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ABSTRACT : Bandwidth minimization problem consists of finding a permutation of the rows and columns
of a sparse matrix in order to keep the non-zero elements in a band that is as close as possible to the main
diagonal. In the recent decades, meta-heuristics have become useful approaches for solving difficult combinatorial
optimization problems. In this paper, we use three meta-heuristics to solve the bandwidth problem, including
Simulated Annealing(SA), Tabu Search(TS) and Variable Neighborhood Search(VNS). We combine the local
search with basic VNS to improve the efficiency of the algorithm and solve bandwidth minimization problem.
By the experiment results of 47 benchmark instances, the running time of the algorithm is reduced compared
with which of meta-heuristic from the literature.

KEYWORDS : bandwidth, meta-heuristic, running time.

1 INTRODUCTION

Matrix bandwidth minimization problem is a well-
known problem. This problem consists of finding a
permutation of the rows and columns of a sparse ma-
trix in order to keep the non-zero elements in a band
that is as close as possible to the main diagonal.

The matrix bandwidth minimization problem orig-
inated in the 1950s when the structural engineers
firstly analyzed the steel frameworks by computers :
When we bring all the nonzero entries into a narrow
band around the main diagonal and get an reorder-
ing matrix, the operations such as inversion and de-
terminants will save time (Chinn P.Z. et al., 1982).
Meanwhile, the graph bandwidth problem originated
in 1962 at the Jet Propulsion Laboratory which stud-
ies on minimizing the maximum absolute errors of
6-bit picture codes represented by edge differences in
a hypercube.

The main application of bandwidth minimization
problem is to solve large linear systems. Gaussian
elimination can be performed in O(nb2) time on ma-
trices of dimension n and bandwidth b, which is faster
than the forward O(n3) algorithm when b is smaller
than n (Lim A. et al., 2006a). Besides, bandwidth
minimization problem has a wide range of other ap-
plications. For examples, data storage, network sur-
vivability, industrial electromagnetic, saving large hy-
pertext media (Berry M. et al., 1996), finite element
methods, large-scale power transmission systems, cir-
cuit design, chemical kinetics, numerical geophysics
(Pinana E. et al., 2004).

Because of the wide range of applications, the band-
width minimization problem has generated a strong
interest in developing algorithms for solving it since
1960s. Papadimitriou (Papadimitriou C.H., 1976)
showed that the bandwidth minimization problem is
NP-complete, which means it is not very likely that
an algorithm can find the minimum matrix band-
width in a polynomial time. In addition, Garey et al.
(Garey M.R. et al., 1978) proved that the bandwidth
minimization problem is NP-complete even if the in-
put graph is a tree whose maximum vertex degree
is 3. Therefore, except for the simplest cases, several
heuristic algorithms have been proposed in the lit-
erature to try to find good quality solutions as fast
as possible (Rodriguez-Tello E. et al., 2008). However,
most of the proposed heuristic methods are specific or
dedicated to a given problem, so recently more gen-
eral algorithms are proposed which are called meta-
heuristic (Loiola E.M. et al., 2007).

This paper will focus on meta-heuristic for solving
bandwidth minimization problem, especially we use
VNS framework to solve the problem. We combine
the improved hill climbing method which is proposed
in (Lim A. et al., 2006a), the reduced swap neigh-
borhood presented in (Mart́ı R. et al., 2001) and
the shaking method proposed in (Mladenović N. et
al., 2010) with the basic VNS for applying on band-
width minimization problem. Section 2 concentrates
on the two formulations of bandwidth minimization
problem : matrix bandwidth minimization problem
and graph bandwidth minimization problem, and an
example shows the formulation specifically and the
equivalence between the matrix and graph versions.



MOSIM14 - November 5-7-2014 - Nancy - France

Section 3 discusses the literature for solving band-
width minimization problem including exact algo-
rithm, heuristic, and especially meta-heuristic. Sec-
tion 4 introduces the basic VNS and describes the
detail of each step of our VNS for solving band-
width minimization problem. Section 5 concentrates
on the computational experiments and compares the
results of different three meta-heuristics which solve
the bandwidth minimization problem. Section 6 con-
cludes the paper.

