
HAL Id: hal-01166614
https://hal.science/hal-01166614

Submitted on 23 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CONTROL SYNTHESIS BASED ON SAFETY
BOOLEAN GUARDS FOR MANUFACTURING

SYSTEMS: APPLICATION TO A SORTING SYSTEM
Bernard Riera, Raphael Coupat, David Annebicque, Philippot Alexandre,

Francois Gellot

To cite this version:
Bernard Riera, Raphael Coupat, David Annebicque, Philippot Alexandre, Francois Gellot. CON-
TROL SYNTHESIS BASED ON SAFETY BOOLEAN GUARDS FOR MANUFACTURING SYS-
TEMS: APPLICATION TO A SORTING SYSTEM . MOSIM 2014, 10ème Conférence Francophone
de Modélisation, Optimisation et Simulation, Nov 2014, Nancy, France. �hal-01166614�

https://hal.science/hal-01166614
https://hal.archives-ouvertes.fr

Control synthesis based on safety Boolean guards for manufacturing systems:
application to a sorting system

B. RIERA*, R. COUPAT*, D. ANNEBIQUE**, A. PHILIPPOT*, and F. GELLOT*


* CReSTIC (EA3804), UFR Sciences Exactes et Naturelles, Reims University (URCA), Moulin de la Housse,

BP 1039, 51687 Reims - France (bernard.riera@univ-reims.fr).
** CReSTIC (EA3804), IUT de Troyes, 9 rue de Québec, BP 396, 10026 TROYES, Cedex, France

Abstract: This paper presents an original approach of safe control synthesis for manufacturing systems
controlled by Programmable Logic Controller (PLC). In this work, manufacturing systems are considered
as Discrete Event Systems (DES) with logical Inputs (sensors) and logical Outputs (actuators). The
proposed approach, which separates the functional control part from the safety control part, is easy to
implement and guarantees that the designed controller is safe. The methodology is based on the use of
safety constraints in order to design a safe permissive controller. This controller is then constrained by
functional constraints. The approach is illustrated with a sorting boxes simulated process using the ITS
PLC software from the Real Games Company (www.realgames.pt). The control algorithm is presented in
details in the paper. This approach can be used with an existing PLC program in order to guarantee its
safety. However, it also allows to result in a safe control, may be simpler than a conventional approach
based on a complete specification for instance in GRAFCET (IEC 60848) that does not distinguish the
functional aspect from the safety aspect.

Keywords: Discrete-Event Systems, Control, Safety, Programmable Logic Controllers, Manufacturing
Systems.



1. INTRODUCTION

This paper presents an original approach of control
synthesis for manufacturing systems controlled by PLC
(Programmable Logic Controller). In this work,
manufacturing systems are considered as Discrete Event
Systems (DES) (Cassandras et al. 1999) with logical Inputs
(sensors) and logical Outputs (actuators). This is an extension
of the research work that the CReSTIC (Research Centre in
Information and Communication Science and Technologies)
has led for several years on the definition and design of guard
conditions placed at the end of the PLC program which act as
a logic filter in order to be robust to control errors. In
previous work, these safety constraints (formally checked off
line by using a model checker (Marangé et al. 2010)) stop on
line the process in a safe state if at least one of them is
violated. This idea has been extended to propose a safe
control design pattern based on safety logical constraints.
This approach, which separates the functional control part
from the safety control part, is easy to implement and involve
a new way to design the controller. The methodology is based
on the use of safety constraints in order to get the most
permissive safe controller allowed by the set of safety
constraints. This controller is then constrained by functional
constraints while respecting the safety constraints. This paper
proposes several improvements of the control algorithm
presented in (Riera et al. 2012a, 2012b) particularly in the
management of Safety Combined Constraints (no infinite
loop even if failures appear in the process). The approach is
illustrated by using one example: a virtual sorting system

using the ITS PLC software from the Real Games Company
(www.realgames.pt). The main idea of this approach comes
from the fact that the process is not stopped if one or several
safety constraints are violated. The controller continues to
work with safe outputs values. This approach to PLC
programming makes safety a priority and allows for a
controller to create a safe environment where functional and
safety aspects are clearly separated. Consequently, this
control synthesis approach allows to result in a safe control,
that can be simpler than a conventional approach based on a
complete specification in GRAFCET (IEC 60848) that does
not distinguish the functional aspect from the safety aspect.

2. BOOLEAN SAFETY CONSTRAINTS FOR ROBUST
PLC CONTROL

Since a PLC is a dedicated controller it will only process
this one program over and over again. One cycle through the
program is called a scan time and involves reading the inputs
(i) from the other modules, executing the logic based on these
inputs and then updated the outputs (o) accordingly. The
memory in the CPU stores the program while also holding
the status of the I/O and providing a means to store values. A
controller at each PLC scan time has to compute the outputs
values (controllable variables) based on inputs
(uncontrollable variables) and internal memories. The
notations used in the following of this paper are:

- t: current scan time (from PLC point of view), t‐1
previous PLC scan time.

௞݋ - ൌ ሻ: logical variable corresponding to theݐ௞ሺ݋
value of kth PLC Boolean output (actuator) at t.	
Outputs at t are considered as the one and only

variables that can be controlled (write variables) at
each PLC scan time. All other PLC variables
(inputs, previous outputs, …) are uncontrollable
(read only variables).

௞݋ -
∗ ൌ ݐ௞ሺ݋ െ 1ሻ: logical variable corresponding to

the value of kth PLC Boolean output (actuator) at
time t-1 (previous PLC scan time).

- “.”, “+”, “‾‾” are respectively the logical operators
AND, OR, and NOT.

- 0 means FALSE and 1 means TRUE.
- ∑ and ∏ are respectively the logical sum (OR)

and the logical product (AND) of logical variables.
- ∑∏ is a logical polynomial (sum of products

expression also called SIGMA-PI).
- ↑ in the)	ݔ means rising edge of Boolean variable ݔ

PLC, ↑ ݔ ൌ .തതത∗ݔ .(ݔ
- ↓ in the) ݔ means falling edge of Boolean variable ݔ

PLC, ↓ ݔ ൌ .∗ݔ .(ݔ̅
- O: set of output variables at t	
- Y : set of uncontrollable variables at t, t-1, t-2	…	
- No : number of PLC Boolean outputs
- NCSs: number of Simple Safety Constraints
- NCSc: number of Combined Safety Constraints

The proposed methodology to design safe controllers is
based on the use of logical safety constraints, which act as
logical guards placed at the end of the PLC program, and
forbid sending unsafe control to the plant [Marangé et al.
2010]. The set of safety constraints acts as a control filter.

Constraints (or guards) are always modeled with the point
of view of the control part (PLC), and it is assumed that the
PLC scan time is sufficient to detect any change of the input
vector (synchronous operation, possible simultaneous
changes of state of PLC inputs). In addition, the plant is
considered functioning normally without failure.

It is considered in this work that the initial safe state for all
the actuators (ok) is defined to be 0. The constraints have to
be defined in order to keep the system controllable. This
means that, even with the set of safety constraints, it is
possible to design a controller which matches the
specifications. For example, considering the previous
hypothesis about the safe initial state, a set of safety
constraints which resets at each scan time all outputs is safe
but does not ensure the controllability. Some guards involve a
single output at time t (called simple safety constraints CSs),
other constraints involve several outputs at time t (combined
safety constraints CSc). Constraints require the knowledge of
I/O at the current time t and possibly previous times
(presence of edge (t-1) for instance). Safety constraints are
not always depending only on PLC inputs at t. It may be
necessary to define supplementary uncontrollable variables
called observers. Observers are memories enabling to get a
combinatory constraint (Riera et al. 2011).

The set of safety constraints is considered as necessary and
sufficient to guarantee the safety. In this approach, it is
assumed that the safety constraints can always be represented
as a monomial and depend on the inputs (at t, t-1, t-2…),
outputs (at t, t-1, t-2…) and observers (depending ideally on
only inputs at t, t-1, t-2…). In the initial methodology

(Marangé et al. 2010), the control filter is validated offline by
model checking (Behrmann et al. 2002) and stops the process
in a safe state if a safety constraint (CSs and CSc) is violated.

In this paper, CSs and CSc are represented (equations (1)
and (2)) as logical monomial functions (∏ , products of
variables but not necessarily minterms) which have always to
be FALSE at the end of each scan time, before updating the
outputs, in order to guarantee the safety. It is important to
note that each CSs depends only on one controllable event
(output: ok) and that each CSc depends on several
controllable events (outputs: ok, ol,		…).
∀݉ ∈ ሾ1, Nୌୱሿ, ∃! ݇ ∈ ሾ1, N୓ሿ	/
௠ݏܵܥ ൌ ∏ሺ݋௞, Yሻ ൌ 0 (1)
∀݊ ∈ ሾ1, Nୌୡሿ, ∃! ሺ݇, ݈,… ሻ ∈ ሾ1,NOሿ	݄ݐ݅ݓ	݇ ് ݈ ് ⋯	/	
௡ܿܵܥ	 ൌ ∏ሺ݋௞, ,௟݋ … , Yሻ ൌ 0 (2)

There are only 2 exclusive forms of simple safety
constraints (CSs) because they are expressed as a monomial
function, and they only involve a single output at time t
(equation (3) or (4)):
∀݉ ∈ ሾ1, Nୌୱሿ, ∃! ݇ ∈ ሾ1, N୓ሿ	/
௠ݏܵܥ ൌ .௞݋ ݄଴௠ሺYሻ (3)

xor
௠ݏܵܥ ൌ .௞തതത݋ ݄ଵ௠ሺYሻ (4)

These simple safety constraints (CSs) express the fact that
if ݄଴௠ሺYሻ, which is a monomial (product) function of only
uncontrollable variables at t, is TRUE, ok must be necessarily
FALSE (equation (3)) in order to keep the constraints equal
to 0. If ݄ଵ௠ሺYሻ) is TRUE, ok must be necessarily TRUE
(equation (4)).

For each output, it is possible to write equation (5)
corresponding to a logical OR of all simple safety constraints.
∑ 	௜ݏܵܥ ൌ 	∑ ቀ݂݇ݏሺ݇݋, ܻሻቁ

ே೚
௞ୀଵ

ே಴ೄೞ
௜ୀଵ ൌ 0 (5)

௦݂௞ሺ݋௞, Yሻ is a logical ∑∏ function independent of the
other outputs at t because only CSs are considered. ௦݂௞ሺ݋௞, Yሻ
can be developed in equation (6) where ௦݂଴௞ and ௦݂ଵ௞ are
polynomial functions (sum of products, ∑∏) of
uncontrollable (read only) variables. Equation (6) has always
to be FALSE because all simple safety constraints must be
FALSE at each PLC scan time.

௦݂௞ሺ݋௞, ܻሻ ൌ .௞݋ ௦݂଴௞ሺܻሻ ൅ .௞തതത݋ ௦݂ଵ௞ሺܻሻ ൌ 0 (6)
From equation (5) and taking into account all CSs; it is

possible to write equation (7).
∑ ௜ݏܵܥ
ே಴ೄೞ
௜ୀଵ ൌ ∑ ൫݇݋. ௦݂଴௞ሺYሻ ൅ .തതത݇݋ ௦݂ଵ௞ሺYሻ൯

ே೚
௞ୀଵ ൌ 0 (7)

It is important to note that the simple safety constraints
have to respect the following mathematical property
(equation 8):

௦݂଴௞ሺYሻ. ௦݂ଵ௞ሺYሻ = 0 (8)
Indeed, if it is not the case, that means that 2 CSs are in

contradiction and one of both is necessarily not verified, thus
the set of constraints is not coherent. One can notice that if
fs0k =0 or if fs1k =0, the property is logically verified. In
addition, the following proposition can be written:

Proposition: if all simple safety constraints implying
output ok are only based on the rising edge and falling edge
of the output ok, the property (8) is true (sufficient condition).

Proof: if all CSs implying ok, all are only based on rising
edge and falling edge, one can notice using the Shannon
expansion theorem that:
௦݂଴௞ሺYሻ ൌ .௞∗തതതത݋ ௦݂଴௞ሺYሻ	and

௦݂ଵ௞ሺYሻ ൌ .∗௞݋	 ௦݂ଵ௞ሺYሻ
 (9)

Consequently, because ݋௞∗തതതത. ∗௞݋ ൌ 0, and the initial state
supposed by hypothesis being safe, the property (8) is
verified.
௦݂଴௞ሺYሻ. ௦݂ଵ௞ሺYሻ ൌ ݋௞∗തതതത. ௦݂଴௞ሺYሻ. .∗௞݋ ௦݂ଵ௞ሺYሻ ൌ 0 (10)

3. SAFE CONTROL SYNTHESIS FROM LOGICAL
CONSTRAINTS

The control algorithm proposed separates safety
requirements from functional requirements. As already
noticed, a set of safety constraints is considered as necessary
and sufficient. In other words, if only one safety constraint is
removed, the system is unsafe. All other constraints that can
be added are considered as functional constraints because
they don’t act on safety. The control algorithm proposed
consists at each PLC scan time in authorizing functional
requirements which are compatible with safety requirements.
In order to present the idea, let’s consider a system without
CSc.

3.1 Taking into account the CSs and Functional specification

It is possible to define, like the CSs, the functional
constraints (FC) of ok	indicating when it should be equal to 0
ሺ݃଴௞ሻ or when the output ok	 should be equal to 1 ሺ ଵ݃௞ሻ
(equation 11) from a functional point of view. In this paper
only simple functional constraints FCs are considered.
݃௞ሺ݋௞, ܻሻ ൌ .௞݋ ݃଴௞ሺܻሻ	ݎ݋	݃௞ሺ݋௞, ܻሻ ൌ .௞തതത݋ ݃ଵ௞ሺܻሻ (11)

Generally the specifications indicate when the output must
be activated and therefore	 ଵ݃௞. These	 ଵ݃௞ can of course
include observers obtained from GRAFCET steps (IEC
60848) or SFC (IEC 61131-3) or be assigned with the
calculated outputs from an existing PLC program. Hietter
(2008) in his work about algebraic synthesis of dependable
logic controllers proposed a parametric solution of the
equation 6. Indeed, it is possible to write (equation 12) the
parametric solution (called ݋′௞), where p is a Boolean
parameter.
௞′݋ ൌ ௦݂௢௞

തതതതത	. ݌ ൅ ୱ݂ଵ௞ (12)
In order to integrate the FCs, p has to be chosen equal to 1

and the solution becomes equation (13):
௞′݋ ൌ ௦݂௢௞

തതതതത. ଵ݃௞ ൅ ୱ݂ଵ௞	ݎ݋			݋′௞ ൌ ௦݂௢௞
തതതതത. ݃௢௞തതതതത ൅ ୱ݂ଵ௞ (13)

The control obtained is safe (if there are only CSs) because
the safety is ensured regardless of the FCs. Indeed, if the FCs
try to impose an output to 0, in contradiction with the safety,
the term	 ௦݂ଵ௞	continues to provide safety. Therefore the
functional part can be designed without considering safety,
what makes the job much easier for the control engineer.

A basic example is going to illustrate that point. Suppose
the truth table, represented by a Karnaugh map, from the
figure 1 where the output ܵ′௞ (controllable variable) depends
on 4 inputs (uncontrollable variables) a, b, c, d. For each
input vector, the output is indicated. It can be either 0 or 1 or
an undetermined value (0 or 1) called “don’t care”

conditions. A “don't care” condition is a combination of
inputs for which the designer does not care what the output
is. Some of the 0 and the 1 come from safety aspects
(respectively fs0 and fs1). The others 0 and 1 come from
functional requirements. From that, usually one can express
the simplified output ܵ′௞ (see equation (14)) by regrouping
the 1 (or the 0).
ܵ′௞ 	ൌ ܾ. ܿ. ݀̅ ൅ ܽ. ܿ. ݀ (14)

Fig. 1. Simple logical control example

From the Karnaugh map, it is also possible to express the
simplified expression of the output ܵ′௞ by using fs1k, fs0k and
g1k (equation (15)). It is essential to note that the one and only
condition for g1k is to include as a minimum, all the “1”
coming from the functional requirements (figure 2).

ቐ
௦݂ଵ௞ ൌ ܽ. ܿ. ݀

௦݂଴௞ ൌ ܾ. ܿ̅ ൅ തܽ. ܾ. ݀
ଵ݃௞ ൌ ܾ

 (15)

Fig. 2. Example with correct functional specifications

In this example, g1k represents a set of 8 values. The result
(equation (16)) is the same as obtained according to equation
(14), and the functional requirement g1k is simple to express.
ܵ′௞ 	ൌ ௦݂௢௞

തതതതത. ଵ݃௞ ൅ ௦݂ଵ௞
ܵ′௞ 	ൌ ሺܾ. ܿ̅ ൅ തܽ. ܾ. ݀ሻതതതതതതതതതതതതതതതതതത. ܾ ൅ ܽ. ܿ. ݀ ൌ ܾ. ܿ. ݀̅ ൅ ܽ. ܿ. ݀ (16)

One of the most attractive points is that, even if g1k is
wrongly expressed (equation (17), figure 3), the calculation
of ܵ′௞ returns a safe value. This means that even if the
functional requirements are wrong the system remains safe.

൝
௦݂ଵ௞ ൌ ܽ. ܿ. ݀

௦݂଴௞ ൌ ܾ. ܿ̅ ൅ തܽ. ܾ. ݀
ଵ݃௞ ൌ തܽ

 (17)

Fig. 3. Example with wrong functional specifications

In the next part of the paper, it is shown how to deal with
the combined safety constraints (CSc). We will only consider
in the following of the paper, FCs defined by g1k.

3.2 Taking into account the CSc

The problem with CSc seems to be more complex. Indeed,
when a CSc is not verified, it is necessary to give the priority
to one or several outputs and to be compliant with CSs. In
addition, when one CSc is solved, it can involve problems

0 0 (f0) 0 (f0) X (0 or 1)

0 0 (f0) 0 (f0) X (0 or 1)

0 0 (f0) 1 (f1) 1 (f1)

0 1 1 0

ab
cd

S’k
00

00
01
11
10

01 11 10

0 0 (f0) 0 (f0) X (0 or 1)

0 0 (f0) 0 (f0) X (0 or 1)

0 0 (f0) 1 (f1) 1 (f1)

0 1 1 0

ab
cd

S’k
00

00
01
11
10

01 11 10

0 0 (f0) 0 (f0) X (0 or 1)

0 0 (f0) 0 (f0) X (0 or 1)

0 0 (f0) 1 (f1) 1 (f1)

0 1 1 0

ab
cd

S’k
00

00
01
11
10

01 11 10

with other CSc. Taking into account these points, and using
equation (13), it is possible to write equation (18).
௞݋ ൌ ௦݂௢௞

തതതതത. ