrumentation of 
the process is composed of two temperature sensors 
(mixture and utility fluid), two flow sensors (the reactor 
feeding flow rate and the utility fluid flow rate). In 
normal functioning, the operating conditions of a typical 
oxidation reaction are summarized in Table 1. 
 
2.3 Protocol 

A typical operation of a batch or semi-batch reactor 
consists of the tracking of an a priori defined temperature 
profile. In the case of an exothermic reaction, three 
distinct steps are involved: preheating, reaction, and 
cooling (Xaumier et al., 2002). The reactor temperature 
is controlled by manipulating the flowrate of the utility 
fluid. Figure 2 represents the experimental set up used in 
this study.  
 
The process recipe is composed of several steps: 
- A feeding step of Na2S2O3 during 1200 seconds, 

- A heating step to increase the temperature of the 
mixture from 293.15 K to 333.15 K, 

- An other feeding step of H2O2 during 1200 seconds, 
with a constant temperature 333.15 K, 

- A constant temperature step (the reaction step) at 
333.15 K during 4800 seconds. 
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Figure 2: Semi-batch process 

 
2.4 Risk assessment 

The risk management is a major requirement in the in-
dustrial context: a major accident is unacceptable. Identi-
fying risks is essential for ensuring the safe design and 
operation of a process. Several techniques are available 
to analyse hazardous situations (Marhavilas et al., 2011). 
Among them, the HAZard and OPerability study 
(HAZOP) is a well-known technique for studying the 
hazards of a system (Benaïssa et al., 2008) and its opera-
bility problems (International Standard IEC 
61882.2001). 

Section Guide word Deviation Nb Causes Consequences 

Reactor More More flow rate  1 Malfunction of the valves V1a or V2 
(for example they remains totally 
opened) 

•  Accumulation of reagents  
•  Increase of the reaction speed 
•  Increase of the reactor temperature 
•  Runaway 

2 Malfunction of the controller FC1 or 
FC2 (for example detection of a wrong 
value more important) 

•  Accumulation of reagents  
•  Increase of the reaction speed 
•  Increase of the reactor temperature 
•  Runaway 

None Flow 3 Malfunction of the valves V1a or V2 : 
they are closed 

•  Decrease of the conversion rate  
•  Production loss 

4 Plug in pipe •  Decrease of the conversion rate  
•  Production loss 

5 Pipe rupture •  Decrease of the conversion rate  
•  Production loss  
•  Big leaks of hazardous product 

6 Malfunction of FC1 or FC2: detection 
of a wrong value (less important) 

• Decrease of the conversion rate  
•  Production loss 

Table 2: HAZOP data sheet sample 
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The HAZOP team studied each element for deviations 
and considered their undesirable consequences. The iden-
tification of deviations is obtained by combining process 
parameters (temperature, flowrate, pressure…) with 
“guide words” (no, more, less, as well as, reverse, etc.). 
Each deviation is studied and particularly we search how 
undesirable events can occur in order to have this devia-
tion. The conclusions are resumed in a table, (Freeman et 
al., 1992). Among all the potential hazards highlighted by 
the HAZOP method, numerous scenarios could potential-
ly lead to a thermal runaway. So, these scenarios were 
identified as the most hazardous ones. Table 2 illustrates 
the result data sheet. It gives a short sample of the analy-
sis carried out on the reactor part. 

3 FDI METHODOLOGY 

Nowadays, for reasons of safety and performance, 
monitoring and supervision play an important role in 
process control. The complexity and the size of industrial 
systems induce an increasing number of process variables 
and make difficult the work of operators. In this context, 
a computer aided decision-making tool seems to be wise. 
Nevertheless the implementation of fault detection and 
diagnosis for stochastic system remains a challenging 
task. Various methods have been proposed in different 
industrial contexts (Venkatasubramanian et al., 2003). 
The proposed approach is a model-based approach 
involving the use of Hybrid Dynamic System simulation. 
 