2 PROBLEM FORMULATION

2.1 Matrix Bandwidth Minimization Prob-
lem

The matrix bandwidth minimization problem
(MBMP) is defined as follows : Given a 0-1 sparse
symmetric matrix A = {aij}, the bandwidth of
matrix A is

B(A) = max{|i− j| : aij 6= 0} (1)

Thus, the MBMP consists of permuting the rows and
columns of matrix A to keep the non-zeros elements
in a band that is as close as possible to the main
diagonal, that is to minimize the bandwidth B(A).

2.2 Graph Bandwidth Minimization Prob-
lem

The bandwidth minimization problem can be stated
in the context of graph as follows : Let G = (V,E)
be a finite undirected graph, where V is the set of
vertices and E is the set of edges, and a one to one
function f : V → {1, 2, ..., n} is the labeling of its
nodes, then the bandwidth of vertex v is defined as

Bf (v) = max
i:(i,j)∈E

{|f(i)− f(j)|} (2)

and the bandwidth of G for f is defined as

Bf (G) = max{|f(i)− f(j)| : (i, j) ∈ E} (3)

The bandwidth minimization problem for graphs is
to find a labeling f for which minimizes the graph
bandwidth, that is the Bf (G) is minimum.

2.3 Equivalence between Graph and Matrix
Versions

The bandwidth minimization problem for graph and
matrix versions are equivalent. These two versions are
interconvertible by transferring the given graph into
an incidence matrix A (Lim A. et al., 2006b). Follow-
ing is an example we present to show this equivalence.

Example. Given an undirected graph G = (V,E)
with |V | = 5 and the given labeling f : f(v1) = 3,
f(v2) = 1, f(v3) = 2, f(v4) = 5, f(v5) = 4. The
original graph is given in Figure 1.

Figure 1 – Labeling f of graph G

Then the bandwidth of each vertex of the graph G
under f are :

Bf (v1) = max{|1− 3|} = 2

Bf (v2) = max{|3− 1|, |2− 1|, |5− 1|} = 4

Bf (v3) = max{|1− 2|} = 1

Bf (v4) = max{|1− 5|, |4− 5|} = 4

Bf (v5) = max{|5− 4|} = 1

The bandwidth of the graph G under f is :

Bf (G) = max
v∈V

Bf (v) = max{2, 4, 1, 4, 1} = 4

The adjacency matrix of the graph under labeling f
is :

A(f) =


1 1 1 0 1
1 1 0 0 0
1 0 1 0 0
0 0 0 1 1
1 0 0 1 1


If we exchange the label of node v1 with the label of
node v2, the resulting graph with new labeling f

′
is

given in Figure 2.

Figure 2 – Labeling f
′

of graph G

Currently, the bandwidth of each vertex under label-
ing f

′
is as follows :
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Bf ′ (v1) = max{|3− 1|} = 2

Bf ′ (v2) = max{|1− 3|, |2− 3|, |5− 3|} = 2

Bf ′ (v3) = max{|3− 2|} = 1

Bf ′ (v4) = max{|3− 5|, |4− 5|} = 2

Bf ′ (v5) = max{|5− 4|} = 1

The graph bandwidth under f
′

is :

Bf ′ (G) = max
v∈V

Bf ′ (v) = max{2, 2, 1, 2, 1} = 2

Hence, the bandwidth of graph has been reduced and
the corresponding adjacency matrix A(f

′
) is :

A(f
′
) =


1 0 1 0 0
0 1 1 0 0
1 1 1 0 1
0 0 0 1 1
0 0 1 1 1


For a graph with n vertices, the number of possible
labeling is n!. The most direct method is to try all
permutations and find which solution is the best. The
running time for this method lies within a polynomial
factor of O(n!), so this approach becomes impracti-
cal even for small matrix which only have 10 vertices
(Pop P. and Matei O., 2011).

