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ABSTRACT: This paper present the path we took adapting and implementing a MIP model for operational planning 

of the wood finishing operations in a sawmill. Following a company request to develop a planning tool for their 

finishing operations, we adapted a model developed by Gaudreault et al (2010). Prelimirary testing and results showed 

great potential. Using the Gusek open source solver for the problem, we had to further adapt the methodology to get 

solutions satisfying both solution time and operationnal constraints. The MIP model was integrated into the ERP system 

of the company, allowing the production of an initial solution that minimizes order lateness. 
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1 INTRODUCTION 

Wood finishing is the third stage of the lumber transfor-

mation process. Historically, operational planning of 

these operations involved maximizing the throughput 

and lumber value produced. This is still how numerous 

mills produce for commodity lumber products. But for 

the company involved in this project, many of their lum-

ber products meet specific customer requirement. 

 

Due to the nature of the material used in the finishing 

process, there is no certainty about what will be pro-

duced. This adds complexity to the planning of that pro-

duction stage as, it seems difficult for the planning per-

sonnel to plan while taking into consideration commit-

ments to customers. However, machine settings do play 

a role in what is produced. Companies do have standard 

recipe, but most of the time, it’s a variation of these reci-

pes that gets used on the production floor in trying to 

match customer demand. Using historical production 

data in the planning of the finishing operations allows 

the system to learn new ways of making different lumber 

grades. 

 

Moreover, to sell the right products and promise sensible 

delivery dates, the sales department needs to know two 

to three weeks in advance which product will be availa-

ble according to current planning. At some point in time, 

it is desired that a sales representative be able to enter a 

tentative customer order and get feedback as to when the 

production should be able to make it available. In order 

to have such an order promising system, the company 

first needs to put in place automated planning of produc-

tion. 

 

The company we work with is currently in the process of 

implementing a user-interface that helps in the manual 

planning of the wood finishing operations. Having a first 

plan generated automatically will allow the planner to 

concentrate on special issues rather than plan to push the 

wood out as soon as possible without too much consid-

eration for order lateness. 

 

In this paper, we first recall what the lumber finishing 

operation planning problem is. Section 3 shows the MIP 

model used to solve it. It is followed by the description 

of the cases and the difficulties and methodology we 

used to solve these cases. 

2 PROBLEM DESCRIPTION 

Wood finishing operations planning has been described 

in detail by Gaudreault et al (2010). As shown in  Figure 

1, lumber production involves three main steps. First, 

logs of different dimensions and species are sawed. This 

is a divergent process as any given log will yield a set of 

different lumber products varying in length, dimensions 

and quality. 

 

The second step is a drying operation, which is done to 

reduce the moisture content of the lumber and which will 

give the lumber more stability over time. Lumber drying 

is done by batches in large kilns. The lumber is stacked 

in bundles, and bundles requiring the same drying time 

and temperature are allowed to enter a given kiln 

together for the same duration. Kiln drying time 

typically varies between 16 and 150 hours. As kiln 

drying is a batch operation with long processing time, 

inventory of green lumber occurs before the kiln 

operation and inventory of dry lumber accumulates after 

the kiln operation.  
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Figure 1 : Lumber transformation process 

 

Once the lumber is dried, it can go through a planer 

machine for the finishing operation that gives it the 

desired thickness and surface finish. The width and 

length can also be adjusted at this stage and final grading 

decisions are made. The cycle time of this operation may 

be determined by the speed of the planer, which also has 

an impact on the quality of the planed lumber. 

 

Wood finishing can be performed on green as well as dry 

lumber, but the latter is more common. The operation 

generally takes place at the sawmill site, but it may have 

to be performed elsewhere if mill planer capacity is 

insufficient. 

 

As illustrated in Figure 2, this operation produces several 

final products at the same time. Each rough piece of 

lumber is optimized based on its defects. It may be 

trimmed  into two pieces, or crosscut if trimming can 

remove a defect to increase its market value. In North 

America, where lumber is a commodity product 

(dimensions and quality are standardized) this process is 

fully automated. Decisions regarding trimming are based 

on expected value of the lumber, not on actual demand. 

 

Because a large quantity of lumber is produced every 

day, it is possible to model the output of the process as a 

percentage expressing expected output distribution in 

terms of lumber final characteristics. 

 

 
Figure 2 : Example of possible outputs from a rough 

piece of lumber 

 

The output distribution thus depends on the lumber 

product input and the products’ priority settings for that 

lumber input. Each different combination of {lumber 

input, priority setting} can be referred to as a recipe and 

each recipe has a distribution of lumbers with final 

characteristics. This process, generating a multitude of 

different outputs, cannot be avoided from a planning 

point of view: it is embedded within the transformation 

process. It is common to obtain more than 20 different 

types of product from a single type of product. 