3.1 Architecture 
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Figure 3: Supervision Architecture 
The research works performed for several years within 
the PSE (Process System Engineering) research 
department of the Chemical Engineering Laboratory of 
Toulouse on process modelling and simulation have led 
to the development of PrODHyS (Perret et al., 2004; 
Hétreux et al., 2007). This environment provides a library 
of classes dedicated to the hybrid dynamic process 
simulation. Based on object concepts, PrODHyS offers 
extensible and reusable software components allowing a 
rigorous and systematic modelling of processes.  
 

For this purpose, the simulation model of PrODHyS is 
used as a reference model to implement the functions of 
detection and diagnosis. The supervision module must be 
able to detect the faults of the physical systems (leak, 
energy loss, etc.) and the faults of the control/command 
devices (actuators, sensors, etc.). As defined in (De Kleer 
et al., 1984), our approach is based on the hypothesis that 
the reference model is assumed to be correct.  
 
The global principle of this system is shown in Figure 3, 
where the sequence of the different operations is 
underlined (Olivier-Maget et al., 2008). Moreover, a 
distinction between the in-line and off-line operations is 
made. Our approach is composed of three parts: the 
generation of the residuals, the generation of the 
signatures and the generation of the fault indicators. 
 
This methodology has been the subject of previous 
studies (Olivier-Maget et al., 2009a, 2009b). 
Nevertheless, it must be validated with other systems and 
other fault types, in order to ensure its genericity. Current 
work aims at extending the application areas of process 
safety. So, the studied case concerns he implementation 
of an exothermic reaction. 
 
3.2 Residual generation 

The first part concerns the generation of the residuals 
(waved pattern in the Figure 3). In order to obtain an 
observer of the physical system, a real-time simulation is 
done in parallel. So, a complete state of the system will be 
available at any time. Thus, it is based on the comparison 
between the predicted behavior obtained thanks to the 
simulation of the reference model (values of state 
variables) and the real observed behavior (measurements 
from the process correlated thanks to the Extended 
Kalman Filter).  
 
The main idea is to reconstruct the outputs of the system 
from the measurement and to use the residuals for fault 
detection (Mehra and Peschon, 1971, Welch and Bishop, 
1995, Simani and Fantuzzi, 2006). A lot of state 
estimators are developed for nonlinear systems (Banerjee 
and Jana, 2014). Kalman filtering based observer (Li et 
al., 2004; Qu et Ahn, 2009), extended Luenberger 
observer (Zeitz, 1987 ; Gundale Mangesh and Jana, 
2008), sliding nonlinear observer (Biagiola and Figueroa, 
2004; Mezouar et al., 2008), particle filtering (Farza et 
al., 2004; Olivier et al., 2012) are the most important 
estimators. The current work focuses on the design of an 
extended Kalman Filter. A description of the extended 
Kalman filter can be found in (Olivier-Maget et al., 
2008). Besides the residual is defined according to the 
following equation: 

( ) ( ) ( )
( )tX

tXtX
 tr

i

iir
i

−=
ˆ

{ }niwith ,1∈                             (2) 

where Xi is the state variable, iX̂  is the estimated state 

variable with the extended Kalman Filter and n is the 
number of state variables.  
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Note that the generated residual ( )trir  is relative. As a 

matter of fact, this allows the comparison of residuals of 
different variables, since the residual becomes 
independent of the physical size of the variable. 
 
3.3 Signature generation 

The second part is the generation of the signatures (doted 
pattern in the Figure 3). This is the detection stage. It 
determines the presence or not of a fault. This is made by 
a simple threshold ( )tiε . The generated structure 

S ( )trN
i is denoted by the following equation: 

S ( )= trN
i

( ) ( )

( ) ( )
{ }niwith

ttrMax

ttrMax

n
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with ( ) ( )
( )tX

t
 t

i

i
i

ε
=ε' , where iε is the detection threshold.  