3 SOLVING METHODS

Based on the literature, the algorithms of bandwidth
minimization problem can be divided into two classes.
The first one is exact algorithm. The second one
is heuristic method, and recently meta-heuristic has
been developed for this problem in order to obtain
high quality solutions.

For the optimal labeling of vertices in the graph and
optimal permutation of rows and columns in the ma-
trix, the exact algorithms are mainly based on branch
and bound search. Del Corso and Manzini (Del Corso
G.M. and G. Manzini, 1999) was able to solve small
and medium instances. Caprara and Salazar (Caprara
A. and J.J. Salazar, 2005) extended the previous one
by introducing tighter lower bounds, thus solved large
size instances. However, for exact algorithm, the com-
putational cost should be considered to obtain the op-
timal solution. Therefore, these methods can only be
able to solve comparatively small size problems with
a reasonable running time.

Heuristic refers to the technique which is based on ex-
perience, and it gives a solution which is not guaran-
teed to be optimal. However, the heuristic can quickly

find a solution which is good enough for the combina-
torial optimization problem. In 1969, the well-known
Cuthill-McKee algorithm (Cuthill E. and J. McKee,
1969) appeared, which uses breadth first search to
construct a level structure for graphs. Although the
Cuthill-McKee algorithm was the most widely used
method for bandwidth minimization problem during
1970s, it has several disadvantages. For example, the
time consuming, the actual bandwidth might be less
than the width of level structure (Chinn P.Z. et al.,
1982). George (George J.A., 1971) proposed a reverse
ordering for this problem. A few years later, Gibbs et
al. (Gibbs N.E. et al., 1976) developed an algorithm
known as GPS which is still based on the level struc-
ture. The experiment results showed that the GPS
algorithm is comparable with the Cuthill-McKee al-
gorithm while the time consuming is shorter.

Meta-heuristic is a technique which is more general
than heuristic, because the heuristic method is usu-
ally specific for a given problem. Meta-heuristic can
find a sufficiently good solution even optimal solution
for the optimization problem with less computational
assumptions. Therefore, in the past decades, much re-
search has been focused on using meta-heuristic for
solving complex bandwidth minimization problem.

In 2001, Mart́ı et al. (Mart́ı R. et al., 2001) solved the
bandwidth minimization problem with tabu search.
They introduced the reduced swap neighborhood
based on the middle node, and a special candidate
list strategy was used to increase the speed of move
selection in a neighborhood. Extensive experiments
showed that their tabu search outperforms the previ-
ous algorithms. Pinana et al. (Pinana E. et al., 2004)
developed a Greedy Randomized Adaptive Search
Procedure (GRASP) combined with a path relink-
ing strategy for the bandwidth minimization problem.
In 2006, Lim et al. (Lim A. et al., 2006a) presented
a method combing the Genetic Algorithm (GA) and
improved hill climbing to solve the bandwidth min-
imization problem. The improved hill climbing re-
duced the time complexity. Campos et al. (Campos V.
et al., 2011) applied the Scatter Search (SS) for solv-
ing the bandwidth minimization problem. Rodriguez-
Tello et al. (Rodriguez-Tello E. et al., 2008) pro-
posed an improved simulated annealing algorithm.
This method presented a representation of the solu-
tion, a rotation-based neighborhood and a new eval-
uation function, and the experiments showed the ef-
ficiency of the algorithm. Mladenović et al. (Mladen-
ović N. et al., 2010) proposed a VNS method which
combines several ideas from the literature for mini-
mizing the bandwidth. The experiment results of 113
benchmark instances showed that the performance of
the proposed VNS approach was better than all pre-
vious methods.
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4 THE VNS APPROACH

Variable Neighborhood Search (VNS) is a meta-
heuristic that is firstly proposed by Mladenović and
Hansen (Mladenović N. and P. Hansen, 1997) in 1997.
This meta-heuristic has been proved to be very useful
for obtaining an approximate solution to optimization
problems. VNS algorithm relies on the following three
facts (Hansen P. et al., 2010) :

Fact1. The local optimum of a neighborhood struc-
ture is not necessarily a local optimal solution of an-
other neighborhood structure.

Fact2. The global optimal solution is the local optimal
solution for all possible neighborhood structure.

Fact3. For a lot of problems, the local optimums
of several neighborhood structures are close to each
other.

Therefore, VNS is an algorithm that systematically
changes the set of neighborhood structure to expand
the search range and obtain the local optimal solution
until the best solution is found. The basic VNS algo-
rithm includes three processes : shaking, local search
and neighborhood change. Shaking is trying to jump
out the current local optimum and find a new local
optimal solution, while making the local optimal so-
lution be closer to the global optimal solution. Local
search is used to find the local optimal solution in or-
der to improve search accuracy. Move or not means
the neighborhood change which provides an iterative
method and a stopping criterion. The detail of the al-
gorithm for solving bandwidth minimization problem
is described as follows.

4.1 Initial solution

The quality of initial solution will directly affect the
performance of the algorithm, because a good ini-
tial solution can guarantee the algorithm to obtain
the global optimal solution or near-optimal solution
within a short time.

A good initial solution can be generated by a level
structure procedure which using breadth first search
(BFS). The idea is that adjacent vertices should have
close labels. A level structure of a graph is denoted by
L(G), and it is a partition of the vertices into levels
L1, L2, ..., Lk which satisfy the following conditions
(Mart́ı R. et al., 2001) :

(1) vertices adjacent to a vertex in level L1 are either
in L1 or L2 ;

(2) vertices adjacent to vertex in level Lk are either
in Lk or Lk−1 ;

(3) vertices adjacent to vertex in level Li (for 1 <
i < k) are either in Li−1, Li or Li+1.

According to this, reasonable good solutions can be
obtained. Therefore, initial solutions are generated by
applying BFS with random selection of the starting
vertex, and different starting vertices will provide dif-
ferent initial solutions. For example, for the matrix
A, if we start from the vertex v3, the bandwidth de-
creases to 3. If we choose vertex v2 as the first label,
the bandwidth is 2. Figure 3 and 4 show the examples
of initial solution. According to the level structure, all
the initial solutions are better than the original as-
signment. Obviously, the bandwidth obtained by this
method can not be worse than the maximum band-
width of the graph, because the adjacent vertices are
assigned with sequential numbers. BFS method gives
an upper bound of good quality solution.

Figure 3 – v3 is the first label vertex

Figure 4 – v2 is the first label vertex

4.2 Shaking

A labeling f ′ is in the kth neighborhood of the labeling
f , that is, there are k + 1 different labels between f
and f ′. More precisely, the distance ρ between any
two solutions f and f ′ is defined as :

ρ(f, f ′) =

n∑
i=1

η(i)− 1, η(i) =

{
1 f(i) = f ′(i)
0 f(i) 6= f ′(i)

(4)

For example, the label f of Figure 3 is : f =
(3, 2, 1, 5, 4), and the label f ′ of Figure 4 is : f ′ =
(4, 1, 3, 2, 5), thus the distance between f and f ′ is 4.
In order to choose the vertices to swap their labels,
two definitions are added :

fmax(v) = max{f(u), u ∈ N(v)} (5)
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fmin(v) = min{f(u), u ∈ N(v)} (6)

fmax(v) indicates the maximum label of the adjacent
vertex to vertex v, and fmin(v) is the minimum label.
For Figure 4, fmax(v2) = 3 and fmin(v2) = 2.

Firstly, a vertex set K ⊆ V is defined whose car-
dinality is larger than k. Then a vertex u is chosen
randomly from the set K and its critical vertex is also
found. Next, a vertex w will be selected according to
the conditions : max{fmax(w)−f(v), f(v)−fmin(w)}
is minimum and fmin(u) ≤ f(w) ≤ fmax(u). Finally
the label of vertex v is replaced by vertex w.

In the following pseudo code, the shaking process can
be presented as :

Algorithm 1 Shaking (k, f)

Initialization:
Let K = {v|Bf (v) ≥ B′}, B′ is chosen such that
|K| ≥ k ;

Iteration:
1: for i = 1 to k do
2: u← RandomInt (1, |K|) ;
3: v ← such that |f(u)− f(v)| = Bf (u) ;
4: if (u, v) ∈ E then
5: w ← arg minw{max{fmax(w) − f(v), f(v) −

fmin(w)}|fmin(u) ≤ f(w) ≤ fmax(u)} ;
6: swap(f(u), f(v))
7: end if
8: end for

4.3 Local search

We use the local search which is proposed in (Mart́ı
R. et al., 2001) to construct a set of suitable swap-
ping vertices. The best labeling for current vertex v
is defined as :

mid(v) = [
max(v) +min(v)

2
] (7)

Then the set of suitable swapping vertices for vertex
v is :

N
′
(v) = {u : |mid(v)− f(u)| < |mid(v)− f(v)|} (8)

According to the swapping vertices set N
′
(v), swap-

ping the label of the current critical vertex v with
the vertex u ∈ N ′

(v) is tried one by one in ascending
value of |mid(v)−f(u)| until the solution is improved
(Lim A. et al., 2006a). Besides, if the bandwidth of
the graph is not reduced, but the number of critical
edges (critical edge means the bandwidth of the ver-
tices connected with the edge is equal to the graph
bandwidth Bf (v) = Bf (G) ) is reduced, this condi-
tion can also be seen as the solution is improved. The
local search procedure is given in Algorithm 2.

Algorithm 2 Local Search (f)

1: while CanImprove do
2: CanImprove = False ;
3: for v = 1 to n do
4: if Bf (v) = Bf (G) then
5: for all u such that u ∈ N ′(v) do
6: swap (f(v), f(u)) and update

(Bf (w), Bf (G)),∀w ∈ (N(v) ∪N(u)) ;
7: if number of critical edges reduced

then
8: CanImprove = True ;
9: break ;

10: end if
11: swap (f(v), f(u)) and update

(Bf (w), Bf (G)),∀w ∈ (N(v) ∪N(u)) ;
12: end for
13: end if
14: end for
15: end while

4.4 Move or not

After finding the local optimal solution, we must de-
cide whether the current solution f is replaced by the
new solution f ′. The following three cases are con-
sidered : 1. Bf ′(G) < Bf (G) : If the bandwidth of
new solution is better than current solution, it is easy
to determine the move. 2. |Vc(f ′)| < |Vc(f)| : If the
bandwidth does not change, that is, Bf ′(G) = Bf (G),
we compare the number of critical vertex for cur-
rent and new solution to see if |Vc(f ′)| is reduced.
3. ρ(f ′, f) > α : If the two cases above are not satis-
fied, we compare these two solutions with a distance
α which is a coefficient given by the user. The detail
is presented in the Algorithm 3.

Algorithm 3 Move (f, f ′, α)

1: Move← False ;
2: if Bf ′(G) < Bf (G) then
3: Move← True ;
4: else
5: if Bf ′(G) = Bf (G) then
6: if |Vc(f ′)| < |Vc(f)| or ρ(f ′, f) > α then
7: Move← True ;
8: end if
9: end if

10: end if

Thus, the pseudo code of our VNS is presented in
Algorithm 4.

5 NUMERICAL RESULTS

In order to evaluate the performance of the algo-
rithm, we compare the solution and running time of
our VNS with other two algorithms from the litera-
ture : Simulated Annealing (SA) (Torres-Jimenez J.
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VNS Standard Our VNS Simulate Annealing Tabu Search
Instance n LB Best value CPU value CPU value CPU value CPU

arc130 130 63 63 63 0.02 63 1.73 65 9.14 65 19.34
bcspwr01 39 5 5 5 0.42 6 0.00 5 0.07 5 0.02
bcspwr02 49 7 7 7 0.24 9 0.00 5 0.16 5 0.05
bcspwr03 118 9 10 10 1.44 14 0.03 13 0.37 10 1.84
bcsstk01 48 16 16 16 0.29 16 0.02 17 0.40 16 0.18
bcsstk04 132 36 37 37 0.04 38 1.89 41 28.34 39 15.9
can 144 144 13 13 13 0.23 14 0.11 15 1.70 13 7.24
can 161 161 18 18 18 0.48 24 0.52 24 1.98 21 7.68
fs 183 1 183 52 60 60 14.25 64 4.51 68 5.04 64 43.59
gent113 104 25 27 27 2.13 31 0.42 28 1.58 28 2.60
impcol b 59 19 20 20 0.14 21 0.08 21 0.80 21 0.29
impcol c 137 23 30 30 9.81 36 0.28 36 0.92 33 4.90
lund a 147 19 23 23 0.02 23 0.02 23 9.59 23 10.90
lund b 147 23 23 23 0.01 23 0.28 23 9.41 23 10.50
nos1 158 3 3 3 0.00 5 3.30 6 1.21 4 15.1
nos4 100 10 10 10 0.89 11 0.03 12 0.63 10 0.89
west0132 132 23 32 32 42.71 37 1.04 35 0.17 37 6.70
west0156 156 33 36 36 12.73 44 0.84 40 0.89 39 16.10
west0167 167 31 34 34 69.28 40 1.47 35 2.48 36 11.35
will199 199 55 65 65 11.28 76 11.32 53 3.37 53 51.75
will57 57 6 6 6 1.25 7 0.01 8 0.32 8 0.14

Average 23.28 25.61 25.61 7.98 28.67 1.33 27.29 3.74 26.33 10.81
Gap 9.10% 0% 11.95% 6.56% 2.81%

Table 1 – Result of small dimension matrix

Algorithm 4 VNS (A, kmin, kmax, kstep, α)

Initialization:
1: B∗ ←∞ ;t← 0 ;
2: imax = Int((kmax − kmin)/kstep)) ;
3: f ← InitSol(f) ;f ← LocalSearch(f); ;
4: i← 0 ;k ← kmin ;
5: while i ≤ imax do
6: f ′ ← Shaking(f, k) ;
7: f ′ ← LocalSearch(f ′) ;
8: if Move(f, f ′, α) then
9: f ← f ′ ;k ← kmin ;i← 0 ;

10: else
11: k ← k + kstep; i← i+ 1 ;
12: end if
13: end while

and E. Rodriguez-Tello, 2000) and Tabu Search (TS)
(Mart́ı R. et al., 2001). We tested 47 instances from
the Harwell-Boeing Sparse Matrix Collection which
are divided into two sets : the first set includes 21 in-
stances (the dimension of the matrix ranging from 30
to 199) and the second set consists of 26 instances (the
dimension of the matrix ranging from 200 to 1000).
First, we transfer the matrix into the graph consid-
ering the incidence matrix, then we implement the
algorithm with a graph formulation. Because the so-
lution and running time of different algorithms are
obtained from different computers, in order to com-
pare the performance of these methods, we resume
the experiment of different methods with our com-
puter according to the literature description.

Table 1 and 2 summarize the result of different algo-
rithms with 47 instances. For the instances, the al-
gorithms are implemented in C and compiled with
Microsoft Visual C++ 6.0, and the program was run
with a Intel I7 at 2 GHz with 4 GB of RAM. In Ta-
bles 1 and 2, the first column indicates the name of
the instance, the second column shows the size of the
matrix. The third column presents the lower bound
of the bandwidth obtained by the literature, and the

fourth column shows the best solution of the band-
width minimization problem. Then, the column of
VNS standard presents the results from the literature
(Mladenović N. et al., 2010). Value is the bandwidth
and CPU is the running time of the algorithm. The
other three columns are the results of our VNS, SA
and TS. The last two rows show the average value
and the running time of each method, and the gap

we compute as Gap =
|vopt−vbest|

vbest
× 100% where vopt

is the optimal value of each method, and vbest is the
best value which is showed in the fourth column.

For each instance, we test 10 times, and the best re-
sult is shown in Tables 1 and 2. For our VNS, we
define the parameters as follows : kmin = 2, kstep =
3, kmax = n/2, α = 10.

According to the result, our VNS does not work as
well as in the literature (Torres-Jimenez J. and E.
Rodriguez-Tello, 2000) (Mart́ı R. et al., 2001) (Mlade-
nović N. et al., 2010), but compared with the size of
the matrix, we have significantly decreased the band-
width, i.e., improved the quality of the upper bounds.
Our VNS offers an advantage of the CPU time. Espe-
cially for large size matrices, it can solve the problem
in a shorter time.

6 CONCLUSION

Bandwidth minimization problem, especially for the
large size matrix is challenging because it is difficult
to solve. Meta-heuristic is an effective approach to
solve such optimization problems with few assump-
tions. In this work, we focus on using meta-heuristic
to solve the bandwidth problem for sparse matrices.
We transfer the matrix problem into a graph prob-
lem and apply variable neighborhood search (VNS) to
solve it. By combining the improved local search with
the basic VNS and defining the parameters which in-
fluent the neighborhood change, the experiment re-
sults show that our VNS is competitive with the state
of art from the result quality point of view, and both
for the small and large instances, our VNS outper-



MOSIM14 - November 5-7-2014 - Nancy - France

VNS Standard Our VNS Simulate Annealing Tabu Search
Instance n LB Best value CPU value CPU value CPU value CPU

ash292 292 16 19 19 39.35 27 1.10 24 4.63 19 9.61
bcspwr04 274 23 24 24 33.52 37 2.33 45 2.36 39 6.60
bcspwr05 443 25 27 27 28.55 56 3.34 54 2.90 39 17.14
bcsstk06 420 38 45 45 208.9 47 7.77 47 85.20 47 44.87
bcsstk19 817 13 14 14 199.34 18 33.22 28 52.10 25 280.30
bcsstk20 467 8 13 13 52.13 17 6.31 14 13.00 17 24.47
bcsstm07 520 37 45 45 208.90 66 23.02 57 74.70 47 43.02
can 445 445 46 52 52 119.68 77 16.67 61 14.60 54 75.29
can 715 715 54 72 72 192.68 119 151.56 88 62.05 87 229.73
can 838 838 75 86 86 402.23 107 61.72 104 148.25 99 284.48
dwt 209 209 21 23 23 25.30 33 0.62 30 3.82 28 6.12
dwt 221 221 12 13 13 23.88 17 0.29 20 2.41 15 5.36
dwt 245 245 21 23 23 25.3 31 0.58 23 1.98 18 9.94
dwt 310 310 11 12 12 11.45 16 5.92 20 5.17 12 23.52
dwt 361 361 14 14 14 7.22 18 11.30 22 9.30 16 15.37
dwt 419 419 23 25 25 69.21 30 2.84 45 26.56 42 33.81
dwt 503 503 29 41 41 174.40 63 13.81 56 93.10 55 228.24
dwt 592 592 22 29 29 111.32 34 8.18 53 47.70 50 84.75
dwt 878 878 23 25 25 111.32 37 23.01 41 40.20 34 300.05
dwt 918 918 27 32 32 223.19 53 53.51 55 165.20 52 180.50
plat362 362 29 34 34 179.34 45 6.91 39 84.24 36 38.44
plskz362 362 15 18 18 22.29 21 4.61 21 8.85 20 14.45
str 0 363 87 116 117 43.36 139 180.11 123 70.12 125 90.25
str 200 363 90 125 125 38.27 150 47.06 133 118.50 144 85.08
west0381 381 119 151 153 66.59 181 20.00 164 53.97 171 84.56
west0479 479 84 121 121 38.50 173 350.87 130 43.90 137 72.32

Average 37.53 45.75 45.82 108.80 61.14 39.27 57.58 47.49 54.92 88.01
Gap 17.96% 0.15% 33.63% 25.67% 19.86%

Table 2 – Result of large dimension matrix

forms the state of art from CPU time point of view.
For the future work, on one hand, we could further
improve the result quality of our algorithm with con-
sidering to add a restart in the program so that it
does not end early and may gain better solution.
On the other hand, because of the reduced running
time of our VNS, we can use this algorithm to solve
very large size instances, i.e., matrices with more than
10,000×10,000.
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