 

There  is  a  setup  cost  each  time  the  facility  

processes  a  different  dimension  (e.g.  from  2”x3”  to  

2”x6”). Consequently,  most  sawmills  allow  such  a  

setup  only between  production  shifts  as  they  prefer  a 

production mode (a  batch  of products of the same 

dimension but variable length / different recipe) with a 

duration of at least one shift. This is the case of the mill 

involved in our project. 

 

To sum up, the decisions that must be taken in order to 

plan the finishing operations are the following: (1) which 

campaign to realize (i.e. which lumber dimensions), (2) 

when and for how long and (3) for each campaign, what 

quantities and what recipies to process. Figure 5 shows a 

simple example of a production plan, including the 

campaigns (2”x3”, 2”x6” and 2”x4”) and the time spent 

on each length (different recipies). 

 

 
Figure 3 : Production plan for a finishing line for six 

consecutive production shifts 

 

Also to be considered by the planning algorithm, the 

finishing production line may sometimes be down for 

maintenance or busy with special operations not to be 

considered by the current planning.  

 

Because wood finishing is the third and last stage in the 

transformation process, it consumes products from the 

previous stage. It is thus a requirement to have the plans 

of the kilns, or at least the scheduled end of drying 

operations, so that we know the earliest time the 

different input products will be available to be processed 

by the planer. 

3 MIP MODEL 

Gaudreault et al (2010) have developed a MIP model for 

this problem, as part of a broader operations planning 

system. Their objective function has four main 

components: back order cost, inventory holding cost, 

setup cost and processing cost. 

 

In their model, they introduce a binary variable Yf,t to 

identify if the mill has been planned to be using mode f 

at period t. At any given period, only one production 

mode can be selected. Three other binary variables were 

introduced to implement campaigns and setup costs in 

the model. Two of them are of dimension T and specify 

if a campaign starts or ends at a period t. The last one is 

of dimension F x T and states whether or not a campaign 

using mode f begins at period t. 

 

Their MIP has proven to be too slow to obtain good 

feasible solutions in reasonable time for real industrial 

problems without using a heuristic or massively parallel 

computing (Moisan et al, 2013). But in our specific 

industrial application, we can include some 
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simplifications which we describe in this section. We 

have also added some constraints related to the minimum 

processing time and changed the objective function. 

 

The main simplification we carried out relates to the fact 

that for the company that we studied, there is no setup 

cost to consider as all production changes are made 

between production shifts or during break periods. 

Another simplification is that, in our context, campaigns 

almost always have a duration equal to one period. This 

simplifies the problem as there is no need to follow up 

on campaign starts and ends, and as such, the only binary 

variable required in our model is Yf,t. 

 

In Section 2, we have presented the concept of recipe 

which links a product input with a production mode and 

a machine configuration to products output. For the 

studied company, when a recipe is scheduled to be used, 

it must be so for at least λ units of time (15 minutes in 

our case). This constraint was modeled in the MIP by 

adding a binary variable Wr,t which takes a value of 1 if 

the recipe r is scheduled at period t, 0 otherwise. With 

UCr,t being the volume of product input in recipe r to 

process at period t, we have to add the following two 

constraints: 

 

UCr,t ≤ (∞Wr,t)              r  R, t=1..T (1) 

      Where ∞ is a significantly large number 

 

δr,t UCr,t ≥ λ Wr,t           r  R, t=1..T (2) 

 

Equation (1) states that recipe r has to be scheduled at t 

if there is a volume of product input to recipe r at the 

same period. With δr,t being the time needed to consume 

one unit in recipe r, equation (2) ensures the minimum 

process time λ when a recipe is used. 

 

The new objective function has three main components. 

The most important one is the back order value which 

must be minimized. The back order value is computed as 

the lateness multiplied by the product value. The second 

criteria after minimizing the back order value is the 

maximization of the value produced. This is computed 

using the selling price of the lumber produced times the 

volume produced. Finally, the company wanted to 

maximize the planer capacity used.  

 

This new objective function creates several flaws which 

we will discuss in Section 5. 

4 THE CASE STUDY 

When the company first approached us with the project 

in the summer of 2011, they were having many late 

orders and wanted to see if the use of optimization to 

plan the finishing operations of lumber production could 

help them reduce their order lateness. At that time they 

were planning manually using MS Excel spreadsheets. 

 

The company specializes in producing custom and spe-

cialty lumber products. It has more than 250 finished 

lumber products and 80 wood finishing recipes to play 

with. They have implemented many modules of a manu-

facturing system, making easily available most of the 

information required to plan finishing operations. We 

started our study with data from three different weeks, 

each time planning for three weeks ahead and comparing 

with actual manual planning done by the company. The 

results are presented in Figure 4 below. 

 

 
Figure 4 : Preliminary results in 2011 

 

The number of orders ranged from 158 to 266 (251 and 

305 order lines). We used three performance indicators 

to compare the results of their manual planning with the 

results of the optimization model, each being measured 

at the end of the first planning week. With the use of the 

model, the number of late orders decreased between 

19% and 32%. The company was motivated by the 

results and asked to start a transfer project of the 

technology so that their company could start planning 

wood finishing activities on a weekly basis using the 

optimization model. 

 

As depicted in Figure 5, manual planning is done based 

on a set of recipes (and inventories, supply to come, 

current orders, special requests from sales – all of which 

are not represented on the figure). That set exists 

formally, but the scheduler also has some tacit 

knowledge of what will be generated from executing 

each recipe and he uses that knowledge to create a 

schedule which will be executed. 

 

Automating the making of the schedule required much 

more than just running the mathematical model. As such, 

good results depend greatly on the set of recipes that is 

used by the MIP model. There are many challenges in 

the process of getting the right recipes for the planning 

by the model. 

 

The first challenge comes from the fact that no two runs 

of the same recipe yield the exact same result. We thus 

have to use and average the last few executions of the 

recipe to infer what the output generated might be. It 

could be based on a number of past executions or the 

executions done during a fixed period of time (e.g.: past 

six months). 
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The second challenge comes from the fact that company 

standard recipes are seldom used. It is rather the 

variations on these recipes that get executed. For 

example, based on one of their standard recipes, they 

might avoid the production of some output products and 

change the priority of others. This in fact would 

represent a new recipe as the execution parameters have 

changed. 

 

In the obtained list of recipes, many of the co-products 

are not products that we plan for, as they are low-value 

lumber with no customer orders. Their output percentage 

is also highly variable and they are pushed to the market 

once their production is completed. 

 

The process of extracting recipes thus requires a lot of 

data cleaning to ensure only the relevant data is 

extracted. And because the finishing process yields may 

evolve over time (due to different factors such as raw 

material quality change over the year) and because new 

recipes may be created with the creation of new 

products, the processes need to be extracted every time 

the MIP model is to be executed. In that sense, the MIP 

solutions evolve in time with the company as it acquires 

a longer history of finishing process execution. 

 

To remove or reduce the variability that we see from one 

execution to the next, we have chosen to include within 

the recipe only the higher grade output products or 

products for which there are customer orders. And for 

the volume of products output, we take a moving 

average over the last X executions of the recipe, where X 

is a parameter to be set at implementation time. 

 

The right-hand side of Figure 5 presents the feedback 

loop from execution to recipes, showing a learning effect 

from the real executions. It also shows that the schedule 

generated through the MIP model is always reviewed by 

someone. 

 

 
Figure 5 : Planning process - before and after the transfer 

project 

 

The transfer project involved automating the data 

extraction from the ERP system of the company, calling 

our MIP model and reading back the results to the ERP 

system. For this transfer project, we used GUSEK, an 

open source LP/MIP IDE for Win32 constructed over the 

GLPK solver. It is in the summer of 2013 that the 

integration of our MIP model (to be used with GUSEK) 

into the ERP of the enterprise was completed. 

 

Throughout that summer, we gathered seven real cases to 

be solved, each covering a three-week planning horizon. 

In those cases, there is an average of 155 different 

products ordered, 325 order lines and 119 recipes, each 

having an average of 12 output products. 

5 METHODOLOGY AND RESULTS 

For operational planning, the company expects to obtain 

solutions from the model within a five-minute time 

frame. It quickly became apparent that solving to 

optimality was not an option. We opted for a 5% gap 

tolerance which seemed reasonable for the type of 

solution we were looking for. Figure 6 shows that 

capacity utilization of the planer in the solutions given 

by our original model varies from 83% to 97%. This 

result was unacceptable for the company which requires 

the planer to be used at 100% of its capacity. With our 

objective function, we were expecting higher values of 

capacity utilization as it seems logical that to maximize 

the lumber value produced (which was the second 

criteria of importance in our objective function) the 

available capacity would have to be fully utilized. 

Moreover, the third optimization criterion was the 

maximization of the capacity utilization. One key 

explanation is that allowing a 5% gap automatically 

blinds the portion that maximizes the value produced and 

the capacity utilization in the objective function: their 

importance is far less than the one of minimizing the 

back order value. 

 

 
Figure 6 : Percent capacity used in each case 

 

We thus reviewed the objective function. Looking at the 

“value produced” term of the objective function, we 

concluded that this measure was not to be present in the 

objective as the potential value of a piece of dry rough 

lumber is always waiting to be exploited. If a given piece 

of rough lumber is not finished in the current planning 

horizon, chances are it will be finished in the following 

one and its potential value will then be realized. Over a 

longer time period, all of the available rough lumber will 

be finished and as such it is not a real criterion to have 

its value realized as quickly as possible. 

 

Looking at the last objective function term (capacity 

usage maximization) we decided to replace it by a con-

straint that would ensure at least a minimum percentage 
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of machine usage. Figure 7 shows the computation time 

according to the minimum capacity use required (from 

86% to 100%) (the company asked for 100%). 

 

 
Figure 7 : Solution time with constraint on minimum 

capacity usage 

 

When it is mandatory to use 90% or less of available 

capacity, the computation time stays under 100 seconds. 

But when we require a higher capacity usage, we see 

more and more cases take over 300 seconds to be solved. 

At the level of 100% capacity usage, two out of the 

seven cases were not solved after 12 hours of computer 

time, only two instances were below 300 seconds and 

one took up to 788 seconds. 

 

With the planer capacity utilization being an important 

factor for any solution to be adopted by the company, we 

had to review the model formulation of Gaudreault et al 

(2010) so as to ensure 100% planer capacity utilization 

with a solution time below 300 seconds. Instead of using 

a variable determining how many times each recipe has 

to be executed in any given period (and then another 

variable to compute the percentage of capacity used), we 

use a variable indicating the fraction 0 ≤ Gr,t ≤ 1 of the 

period t planer available time allocated to each recipe r 

done. Ensuring 100% planer capacity utilization is easily 

modeled in constraint (3) below: 

 

∑ Gr,t  =  1          t = 1..T (3) 

rR 

 
With that new notation and introducing the parameter ct, 

the planer available time for production at period t, the 

constraint guaranteeing the minimum process time λ 

when a recipe is used becomes: 

 

ct Gr,t ≥ λ Wr,t           r  R, t=1..T (4) 

 

Constraint (5) ensures process r is set to be used if the 

fraction of available time used by that same process is 

greater than zero. 

 

Gr,t ≤ Wr,t           r  R, t=1..T (5) 

 

With that new formulation, all of the seven instances 

were solved in less than three minutes. This is shown 

with the bars on the right in Figure 7 (algo 2; 100%).  

 

The results shown so far are for a one-week planning 

horizon (14 periods). However, we were told that for the 

sales department to be able to plan in advance, a three-

week planning horizon is desired which represents, at 

two periods per day, a 42 period horizon.  

 

Figure 8 shows the impact of the planning horizon size 

on solution time. To see if we were able to solve 

instances of that size, we ran the seven cases with the 

new formulation (algo 2) for 14 (one-week), 28 (two-

week) and 42 (three-week) periods planning horizon.  

 

As seen previously, the one-week scenarios are solved 

within less than three minutes. For the two-week 

scenarios, three instances took more than 300 seconds to 

solve, the first case not being solved after 12 hours of 

running time. For the three-week scenarios, four 

instances took more than 2000 seconds and again, the 

first case was not solved after 12 hours of running time, 

case seven taking a bit more than 6 hours and case two 

1,5 hours. 

 

 
Figure 8 : Solution time in relation to problem size 

 

Of course, we were expecting the solution time to 

increase according to the number of periods. For each 

period added to the planning horizon, we must add 

|R| + |F| integer variables where |R| is the number of 

recipes and |F| is the number of production modes. 

 

With these results (unacceptable from our industrial 

partner’s point of view), we decided to implement a 

multi-phase algorithm that would reduce the number of 

integer variables to be considered at once for longer 

planning horizon. In each phase, we select a consecutive 

subset of the periods to be planned. Let  be the number 

of such selected periods. We call  the phase size. At 

each phase, only  periods are planned using integer 

variables and remaining periods are a relaxation of the 

problem, using only non-integers variables. So in each 

phase, only  periods are fully constrained with the 

integer variables. These variables allow enforcing the 

minimum time spent running a recipe (λ) and only one 

production mode f to be used at period t. With the 
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proposed algorithm, the number of integer variables to 

be determined at each phase is never greater than 

 (|R| + |F|). 

 

In the multi-phase algorithm, the problem is still solved 

using the MIP model at each phase, but only a portion of 

the full horizon is fully constrained. Using this 

algorithm, the planning horizon is divided into three 

sections. Figure 9 presents these sections after one phase 

of the algorithm using  = 14 periods. 

 

 
Figure 9 : Horizon split in multi-phase algorithm 

 

Except for the section that is fully constrained, the other 

sections vary in number of periods as the algorithm 

progresses. The first section is the frozen horizon. 

Within that horizon in the model, the integer variables 

are replaced with constant parameters taking the value of 

the integer variables from the previous phase. When we 

start the algorithm, the frozen horizon is of size 0. In the 

second section (darker blue in the figure), all integer 

constraints are satisfied. In the third section, integer 

constraints are removed so that any recipe can run for 

any length of time and regardless of the production 

mode, provided that mill capacity is not exceeded and 

raw material is available. 

 

The algorithm consists in solving a number of our MIP 

model in turns, each time moving the second section by 

 periods and solving again for the whole horizon 1..T. 

The frozen horizon increases by  each iteration and the 

third section decreases by the same amount. Starting 

with an empty first section (frozen horizon), the 

algorithm completes when the third section is empty. 

The solution time required to perform each phase 

depends on the size of . 

 

Aside from optimizing the model, each iteration takes 

some time to load data from CSV files and to write back 

results to CSV files. So although decreasing the size of  

decreases the solving time for the MIP model, it 

increases the number of iterations required to solve the 

problem and thus the total time spent to set up the model 

over all the iterations. 

 

Figure 10 shows the computation time (including the 

time to load and save the data, and to construct the 

model) in relation to the size of  (or the number of 

phases as all of these cases are 42 periods). For only 

three instances out of the seven, the one-phase scenario 

gave a shorter solution time. Compared to the three-

phase scenario, the two-phase scenario gave a longer 

solution time in only one instance. As the solution time 

difference for cases 1-6 is not very large compared to the 

solution time difference of case 7, we consider the three-

phase scenario to be a better choice, ensuring an 

acceptable computation time in all instances.  

 

 
Figure 10 : Solution time in relation to number of phases 

 

Solution time is of some importance in our problem be-

cause we want to be able to propose solutions in less 

than 5 minutes. For case 7, even the proposed solution 

procedure did not reach that goal. 

 

The solution time is not the only factor of importance: 

the problem objective was to minimize order lateness. In 

any iteration, we ran the optimization allowing for a 5% 

optimality gap. Using three phases for the 42-period 

planning horizon, it is possible to get solutions further 

from the optimal. Comparing the one-phase solutions 

with the three-phase solutions, we were surprised to see 

an average improvement (decrease) in the volume deliv-

ered late by 2,5% and also an average improvement of 

the value delivered late by 3%. Also, in terms of objec-

tive function, the two-phase solutions outperformed the 

three-phase solutions by about 1%. 

 

These results show that the planning algorithm in 

multiple phases does not decrease the quality of the 

solution obtained. 

6 CONCLUSION 

In this paper we have presented an adaptation of a MIP 

model and a solution methodology to plan the lumber 

wood finishing operations in a sawmill. Model adapta-

tion and reformulation was required for some constraints 

specific to the mill and to get solutions within an ac-

ceptable time frame. 

 

With this new formulation, the model implicitly requires 

the wood finishing equipment to be used 100% of its 

available time. The planning horizon has been divided 

into three segments such that only part of it ( periods) 

has to be planned using integer variables. In our context, 

we used an  of 14 periods (one week) and three 

iterations were required to solve the three-week planning 

horizon. 
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The mill managers are very enthusiastic about this new 

planning aid, but its integration is not that easy. In order 

to automate the planning, it is required that the finishing 

recipes stored within the mill ERP system have to be 

representative of the real production processes. With the 

stochastic nature of that process, it has been a challenge 

to extract recipes which are representative of the 

production. We are now working with the company to 

define standard recipes that will help predict the 

production output with more accuracy. 

 

As presented in Section 2, wood finishing is the third 

step of the production process. Drying is the step that 

immediately precedes it and kiln planning, currently 

done manually at the mill, is an input to the planning of 

the finishing operation, and as such, bad planning of the 

kilns in regard to order lateness will result in poor 

performance in the planning of the finishing operations. 

We have thus undertaken the development of a model for 

the scheduling of the kilns and we are planning to 

implement that tool at the company in the coming year. 

 

With that same company, we are also working on 

integrating tactical planning with operational planning. 

One of the challenges in integrating the tactical level 

with the operational one is in ensuring the feasibility of 

the operational plan. To do so, end of period inventory 

levels per product family are set within the objective 

function and not as hard constraints. 
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