
HAL Id: hal-01166654
https://hal.science/hal-01166654

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IDENTIFIABILITY STUDY IN A MODEL
DESCRIBING THE PROPAGATION OF THE

CHIKUNGUNYA TO THE HUMAN POPULATION.
Zhu Shousheng, Lilianne Denis-Vidal, Nathalie Verdière

To cite this version:
Zhu Shousheng, Lilianne Denis-Vidal, Nathalie Verdière. IDENTIFIABILITY STUDY IN A MODEL
DESCRIBING THE PROPAGATION OF THE CHIKUNGUNYA TO THE HUMAN POPULATION.
. MOSIM 2014, 10ème Conférence Francophone de Modélisation, Optimisation et Simulation, Nov
2014, Nancy, France. �hal-01166654�

https://hal.science/hal-01166654
https://hal.archives-ouvertes.fr


10th International Conference on MOdeling, Optimization and SIMlation - MOSIM14 - November 5-7-2014-
Nancy - France “Toward circular Economy”

Identifiability study in a model describing the propagation of the

chikungunya to the human population.

Z. Shousheng, L. Denis-Vidal N. Verdière

UTC / University of technology of Compiègne LMAH / University of Le Havre
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ABSTRACT: In different fields of research, modeling has become an interesting tool for studying and pre-
dicting the possible evolution of a system, in particular in epidemiology. Indeed, according to the globalization
of our societies and the genetic mutation of transmission vectors, several epidemics have appeared in the
last years in regions not yet concerned by such a catastrophe. One can name, for example, the chikungunya
epidemic on the Réunion Island in 2005-2006. In this paper, a model describing the propagation of the
chikungunya to the human population is taken again from (Moulay, Aziz-Alaoui & Cadivel 2011). In such
models, some parameters are not directly accessible from experiments and have to be estimated numerically
from an iterative algorithm. However, before searching for their values, it is essential to verify the identifiability
of model parameters to assess whether the set of unknown parameters can be uniquely determined from the
data. Indeed, this study insures that numerical procedures can be successful and if the identifiability is not
ensured, some supplementary data have to be added or the set of admissible data has to be reduced. A
first identifiability study had been done in (Moulay, Verdière & Denis-Vidal 2012) in considering that the
number of eggs can be easily counted. However, after discussing with epidemiologist searchers, it appears
that it is the number of larvae that can be estimated weeks by weeks. Thus, this paper proposes to do an
identifiability study with this assumption and thanks to an integration of one of the model equations, some
easier equations linking the inputs, outputs and parameters are obtained permitting a simpler identifiability study.
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1 Introduction

Studying and understanding transmission of epidemi-
ologic diseases have become a major issue in our mod-
ern society. Indeed, due to modern conveyances as
planes and actual climate change, their transmission
vectors migrate to areas that previously were not af-
fected. One can name, for example, mosquitoes of
Aedes genus that transmit the chikungunya virus.
Until 2000, this virus was confined to African coun-
tries. However, an unprecedented epidemic has been
observed in the Réunion island (a French island in
the Indian Ocean) in 2005-2006 where one third of
the total population has been infected, the maximum
number been reached in february 2006 with 40 000 in-
fected. More worrying is the chikungunya epidemic in
Italy in 2007 since it was the first time that such dis-
ease was observed in a non tropical region. This epi-
demic comes from the transmission vector, the Aedes
Albopictus (Reiter, Fontenille & Paupy 2006) that
has developed capabilities to adapt to non tropical
region. Moreover, some mosquitoes of this species
have been seen in the south of France. European

health authorities are now strongly engaged in the
control of this disease. Since there is no vaccine nor
specific treatment, efforts are mostly directed towards
prevention measures and the control of mosquito pro-
liferation.

It is often a difficult task to collect sufficient data
in order to do a complete study of the transmis-
sion, the emergence or re-emergence of such virus.
For doing this, mathematical models have been
proposed in the literature associating researchers
from different fields such as epidemiology, biology,
medicine or mathematics. For instance, Dengue, a
vector borne disease mainly transmitted by Aedes
Aegypti mosquitoes was the subject of several studies
(Esteva & Vargas 1999, Esteva & Vargas 1998).
For the chikungunya virus, (Dumont, Chiroleu &
Domerg 2008), (Moulay, Aziz-Alaoui & Cadivel
2011) have recently proposed models of transmis-
sion. However, to do a complete study with such
models, the main issue is to estimate numerically
their parameters which are sometimes inaccessible
to direct measurements. Thus, some algorithms
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have to be implemented such as the minimal least
squares algorithm. Their principles are to estimate
the parameter vector such that the corresponding
trajectories heat the output data set. However, an
identifiability study has to be done before doing this
numerical work. Indeed, identifiability consists in
insuring that the set of unknown parameters can be
uniquely determined from the data. If it is not the
case, one can have a local minimum corresponding to
an aberrant real solution or the iterative algorithm
can fail.

In this paper, we propose to consider the models pro-
posed by (Moulay, Aziz-Alaoui & Cadivel 2011) and
used in (Moulay, Verdière & Denis-Vidal 2012). In
the latter paper, the authors did an identifiability
study but in supposing that the number of eggs can
be observed. Concretely, this assumption appears un-
realistic. Indeed, in order to study the evolution of
the mosquitoes number, searchers install water tanks
in concerned area and study their content each week.
They can only count the larvae since the eggs are too
small. This assumption changes the model and the
identifiability results obtained by (Moulay, Verdière
& Denis-Vidal 2012) are not yet valid. Thus, we sup-
pose, in this paper, that only larvea can be observed
and we propose to do an identifiability study on the
new model.
For doing this, let us consider ordinary controlled or
uncontrolled dynamical systems described in a gen-
eral state-space form:

Γθ =

{
ẋ(t, θ) = f(x(t, θ), θ) + u(t)g(x(t, θ), θ),
y(t, θ) = h(x(t, θ), θ).

(1)

Here x(t, θ) ∈ Rn and y(t, θ) ∈ Rm denote the state
variables and the measured outputs, respectively and
θ ∈ Up the unknown parameters vector (Up is an
open subset in Rp). The functions f(., θ), g(., θ) and
h(., θ) are real, rational and analytic for every θ ∈ Up
on M (a connected open subset of Rn such that
x(t, θ) ∈M for every θ ∈ Up and every t ∈ [0, T ]). In
the case of uncontrolled system u is equal to 0.

Since the initial conditions are not considered, the
solution of Γθ may be nonunique and some solutions
might be of a degenerate character. Thus, the set of
nondegenerate solutions will be denoted by x̄(t, θ),
the set of corresponding outputs by ȳ(t, θ). The
definition introduced by (Ljung & T. Glad 1994) is
adopted here. For uncontrolled systems, one gets:

Definition 1.1. The model Γθ is globally identifiable
at θ ∈ Up if ȳ(θ) 6≡ ∅ and for any θ̄ ∈ Up, θ̄ 6= θ,
ȳ(θ) ∩ ȳ(θ̄) = ∅.

The identifiability definition of the controlled model

Γθ is the following:

Definition 1.2. The model Γθ is globally identi-
fiable at θ ∈ Up if there exists an input u, such
that ȳ(θ, u) 6≡ ∅ and for any θ̄ ∈ Up, θ̄ 6= θ,
ȳ(θ, u) ∩ ȳ(θ̄, u) = ∅.

Lots of methods to prove the identifiability of a
model are available in the literature. For example,
(Pohjanpalo 1978), (Ljung & T. Glad 1994), (Vajda,
Godfrey & Rabitz 1989), (Verdière, Denis-Vidal,
Joly-Blanchard & Domurado 2005) have proposed
different approaches to study the global identifiability
of nonlinear systems. But, three methods emerge.
The first one is the Taylor Series approach proposed
by (Pohjanpalo 1978) and consists in analyzing a
power series expansion of the output(s), that is y
in the case of model (1). This method can lead to
complex systems essentially in the case of nonlinear
systems and does not permit to obtain a good
estimate of the unknown parameters. A second
method is based on the local state isomorphism
theorem ((Walter & Lecourtier 1982), (Chappell
& Godfrey 1992), (Denis-Vidal, Joly-Blanchard
& Noiret 2001), (Chapman, Godfrey, Chappell &
Evans 2003)). It leads to study the solution of a spe-
cific set of partial differential equations. However, it
does not induce a numerical method to estimate the
parameters. A third one is a method based on differ-
ential algebra introduced by (Fliess & Glad 1993),
(Ljung & T. Glad 1994) and (Ollivier 1997). It allows
one to obtain relations linking the observations, the
inputs and the unknown parameters of the system.
From them, an identifiability study is done. It is this
method which will be used in this paper. As it will
be seen, thanks to an integration of one of the model
equations, simple relations linking input, output
and parameters of the model have been obtained.
Furthermore, these relations can be used to obtain a
first estimation of the unknown parameters without a
priori any knowledge of them (Verdière, Denis-Vidal
& Joly-Blanchard 2005). Indeed, the next step of this
work will be to estimate the unknown parameters.

The paper is organized as follows. In the second
section, models describing the transmission of the
chikungunya virus to human population are pre-
sented. In the third section, the identifiability results
are given. A conclusion and some perspectives are
proposed in the fourth section.

2 Presentation of the models

Susceptible Infective Removed (SIR) models consist
in subdividing the concerned population in the three
classes: susceptible, infective and removed and to
consider the different possible interactions among
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these classes as contagion processes. One of the
first model describing the chikungunya transmission
virus using SI-SIR type models was proposed by
(Bacaër 2007) who formulates several methods to
compute the basic reproduction number for epidemio-
logical models. Moreover, some biological parameter
values was given. Another approach was proposed by
(Dumont, Chiroleu & Domerg 2008). In their paper,
a global aquatic stage for the mosquito dynamics sup-
plements a classical transmission model. In (Dumont
& Chiroleu 2010), authors formulated an ordinary dif-
ferential equation system to study control of chikun-
gunya virus using mechanical and chemical tools. In
(Moulay, Aziz-Alaoui & Kwon 2012), control efforts
was taken into account through the formulation of an
optimal control problem, their objective was to con-
trol the mosquito proliferation and limit the number
of human and mosquito infections.

It is the model proposed by (Moulay, Aziz-Alaoui &
Cadivel 2011) which is considered in this paper. Its
advantage is that it takes into account the mosquito
biological life cycle and describes the virus transmis-
sion to human population. The mosquito biological
life cycle is decomposed in four stages: eggs, larvae,
pupae and adults. A stage structured model is used to
describe the following stages: eggs number (E), larvae
and pupae number (L), two stages biologically close
and female adults number (A). Only females are con-
sidered since male can not transmit the virus. This
model is then included in a classical SI-SIR epidemio-
logical model in order to describe the virus transmis-
sion to human population. To this aim, the adult
stage A is divided into two epidemiological states:
susceptible S̄m and infective Īm, since mosquitoes
carry the infection along their life. The human popu-
lation NH is subdivided into three stages: susceptible
S̄H , infected ĪH and recovered (or immune) R̄H . The
authors suppose first that there is no vertical trans-
mission for both humans and mosquitoes. It means
that the disease can not be passed on the future gen-
eration. Then, they suppose that the vector infection
of susceptible mosquitoes (S̄m) occurs when biting
(necessary for females lay eggs) infectious humans
(ĪH). Conversely, the chikungunya infection among
humans occurs when susceptible humans (S̄H) are
bitten by infection mosquitoes (Īm). In order to ob-
tain a more simple model, density rather total num-
ber is considered that is Sm = S̄m/A, Im = Īm/A,
SH = S̄H/NH , IH = ĪH/NH , RH = R̄H/NH . Then,
with Sm = 1− Im and RH = 1−SH − IH , the model
does not need to consider Sm and RH .

The model derived in (Moulay, Aziz-Alaoui & Cadivel

2011) is the following:


E′(t) = bA(t)

(
1− E(t)

KE

)
− (s+ d)E(t)

L′(t) = sE(t)

(
1− L(t)

KL

)
− (sL + dL)L(t)

A′(t) = sLL(t)− dmA(t)

(a)


S′H(t) = − (bH + βHIm(t))SH(t) + bH
I ′H(t) = βHIm(t)SH(t)− (γ + bH)IH(t)

I ′m(t) = −
(
sL
L(t)

A(t)
+ βmIH(t)

)
Im(t) + βmIH(t)

(b)

(2)

where

• b is the intrinsic rate of eggs, s (resp. sL) is the
transfer rate between E and L (resp. between L
and A),

• KE (resp. KL) is the carrying capacity of E
(resp. carrying capacity of L),

• d, dL and dm are the rates of natural deaths for
eggs, larvae and adults,

• bH the human birth,

• γ is the transfer rate between infected humans
and recovered humans,

• βH (resp. βm) is the infectious contact rate be-
tween susceptible humans and vectors (resp. sus-
ceptible mosquitoes and humans).

The system is defined on ∆× Ω where

∆ =

(E,L,A) ∈ (R+)3 |
0 ≤ E ≤ KE

0 ≤ L ≤ KL

0 ≤ A ≤ sL
dm

KL

 (3)

and

Ω =

{
(SH , IH , Im) ∈ (R+)3 | 0 ≤ SH + IH ≤ 1

0 ≤ Im ≤ 1

}
.

(4)

The stability analysis of the model is detailed in
(Moulay, Aziz-Alaoui & Cadivel 2011).

3 Identifiability Analysis

The first step in an identifiability study is to deter-
mine the outputs, that is the observable state vari-
ables. The second one consists in applying an identi-
fiability method, here a method based on differential
algebra. If the model is identifiable, we know that
the set of unknown parameters can be uniquely deter-
mined from the data. If the model is not identifiable,
it means that the numerical procedure to estimate the
parameters of the model can fail : it can give either no
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results or a local minimum corresponding to an aber-
rant real solution. In order to obtain an identifiable
model, another state variable must be considered as
observable by the experimenter (that implies to put
other experimental procedures) or assumptions on the
parameters must be done.

In the case of the chikungunya Réunion Island
epidemic, authorities have registered the average
number of larvae in each cottage in putting water
tanks. Thus, (L) can be considered as an observable
variable. Furthermore, they estimate the number
of new infections week by week. More generally,
it seems to be realistic to assume that data about
human population may be obtained. For instance,
we know that the entire Réunion island before the
epidemic was susceptible. Data indicating week per
week new cases of the disease may be provided by
the INVS (French Institute for Health Care). We
know that the epidemic was declared over by April
2006. In the end, the INVS counted 265,733 cases of
chikungunya from March 2005 to April 2006 which
represents more than 35% of the total population
of the Island. That is why it seems reasonable to
assume that susceptible (SH) and infected human
(IH) are observable.

The parameters whose values are not directly acces-
sible from the field are: s, sL, KE , KL for the system
(2a) and βH , βm for the system (2b). Let us recall the
main results of identifiability in differential algebra.

3.1 Differential Algebra

This method consists in eliminating unobservable
state variables in order to get relations between out-
puts and parameters. Let us recall the methodology.
The system Γθ is rewritten as a differential polyno-
mial system completed with θ̇i = 0, i = 1, . . . , p, thus
the following system composed of polynomial equa-
tions and inequalities is obtained:

Γ


p(ẋ, x, u, θ) = 0,
q(x, y, θ) = 0,
r(x, y, θ) 6= 0,

θ̇i = 0, i = 1, . . . , p.

(5)

Let us introduce some notations:

• I is the radical of the differential ideal generated
by (5). I, endowed with the following ranking
which eliminates the state variables:

[θ] ≺ [y, u] ≺ [x] (6)

is assumed to admit a characteristic presenta-
tion C (i.e., a canonical representant of the ideal)

which has the following form:{
θ̇1, . . . θ̇p, P1(y, u, θ), . . . , Pm(y, u, θ), Q1(y, u, θ, x),

. . . , Qn(y, u, θ, x)}
(7)

C(θ) will denote the particular characteristic pre-
sentation C evaluated in θ.

• Iθ is the radical of the differential ideal generated
by (5) for the particular value of parameter θ and
Cθ is the characteristic presentation associated
with the ranking [y, u] ≺ [x].

• Finally, Ii0θ is the ideal obtained after eliminating

state variables and the set Ci0θ = Cθ∩Q(θ){U, Y }
is a characteristic presentation of this ideal.

The following proposition whose a proof can be
found in (Noiret 2000) gives a necessary and suf-
ficient condition in order to have the global iden-
tifiability.

Proposition 3.1. If the system Γ does not admit
non generic solution then the model is globally
identifiable if and only if for all θ̄ ∈ Up,

Ci0θ = Ci0
θ̄
⇒ θ = θ̄.

This proposition is difficult to verify since the
initial system should be evaluated in every pa-
rameter value as the associated caracteristic pre-
sentation Ci0θ . The authors in (Noiret 2000) have
given some technical conditions for having the
equality Cθ = C(θ). Under these assumptions,
the characteristic presentation Cθ, that is, Ci0θ of

Ii0θ is proved to contain the differential polyno-
mials P1(y, u, θ), . . . , Pm(y, u, θ). The latter give
the relations between input-output and parame-
ters and can be expressed as

Pi(y, u, θ) = γi0(y, u) +

ni∑
k=1

γik(θ)mk,i(y, u) (8)

where (γik)1≤k≤ni
are rational in θ, γiu 6= γiv

(u 6= v), (mk,i)1≤k≤ni are differential polynomi-
als with respect to y and u and γi0 6= 0.

The list {γi1(θ), . . . , γini
(θ)} is called the exhaustive

summary of Pi and the polynomials Pi are called the
input-output polynomials. The size of the system is
the number of observations. The identifiability analy-
sis is based on the following proposition (Denis-Vidal,
Joly-Blanchard & Noiret 2001).

Proposition 3.2. If for i = 1, . . . ,m, 4Pi(y, u, θ) =
det(mk,i(y, u), k = 1, . . . , ni) is not in the ideal Ii0θ ,
then Γθ is globally identifiable at θ if and only if for
every θ̄ ∈ Up (θ̄ 6= θ), the characteristic presentations
Ci0θ and Ci0

θ̄
are distinct.
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The function belongs to in Maple allows us to verify
that the functional determinant does not vanish on
the zeros of the radical differential ideal generated
by Γ. Under this assumption, for proving that the
model is globally identifiable, it is sufficient to verify
for i = 1, . . . ,m and k = 1, . . . , ni:

γik(θ) = γik(θ̄)⇒ θ = θ̄.

This work will be done in using the Rosenfeld-
Groebner algorithm in the package Diffalg of Maple.
To study the identifiability of the parameters s, sL,
KE , KL, βL, βm in (2a) and (2b), the two cou-
pled systems can be considered as a unique system
in which L, SH and IH are supposed to be observed.
However, we will take again the procedure done in
(Moulay, Verdière & Denis-Vidal 2012). Indeed, they
study, first the mosquito model, then the human
model. This procedure will permit to identify, first,
s, sL, KE , KL. Once these parameters known, model
(2a) is well determined. Thus, the rational function
L(t)/A(t), which intervenes in (2b) can be considered
as an input and an identifiability study can be done
on s and sL. Besides, this procedure can be easily
put in form in order to do a parameter estimation.
Recall that the use of differential algebra (Verdière
et al. 2005) gives input-output polynomials that can
be used to estimate the unknown parameters without
a priori any knowledge of them.

3.2 Application to the Vector population

In order to obtain the input-output polynomials, we
add y1 = L to system (2a) and use the package diffalg
of Maple with the elimination order [y1] ≺ [A,E,L].
Unfortunately, the exhaustive summary is constituted
of 36 expressions, thus its study is difficult. Fur-
thermore, derivatives of order 3 of y1, that is L, ap-
pear in the input-output polynomial such that it will
be difficult to use it for doing a parameter estima-
tion. It would be better if this polynomial that will
be used for parameter estimation is simple enough.
For this reason, we will transform system (2a) by in-
tegrating its third equation. This integration leads
us to let w(t) = e−dmt, v(t) = e−dmt

∫ t
0
L(s)edmsds

and A0, the initial condition of A. Assume too that
KL = KE/2 ((Moulay, Aziz-Alaoui & Kwon 2012)).
System (2a) can also be rewritten:



E′(t) = bA(t)(1− E(t)
KE

)− (s+ d)E(t)

L′(t) = sE(t)(1− 2L(t)
KE

)− (sL + dL)L(t)

A(t) = A0w(t) + sLv(t)

v′(t) = L(t)− dmv(t)

w′(t) = −dmw(t)

(a′)


S′H(t) = −(bH + βHIm(t))SH(t) + bH
I ′H(t) = βHIm(t))SH(t)− (γ + bH)IH(t)

I ′m(t) = −(sL
L(t)
A(t) + βmIH(t))Im(t)+

βmIH(t)

(b′)

(9)

System (2) and System (9) are equivalent, and the
stability analysis of the model (9) is the same as the
model (2).
Since L is supposed to be observed, w and v can
be calculated and equations y1 = L, y2 = v and
y3 = w are added to system (9a’). With (9a’), the
package diffalg of Maple with the elimination order
[y1, y2, y3] ≺ [A,E,L, v, w] gives the characteristic
presentation constituted of the following polynomi-
als:

P1 = −A0y3 − sly2 +A,

P2 = −KesE + (Kedl +Kesl + 2sE)y1 +Keẏ1,

P3 =A0K
2
e bsy3 +K2

e bssly2−
Ke(bdlsl + 4bssl + bs2

l )y2y1−
K2
e (ddl + dsl + dls+ ssl)y1−

Ke(A0bdl + 4A0bs+A0bsl)y3y1−
K2
e (d+ dl + s+ sl)ẏ1−

Kebsly2ẏ1 −A0Keby3ẏ1 −K2
e ÿ1+

2(bdlsl + 2bssl + bs2
l )y2y

2
1+

2(A0bdl + 2A0bs+A0bsl)y3y
2
1+

2Ke(ddl + dsl + dls+ ssl)y
2
1+

2bsly2ẏ1y1 + 2Ke(d+ s)ẏ1y1+

2A0by3ẏ1y1 − 2Ke(ẏ
2
1 − ÿ1y1),

P4 = dmy2 + ẏ2 − y1.

P5 = dmy3 + ẏ3.

The polynomials P1, P2 permit to express E and
A from y1, y2 and the parameters of the model.
The polynomials P4, P5 are input-output polynomi-
als which contain no parameters. The third one, P3,
is an input-output polynomial and links the outputs
with the parameters. The polynomial P̃3 = P3

Ke is con-
sidered in order to obtain an expression of the form
(8). With the function belong to, we verify that the
functional determinant 4P̃3 is not in the ideal Ii0θ .
The exhaustive summary is constituted of 15 expres-
sions. In using the Rosenfeld-Groebner algorithm, we
obtain the identifiability of the parameters s, sL, KE ,
KL and A0. Finally, from the observation L and by
using P̃3, the unknown parameters s, sL, KE , KL and
A0 can be estimated.

Compared with the system (2a), system (9a’) has the
following advantages:

1. The list of the exhaustive summary obtained
with system (9a’) is shorter than the one ob-
tained with system (2a). The first list contains
15 expressions contrary to the second one which
contains 36 expressions.
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2. The higher order derivative of y1 = L in P̃3 is
lower than in the corresponding polynomial ob-
tained with system (2a). Indeed, the latter con-
tains derivatives of order 3 while P̃3 contains only
two expressions of derivatives of order 2. Numer-
ically, estimating derivatives of order 3 can be a
difficult task so P̃3 is more adapted for doing a
parameter estimation.

3. The initial condition A0 for female adults can be
estimated which is an interesting information.

3.3 Application to the population Model

The third equation of (9b’) links the human popula-
tion to the vector population with the term L(t)/A(t).
According to the previous section, A(t) and L(t)
are known. Thus L(t)/A(t) can be considered as a
known input u. As previously, in adding y1 = IH ,
y2 = SH to (9b’) and in considering the elimination
order [y1, y2, u] ≺ [IH , SH , Im], one gets for the fol-
lowing output polynomials:

P6 =− bHsluy2 + bH ẏ2 + bHsluy
2
2+

sluẏ2y2 − ẏ2
2 + ÿ2y2 − bHβmy1y2+

(bHβm + βHβm)y1y
2
2 + βmy1ẏ2y2,

P7 = −bH + (βHIm + bH)y2 + ẏ2,

P8 = −bH + bHy2 + ẏ2 + (γ + bH)y1 + ẏ1.

Only the polynomial P6 contains the parameters βH
and βm and is used to study the identifiability of the
model with respect these two parameters. The poly-
nomial P6 is of the form (8). The functional deter-
minant 4P6 is proved not to be in the ideal Ii0θ . In
studying the exhaustive summary of P6, we conclude
that the parameters βH and βm are identifiable.
From this identifiability result, a numerical procedure
may be implemented in order to estimate uniquely the
unknown parameters of the model from the data. The
value of the parameters may differ according to the
study site since their estimation depends on the data,
in particular on the number of observed larvae or on
human population. Once their estimation done, the
model is well defined and can be used to better appre-
hend the evolution of the epidemic on a specific site or
to improve results in the control study of the chikun-
gunya disease presented in (Moulay, Aziz-Alaoui &
Kwon 2012) for example.

4 Conclusion

In this paper, we have done an identifiability study
of models describing the transmission of the chikun-
gunya virus to human population in supposing,
among other, that the number of mosquitoes larvae

are observed. For doing this, a differential algebra
method has been used and thanks to an integration
of one of the equations, simpler input-output poly-
nomials has been obtained, hence an easier identifi-
ability study. Furthermore, since only derivatives of
order two appear in this polynomial, a numerical pro-
cedure in order to estimate the unknown parameters
may be implemented and this will be the following
step of this work.
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