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ABSTRACT: This paper proposes an optimization framework for inspection planning based on a mixed-integer non-

linear programming (MINLP) model, in which decisions are made on which quality characteristics need what kind of 

inspections and when these inspections should be performed such that total cost of manufacturing is minimized. Two 

different types of inspections containing Monitoring Inspection (MI) and Conformity Inspection (CI) are taken into 

account. In order to validate the correctness of the model, a real industrial case is studied. Since the size of problems is 

large, a genetic-based algorithm is developed to solve the real industrial case. 
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1. INTRODUCTION 

Since many production processes are technologically 

incapable of producing high-quality products, a quality 

management system (QMS) has gained increasingly high 

importance at each modern production system, in which 

incapable production techniques, defective equipment 

and inferior raw materials are some of the external fac-

tors resulting in the quality problem. Accordingly, pro-

duction managers are attempting to provide a quality 

control system (QCS) to gain high-quality products in 

the presence of such pesky external factors. In order to 

get more effective QCS under such conditions, in-line 

quality control measures are employed more intensively, 

and if workable, automatically. In such situations, firms 

invest large amounts in inspection systems, and inspec-

tion planning problems become more significant. Inspec-

tion allocation and selection decisions are actually made 

by quality managers; however, they lack an overall 

framework for their decisions when they should decide 

which quality characteristics in the process need to be 

inspected and when (Shiau, 2003). 

 

One of the most effective approaches to design an in-

spection framework and cope with quality issues is creat-

ing a capable production metrology system. Production 

metrology is all activities by which manufacturers try to 

ensure that their product conforms to specifications and 

meets customer expectations, connected with measure-

ment and testing functions to be provided in the industri-

al development process of the product. The main objec-

tive of production metrology is the recording of a fea-

ture’s quality criteria measurements (Savio, 2012). Since 

a production system is judged based on its efficiency, an 

efficient technique is required to measure the cost of the 

system. On the other hand, cost measurement has be-

come an important issue in product and process design; 

in fact it becomes a key activity to improve the tolerance 

allocation, to select fittest manufacturing resources or 

inspection allocation planning (Mirdamadi et al., 2011). 

Therefore, a precise cost measurement is one of the pre-

requisites for having a reliable production metrology 

(Tolio et al., 2007; Burdick et al., 2003; Niazi et al., 

2006).   

 

For having enhanced production metrology, quality con-

trol has become a matter of great importance in recent 

years. The possibility for offering high-quality products 

at lower costs has become an essence for a manufacturer 

to keep in a competitive edge. One of the most efficient 

tools for decreasing wastes and meeting customer expec-

tations is inspection planning. Inspection planning is an 

activity determines how an inspection of a product is to 

take place and what characteristics must be tested in or-

der to ensure the quality of the product, as well as specif-

ic metrics and measurements that must be met in com-

pliance of the product with standards (Lee and Un-

nikrishnan, 1998).  

 

Two kinds of inspection can be performed in an efficient 

production metrology namely conformity (CI) and moni-

toring (MI) inspections. In the CI, the production process 

is halted and all products are checked whether quality 

characteristics have met standard specifications while 

nonconforming products are scrapped. Since stopping 

production process may not be cost-efficient, MI can be 

taken into account as an online inspection where corre-

sponding features of the process (e.g., feed speed of a 

drilling machine, temperature etc) which significantly 

affect related characteristics of the products are checked 

not to deviate from their set value. In spite of CI, MI is 
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carried out after a specific number of products which 

results in lower inspection cost.  

 

Manufacturers consider CI and/or MI in their production 

processes based on the importance of the quality charac-

teristics. For example, for characteristics which directly 

correspond to the product function and a malfunction 

may decrease the customer satisfaction, a CI is recom-

mended. On the other hand, considering MI absolutely 

increases the capability of the processes and consequent-

ly, the deviation from standard tolerances as well as 

number of defective characteristics is deduced. Both CI 

and MI are eventually for enhancing customer satisfac-

tion degree where considering both CI and MI for all 

processes is the most reliable way to decrease the num-

ber of scraps and correspondingly increase customer 

satisfaction as much as possible. Due to recourse limita-

tions, this approach is not practical and the cost of pro-

duction as well as final cost of products is enormously 

increased. Therefore, a trade-off between customer satis-

faction and cost of production should be conducted 

whether setting inspections is cost-effective or not. 

Broadly speaking, decision on what characteristics need 

inspection and where inspections should be considered 

in the production process is an action that all manufac-

turers are looking for, in which both production costs 

and customer satisfaction are taken into account. 

 

With regard to the above-mentioned issues, this article 

tries to develop an optimization framework for inspec-

tion planning based on a mixed-integer non-linear pro-

gramming (MINLP) model, in which decisions are re-

quired on what kinds of different quality characteristics 

need which kind of inspections and where these inspec-

tions should be take place. To the best of our knowledge, 

there is no paper in the literature that has carried out the-

se decisions on the bases of mathematical model. On the 

other hand, due to the complexity of the proposed math-

ematical model, a genetic algorithm (GA) is developed 

for solving large sized problem especially real industrial 

cases. 

 

The rest of the paper is organized as follow. A brief lit-

erature review is presented in Section 2. Section 3 ex-

plains the proposed MINLP model. Section 4 describes 

proposed GA with new solution representation. The cor-

rectness and validity of the proposed MINLP model is 

shown in Section 5 by a real industrial case. Finally, 

conclusion is provided in Section 6. 

2. LITERATURE REVIEW 

Savio (2012) presented a methodology for the assess-

ment of the economic impact of metrology in produc-

tion, in which several mathematical formulations to 

evaluate costs and benefits were developed. Although 

the evaluation of costs is facile, but the calculation of 

benefits is challenging, due to the nature of benefits such 

as improvement of product reliability and related reduc-

tion of warranty costs. Corresponding to this difficulty, a 

review of micro-economic facets in metrology was also 

conducted emphasizing on the fact that while costs are 

easy to calculate, benefits are more complex to assess 

and should be taken into account in the context of the 

entire production process (Kunzmann et al., 2005). 

 

Hanne and Nickel (2005) developed a multi-objective 

inspection planning model considering objectives with 

respect to the quality (no. of defects), project makespan, 

and costs within a software development (SD) project. 

The developed model of SD processes includes different 

phases as coding, inspection, test, and rework and com-

prises the assignment of operations to persons and the 

generation of a project schedule. They also used a dis-

crete-event simulation model for supporting project 

managers in the software industry (see Neu et al., 2002, 

2003; Munch et al., 2002). Besides, an evolutionary al-

gorithm (EA) was presented to solve the proposed multi-

objective inspection planning model. 

 

Unlike other papers in the literature, Shiau (2003) stud-

ied an inspection allocation planning (IAP) for a multiple 

quality characteristic manufacturing, in which the pro-

duction recourses are restricted and the limited number 

of inspection stations, of each inspection station class, is 

considered for solving IAP. This paper solved IAP using 

a unit cost model in which the manufacturing capability, 

inspection capability, and tolerance specified are simul-

taneously considered as well as situation of unbalanced 

tolerance design. In a similar work, Shiau et al. (2007) 

integrated production process and inspection planning 

while higher performance of a production industry can 

be realized if process planning and inspection planning 

become integrated to cope with the limited manufactur-

ing resources. They also developed a genetic evolution-

ary algorithm for solving large size problems. 

3. MATHEMATICAL FORMULATION 

In this section a mixed-integer non-linear programming 

(MINLP) model is presented in order to decide which 

quality characteristics need what kind of inspections 

(i.e., MI or CI) and when these inspections should be 

performed. The cost-based objective function of the pro-

posed model is separated into different parts such as cost 

of production, scrap, inspections (i.e., fixed and variable 

costs) and warranty when a nonconforming product is 

sold. Hereafter, main assumptions of the proposed model 

are listed as follows: 

 

 A multi-process manufacturing production as a flow 

shop production is studied. 

 Some of sequential processes may be dependent 

(i.e., they are performed on the same machine). 

 Both kind of inspections (i.e., conformity and moni-

toring) are simultaneously considered. 

 Different characteristics for the product are as-

sumed, in which each characteristic belongs to a 

specific process. 
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 Each characteristic/process needs conformity or 

monitoring inspection. 

 Frequency of inspections is different for CI and MI.  

 Cost of CI and MI includes two parts of variable and 

fixed costs. 

 A fixed cost for each station of inspection is as-

sumed. 

 

The required notations and mathematical model are pro-

vided as follows. 

 
Sets: 
p, p’ = {1, 2, ..., P+1} Set of process 
k = {1, 2, ..., K} Set of different characteristics 

 

Parameters: 
FRpk

1 Failure rate of process p for characteristic k with MI. 
FRpk

2 Failure rate of process p for characteristic k without MI. 

DRpk Detection rate of CI of process p for characteristic k. 

αpk Error type I of CI of process p for characteristic k. 
βpk  Error type II of CI of process p for characteristic k (βpk =1-

DRpk). 

NT Total number of input parts to the production line. 
CPp Production cost at process p. 

CSp  Scrap cost of products just after process p. 
CDk Cost of defective product in the market due to characteristic 

k (i.e., Warranty cost). 

FIp Fixed cost of inspection after process p. 
FMpk Fixed cost of MI after process p for characteristic k. 

FCpk Fixed cost of CI after process p for characteristic k. 

VMpk Variable cost of MI after process p for characteristic k. 
VCpk Variable cost of CI after process p for characteristic k. 

PIp’p 1 if two processes p’ and p are dependent; 0 otherwise. 

PKpk 1 if characteristic k belongs to process p; 0 otherwise. 
KBPkp Equal to p. Means that inspection of characteristic k (i.e., MI 

and CI) must be done before process number p where k 

belongs to process p’ and p’ ≤ p. 
MFk Monitoring frequency for characteristic k. 

CFk Conformity frequency for characteristic k. 

M A big number. 

 

Decision Variables: 
FRpk Failure rate of process p for characteristic k. 

ACpk 1 if process p needs CI for characteristic k; 0 otherwise. 

AMpk  1 if process p needs MI for characteristic k; 0 otherwise. 
XCk

p’p 1 if CI of process p’ for characteristic k is performed after 

process p (p’ ≤ p); 0 otherwise. 

XM kp’p 1 if MI of process p’ for characteristic k is performed after 
process p (p’ ≤ p); 0 otherwise. 

NIp 1 if there is an ispection station after process p. 

Np Input number of parts entering process p. 

NMpk Number of MI after process p for characteristic k. 

NCpk Number of CI after process p for characteristic k. 
Spk Number of scrapped part after process p for characteristic 

k. 

Sp Total number of scrapped parts after process p. 
NXC kp’p Auxiliary variable. 

NXM kp’p  Auxiliary variable. 

Opk Auxiliary variable.  
OXC kp’p  Auxiliary variable. 

 

The proposed MINLP is as follows: 
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Objective function (1) summarizes different sources of 

cost of production, scrap, inspections and warranty. 

Equations (2) and (3) ensure that CI and MI of a charac-

teristic must be done in one place, respectively. Equation 

(4) forces that one kind of inspection is needed for each 

characteristic. Equation (5) assures that failure rate of a 

process depends on the selected inspection. Constraints 

(6) to (9) determine the number of scraps after each pro-

cess. Equations (10) and (11) calculate number of output 

products at from each process. Constraint (12) deter-

mines the number of different required inspection places. 

Constraints (13) to (21) are provided to linearize the 
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product of some variables. Constraints (22) to (24) are 

domain constraint. 

4. PROPOSED SOLUTION METHODOLOGY 

In order to solve the proposed process inspection 

planning model with stochastic complexity, the solution 

algorithm must be capable to obtain optimal or near 

optimal solution within the reasonable computational 

time. There are several methods in the literature for 

providing an optimal solution for small size problems 

such as simplex and dynamic programming based 

optimization algorithms (Taha 2006; Shukla et al., 

2013). However, most of real problems are in higher 

sizes and solving them by the mathematical 

programming approaches takes the huge computational 

time. Therefore, to cope with this challenging issue, a 

well-known evolutionary algorithm, namely genetic 

algorithm (GA), is used to solve the proposed process 

inspection planning. It has been shown that evolutionary 

algorithms such as genetic algorithms (Holland, 1975) or 

evolution strategies (Back et al., 1991) are capable and 

robust approaches to solve a wide range of optimization 

problems. Application of these algorithms in the area of 

inspection planning and allocation can, for instance, be 

found in Hanne and Nickel (2005), Shiau (2003), Alam 

et al. (2003) and Shiau et al. (2007).   

 

GA is an algorithm inspired by natural evolution to solve 

optimization problems (Holland 1975, Goldberg 1989). 

Each solution of a given problem is represented in the 

form of a string, called chromosome, which is a 

combination of several genes that hold a set of 

information of the problem (Goldberg 1989). GA starts 

with a random generated population of individual 

solutions (i.e., chromosomes). The fitness of each 

chromosome reflects the value the objective function. To 

find better solutions (offspring), best chromosomes share 

their information through crossover and mutation 

operators. The new crated solutions are then evaluated 

and are used to create new generation if they provide 

better fitness. This process is repeated for a given 

number of iteration to obtain a best individual. For better 

understanding of GA, the interested readers are referred 

to Deb (1995). 

 

4.1. Solution representation 

The solution representation of the proposed inspection 

planning model is provided as follow. In the proposed 

MINLP of inspection planning, the aim is deciding on 

type and position of inspections for each process. For 

this purpose, a new solution representation is developed 

which includes two different parts as determining 1) type 

of inspections (DTI) and 2) position of inspections 

(DPI). Figs. 1 and 2, respectively, show the DTI and DPI 

parts of solution representation for a problem with 6 

characteristics. 

 

In Figure 1, each column corresponds to a characteristic. 

Also, at each column, value 1 at first row means the 

related characteristic needs monitoring inspection and 

needs conformity inspection otherwise. For example, in 

Figure 1, characteristic numbers 1, 2 and 4 need 

conformity inspection and characteristics 3, 5 and 6 need 

monitoring inspection. In Figure 2, columns explain 

processes and rows show characteristics. Therefore, 

value 1 at each array, indicates the inspection of related 

characteristic (i.e., row number of array) is carried out 

after the determined process (i.e., column number of 

array). For example, MI of characteristics number 3, 5 

and 6 are carried out after processes number 3, 5 and 6, 

respectively. Besides, CI of characteristics number 1, 2 

and 4 are carried out after processes number 3, 6 and 6, 

respectively. 

 
 Characteristics 

 1 2 3 4 5 6 

Monitoring 0 0 1 0 1 1 

Conformity 1 1 0 1 0 0 

Figure 1: Type of Inspection 
 

  Processes 

  1 2 3 4 5 6 

C
h

a
ra

cteristics 

1 0 0 1 0 0 0 

2 0 0 0 0 0 1 

3 0 0 1 0 0 0 

4 0 0 0 0 0 1 

5 0 0 0 0 1 0 

6 0 0 0 0 0 1 

Figure 2: Place of Inspections 

 

4.2. Selection process 

A binary tournament selection technique is adopted for 

the proposed GA in which the two selected 

chromosomes from the population are compared based 

on their fitness value and the fitter chromosome is 

selected for undergoing the crossover operator. This 

procedure is continued till the number of all selected 

chromosomes is reached a certain amount (i.e., 

RC×PopSize; where RC and PopSize are the given cross 

over rate and population size of the proposed GA). 

4.3. Genetic operators 

The new generation is created using the genetic 

operators. However, when creating the new population 

using genetic operators, some of the best found 

chromosomes may be removed from the population. To 

prevent this from happening, an elitism mechanism with 

rate of RE is applied which copies the fittest chromosome 

at each iteration to the next generation. Meanwhile, 

elitism is more effective when the mutation rate is high 

and may cause the loss of good solutions in the next 

generation. In order to develop an algorithm with 

effective exploration and exploitation operators, the 

proposed GA contains two novel operators namely, 

multi-choice crossover and mutation operators. 
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4.3.1. Multi-choice crossover operator 

In this step, selected chromosomes (parents) from 

section 4.2 share their information by using crossover 

operator to improve themselves. Chromosomes with 

lower objective function cost have more chance than 

others for sharing their information under a binary 

tournament selection (Section 4.2). For applying multi-

choice crossover on the solutions, four different kinds of 

crossover are adopted, including: a) one point crossover, 

b) two points crossover, c) continuous uniform 

crossover, and d) discrete uniform crossover as shown in 

Figure 3. At each use of crossover operator, one of these 

mechanisms is applied on the parents. 

 

 

Figure 3.Sharing information between chromosomes 

 

4.3.2. Multi-choice mutation operator 

In order to develop an efficient exploration algorithm, 

some random selected chromosomes with rate of RM go 

through the multi-choice mutation operator which 

contains: a) swap, b) reversion and c) inversion operators 

as shown in Figure 4. In the swap operator, places of two 

random selected bits are exchanged. In the reversion 

operator, a random part of a colony is selected and its 

permutation is reversed. Finally, in the inversion 

operator, one bit is chosen randomly and its value is 

replaced with new random value. 

 

 

 

Figure 4. Multi-choice mutation operator 

 

4.4. Termination 

Unfortunately, in all optimization methods, it is always 

difficult to prove the convergence of the optimal solution 

and therefore a termination point must be set to stop the 

algorithm. In the proposed GA, Number of Function 

Calls-NFC mechanism is considered. 

5. EXPERIMENTAL RESULTS 

In order to validate the correctness of the proposed 

MINLP for inspection planning, an industrial case with 

similar 15 quality characteristics and different process 

capabilities has been provided, in which the effect of 

misadjustment has been neglected. First, parameter 

setting is done in the next section to enhance the 

performance of the proposed GA. Next, some 

information about the industrial case is provided. Then, 

the results of the proposed model for the industrial case 

are explained. 

 

5.1. Parameters setting 

GA, like other meta-heuristics, does not have any special 

criteria to set parameters. Therefore, we try to set the 

parameters of the proposed genetic algorithm. In order to 

design an efficient GA, parameters like crossover and 

mutation rates, population size, and iteration numbers 

should be tuned correctly. It is also well known that 

quality of an algorithm is influenced significantly by the 

values of its parameters. In this section, for optimizing 

behavior of the proposed GA, appropriate tuning of its 

parameters has been carried out. For this purpose, re-

sponse surface methodology (RSM) is employed. RSM 

is defined as a collection of mathematical and statistical 

method-based experiments, which can be used to opti-

mize processes. Regression equation analysis is used to 

evaluate the response surface model. First of all, those 

parameters that affect statistically on algorithm results 

are significantly recognized. To select the values that 

result in solutions with high quality, we consider prob-

lems in two different sizes including Small-S and Large-

L sizes. To identify significant parameters, two levels for 

each parameter are considered. Each factor is measured 

at two levels, which can be coded as −1 when the factor 

is at its low level (L) and +1 when the factor is at its high 

level (H). The coded variable can be defined as follows: 

(25) 
2

2

i

i

h l
r

X
h l

 
  
 
 

 
 

 

where xi and ri are coded and real variable, respectively. 

h and l represent high level and low level of factor. 

Factors and their levels are shown in Table 1.After 

developing regression models for each problem size 

separately, tuned parameters of the proposed GA have 

been obtained and shown in Table 2. Finally, for the 

proposed GA, the NFCs stopping criteria was set on 

40000 and 120000 for small and large size problems, 

respectively. 
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Factors 

 Coded Level 

 -1  0  +1 

 S L  S L  S L 

PopSize  100 150  150 225  200 300 

PE  0.1 0.2  0.2 0.3  0.3 0.4 

PC  0.6 0.7  0.7 0.8  0.8 0.9 

PM  0.1 0.2  0.2 0.3  0.3 0.4 

Table 1. Parameters and their levels for small and large sizes 

 

Factors 
 Optimal coded value  Optimal real value 

 S L  S L 

PopSize  0.85 1  193 300 

PE  0 -0.5  0.2 0.25 

PC  0 0.5  0.7 0.85 

PM  -1 +1  0.1 0.4 

Table 2. Tuned parameters of the proposed GA 

 

5.2. Industrial case study 

In order to validate the proposed MINLP model, a car 

manufacturer has been selected. A special part with 15 

different characteristics, which should be analyzed to 

make decision on the inspection plan, is chosen. Figures 

5 and 6 show the part and different characteristics, 

respectively. In addition, details of the industrial case 

have been tabulated as Table 3, in which first to sixth 

columns explain name of processes, production time, 

process capability Cp and Cpk and failure rate of the 

processes with and without monitoring inspection. 

Besides, the allowable positions (AP) that inspections 

(i.e., CI and MI) of each characteristic can take place 

have been declared in the last column of Table 3. For 

example, for characteristic number 4 which belongs to 

process number 4, MI or CI can take place after 

processes number 4 to 10. Figure 7 illustrates the results 

of industrial case including decision on type and position 

of inspection for each characteristic. 

 

 
Figure 5: Under study part 

 

In the real industrial case, the all characteristics go under 

monitoring inspection and no conformity inspection 

takes place. Therefore, monitoring inspection of 

characteristics number 1, 4 and 6 take place after process 

number 6; monitoring inspection of characteristics 

number 2, 3 and 5 take place after process number 8; 

monitoring inspection of characteristics number 7 to 10 

take place after process number 10 and finally 

monitoring inspection of characteristics number 11 to 15 

take place after process number 15. The details of cost 

objective function have been reported as Table 4. 

 

 

Figure 6: Characteristics of the under study part 

 

Process name 
Details 

PT Cp Cpk FR1 FR2 AP 
Rough milling PL100 0.148 2 1.50 1.97e-9 6.79e-6 1→13 

Rough milling PL100 0.166 2 1.50 1.97e-9 6.79e-6 2→14 

Rough milling PL101 0.133 2 1.66 1.97e-9 6.35e-7 3→15 

Boring CY110 0.154 1.60 1.33 1.58e-6 6.60e-5 4→10 

Rough drilling CY108 & CY109 0.09 2 1.66 1.97e-9 6.35e-7 5→10 

Chamfering CY108 & CY109 0.25 2 1.66 1.97e-9 6.35e-7 6→6 

Chamfering CY100 & CY101 0.257 1.50 1.20 6.79e-6 3.18e-4 7→15 

Boring CY100 0.257 1.50 1.20 6.79e-6 3.18e-4 8→15 

Boring CY101 0.122 1.66 1.30 6.35e-7 9.61e-5 9→12 

Rough drilling CY102 & CY103 0.109 1.66 1.40 6.35e-7 2.66e-5 10→12 

Rough drilling CY111 0.134 1.66 1.40 6.35e-7 2.66e-5 11→15 

Boring CY108 & CY109 0.122 1.30 1.10 9.61e-5 9.66e-4 12→15 

Boring CY102 & CY103 0.122 1.30 1 9.61e-5 2.69e-3 13→15 

Boring CY111 0.117 1.66 1.33 6.35e-7 6.60e-5 14→15 

Finish milling PL100 0.129 1.66 1.33 6.35e-7 6.60e-5 15→15 

Table 3: Details of industrial case 

 
 

 Characteristics 

MI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

CI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 7a: Type of Inspection 
 

 Processes 

C
h

aracteristics
 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Figure 7b: Place of Inspections 

Figure 7: Result of the industrial case 

 

 
Total Cost Production Cost 

5132635 4812500 
Fixed Conformity Cost Fixed Monitoring Cost 

0 9000 
Variable Conformity Cost Variable Monitoring Cost 

0 419400 
Scrap Cost Warranty Cost 

3665 24200 

Table 4: Detail of cost objective function for real 

industrial case 
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6. CONCLUSION 

This paper developed an optimization framework for 

inspection planning based on a mixed-integer non-linear 

programming (MINLP) model, in which decisions are 

required on which quality characteristics need what kind 

of inspections and when these inspections should be per-

formed. In the proposed MINLP model, two different 

kinds of inspection, namely monitoring (MI) and con-

formity (CI) inspections were taken into account. The 

objective function minimized the sum of production cost, 

scraps cost, fixed and variable cost of CI and MI, fixed 

cost of overall position for both inspections and cost of 

warranty when a defective product is sold. In order to 

validate the correctness of the model, a real industrial 

case is studied. Since the size of problem was large, a 

genetic-based algorithm was developed to solve the real 

cases. The results show that almost of the characteristics 

need monitoring inspection and just for two or three of 

them a conformity inspection should be planned due to 

the low capability of their corresponding process. 
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