 
The value of iε is chosen according to the model error 

covariance matrix of the Extended Kalman Filter 
(Olivier-Maget, 2007). 
 
3.4 Generation of fault indicator 

The last part deals with the diagnosis of the fault (hatched 
pattern in the Figure 3). The signature obtained in the 
previous part is compared with the theoretical fault 
signatures by means of a distance. A theoretical signature 
T•,j of a particular fault j is obtained by experiment or in 
our case, by simulations of the process with different 
occurence dates of this fault. Then, a fault indicator is 
generated. For this, two distances have been defined: the 
relative Manhattan distance and the improved Manhattan 
distance (Olivier-Maget, 2007).  
 
The first distance is denoted by the following expression: 

D ( )tMr
j  =

( )
n

TtS
n

i
ij

rN
i∑

=
−

1                                              (4) 

 
The second distance, which allows the diagnosis of many 
simultaneous faults, is denoted by the following 
expression: 

D ( )tMa
j  =

( )
n

TnTmtS
n

i
ijij

rN
i

′

⋅′×−′×∑
=1                        (5) 

where n′  is the number of non-zero elements of the 
theoretical fault signature T•,j and m′  is the number of 

non-zero elements of the fault signature S ( )trN . 

 
Since both distances are defined in the space interval 
[0;1], the fault indicators are defined as the complement 

to 1 of these distances. An indicator can be viewed as the 
probability of the occurrence of a particular fault. Next, 
these generated indicators are exploited to take a 
diagnosis of the system. For this, we suppose that: 
- The minimum value of the indicator, for which the 

fault can be considered, is 0.68 – chosen according to 
the normal distribution–. This threshold corresponds 
to the probability at the standard deviation.  

- The number of faults, which can simultaneously take 
place, is limited to three. 

4 RESULTS 

The advantage of the simulation of the chemical reaction 
thermal effect is to prevent runaway problems, which can 
occur experimentally, particularly for such an exothermic 
reaction (Xaumier et al., 2002). Then, to demonstrate the 
good performance of the diagnosis methodology, 
different simulations have been carried out on the hybrid 
dynamic simulator PrODHyS. Two faults have been 
introduced: 
- Increase of the flow rate (fault 1): In this case, 6500 s 

after the beginning of the reaction, the feed rate of 
the sodium thiosulfate is multiplied by 2. 

- Increase of the jacket temperature (fault 2): 7500 s 
after the beginning of the reaction, the cooling tem-
perature is increased to 10 °C. 

 
4.1 Adjustments 

To perform a monitoring of a process, some off-line 
adjustments must be made. On the one hand, we need to 
determine the covariance matrices of the model and 
measurement disturbances. While the measurement 
noises are supposed to be well-known by experiments or 
by the sensor manufacturer, the model disturbances is 
estimated by an “ensemble method”. Numerous 
simulations have been performed during which a model 
parameter has been disturbed. This allowed the estimation 
of statistic distribution of the model mistakes. Then, if the 
behaviour of the system goes beyond this distribution, its 
behaviour is abnormal. So, the detection thresholds are 
determined according to the model disturbances. 
 
On the other hand, the second adjustment is the learning 
of the incidence matrix. It is based on the same 
“ensemble” theory. For this, we perform a set of 
simulations, during which a fault is introduced at different 
occurrence dates, for each potential state of the hybrid 
dynamic system (Figure 4).  
 
For this study we consider six faults. These faults are 
underlined by the HAZOP study. These faults could lead 
to a thermal runaway: 
- Fault 1: The material feed 1 provides material with a 

damaged flow rate; 

- Fault 2: The material feed 1 provides material with a 
damaged composition; 
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- Fault 3: The material feed 2 provides material with a 
damaged flow rate; 

- Fault 4: The material feed 2 provides material with a 
damaged composition; 

- Fault 5: The energy feed has a damaged temperature; 

- Fault 6: The regulation temperature is damaged. 
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Figure 4: Learning of the incidence matrix 
 
For example, figure 4 represents the results obtained for 
the fault 3. The signatures of this fault are presented for 
different occurence dates. They have the same pattern. 
The barycenter is estimated and we obtain the theoretic 
signature of the fault 3. Next, we perform this preliminary 
study for all the considered faults of the system and the 
incidence matrix is presented in table 3. 

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6

Temperature (K) 0 0 0 0 0 0

Holdup (mol) 1 0.030239 0.020145 0 0 0

X[Sodium Thiosulfate] 0 0.950786 0 0 0 0

X[Hydrogen Peroxide] 0 0 0 0.289313 0 0.10448

X[Sodium Trithionate] 0 0 0 0 0 0

X[Sodium Sulfate] 0 0 0 0 0 0

X[Water] 0 0.018975 0 0.00103 0 0.000208

Reaction conversion 0 0 0 0 0 0

Cooling power (W) 0 0 0.495869 0.404899 0.009761 0.681392

Fluid Utility 
Temperature

0 0 0 0 0.049209 0

Fluid Utility Flowrate 0 0 0.483986 0.304758 0.94103 0.21392  
Table 3: Incidence Matrix 

 
Notice that the faults 4 and 6 would be confused, if we 
work with binary values. The work with real and non 
binary values aims at distinguishing the importance of the 
symptoms between a fault with an other one. Therefore, 
for a particular fault, the normalization allows that the 
great symptoms are underlined.  
 
4.2 Normal operation 

Figure 5 represents the simulated results for a normal 
operation. It gives the temperature profile of the process 
mixture, the evolution of the liquid holdup in the reactor, 
the conversion rate and the characteristics (flow rate and 
power) of the fluid utility. It must be noticed that the 
utility fluid flow rate increases during the feeding step of 
H2O2. It points out that this oxidation reaction is fast and 

highly exothermic. We also notice that the conversion is 
not total (87%). 
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Figure 5: Normal operation 
 
4.3 Detection 

Let us remind that the thresholds for the detection 
correspond to the model uncertainties obtained by the 
adjustment of the Extended Kalman filter. Figure 6 shows 
the detection step. It illustrates the evolution of the 
residual linked to the utility fluid flow rate. In order to 
avoid a false diagnosis, the diagnosis step is not launched 
as far as the symptoms of the abnormal behaviour appear. 
The abnormal behaviour is only confirmed after it has 
occurred three times. 
Example 1: A fault of the material feed 2 is introduced at 
t = 6500 s. The material feed 2 provides material with a 
damaged flow rate (multiplied by 2). From t = 6800 s, the 
values of the residual underline the abnormal behaviour 
of the process. The diagnosis is launched at t = 6900 s. 
 
Example 2: A fault of the energy feed is introduced at t = 
7500 s. The energy feed has a damaged temperature 
(increasing of 10 °C). From t = 7600 s, the values of the 
residual underline the abnormal behaviour of the process. 
The diagnosis is launched at t = 7700 s. 
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Figure 6: Residual evolution of the utility fluid flow rate 
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4.4 Diagnosis 

Let us notice that the exploited signature in this approach 
is non binary, in order to quantify the deviation due to the 
fault.  

Example 1 Example 2

Temperature (K) 0 0

Holdup (mol) 0.0210 0

X[Sodium Thiosulfate] 0 0

X[Hydrogen Peroxide] 0 0

X[Sodium Trithionate] 0 0

X[Sodium Sulfate] 0 0

X[Water] 0 0

Reaction conversion 0 0

Cooling power (W) 0.5094 0.0007

Fluid Utility 
Temperature

0 0.1144

Fluid Utility Flowrate 0.4637 0.8849
 

Table 4: Instantaneous fault signatures of both examples 
 
The residual is then estimated and we obtain the corre-
sponding instantaneous fault signature (Table 4). We 
compare the instantaneous fault signature (Table 4) with 
the theoretical fault signatures, by calculating the relative 
and improved Manhattan distances ((3) and (4)). Then, 
the fault indicators are generated (Table 5). They corre-
spond to the complement to 1 of these distances. 
 
Example 1: The relative Manhattan indicator detects the 
presence of the fault 3 with a probability of 99.68%. Nev-
ertheless, the other faults are not eliminated, since their 
indicators are higher than 0.68 (cf. the point 3.4). In the 
opposite, with the improved Manhattan indicator, the 
faults 1, 2, and 5 are eliminated, since their indicators are 
lower than 0.68. The three remaining possibilities are the 
faults 3, 4, and 6. This example underlines the importance 
of using both indicators to be able to conclude. So, by 
combining the results of the both indicators, we can rule 
on the presence of the fault 3, since their indicators are 
the maximums. For this reason, this fault is the most 
probable. So, the fault is located on the material feed 2. 
Furthermore, it has been identified: the material feed 2 
provides material with a damaged flowrate. 
 
Example 2: The relative Manhattan indicator detects the 
presence of the fault 5 with a probability of 98.81%. 
However, none fault is discriminated (all indicators high-
er than 0,68). With the improved Manhattan indicator, the 
presence of the fault 5 is distinguished, since the other 
indicators are lower than 0.68. So, by combining the re-
sults of both indicators, we can rule on the presence of the 
fault 5. Then, the fault is located on the energy feed of the 
reactor. Furthermore, it has been identified: the cooling 
energy feed of the reactor has a damaged temperature. 
 

Fault 1 Fault2 Fault 3 Fault 4 Fault 5 Fault 6

Manhattan 
relative 

indicator
0.8225 0.8225 0.9968 0.9477 0.9048 0.9502

Manhattan 
improved
indicator

0.0630 0.0954 0.9835 0.8939 0.5435 0.7565

Manhattan 
relative 

indicator
0.8182 0.8182 0.9063 0.8737 0.9881 0.8572

Manhattan 
improved 
indicator

0 0.0947 0.5600 0.6432 0.9439 0.4289

E
xa

m
pl

e 
1

E
xa

m
pl

e
2

 

Table 5: Fault indicators 

5 CONCLUSION 

In this research work, the feasibility of using the simula-
tion as a tool for fault detection and diagnosis is demon-
strated. The fault detection and diagnosis approach, de-
veloped here, lies on the hybrid dynamic simulator 
PrODHyS. It is a general method for the detection and 
isolation of a fault occurrence. Besides, this approach 
allows the detection of numerous types of fault and has 
the ability to underline the simultaneous occurrence of 
many faults. 
 
The works in progress aim at integrating this hybrid dy-
namic system simulation within a model-based supervi-
sion system. The goal is to define a recovery solution 
following the diagnosis of a default. For this, the results 
of signatures will be exploited in order to generate quali-
tative information. For example, with these results, we 
have the ability to distinguish a simple degradation and a 
failure. Next, this method will be combined with other 
diagnosis approaches: the set of the potential faults will 
be generated according to such methods as classification 
or case-based reasoning, restricting the search domain (to 
a part of the process or to a set of potential faults yielding 
similar symptoms) examined with the model-based tech-
nique..  
 
Relating to the operation of exothermic reactions, a novel 
concept of heat exchangers reactors offers enhanced 
thermal performances in continuously operating reactors. 
The experiment results emphasize a significant thermal 
efficiency: the reactant concentrations and therefore the 
heat generation can be increased without risk of thermal 
runaway (Di Miceli Raimondi et al., 2014). The Polysafe 
ANR project (N° ANR-2012-CDII-0007-01) focuses on 
the modelling of these reactors in normal and degraded 
mode, to study the process drift and demonstrate the in-
herently safer nature of these devices. 
. 
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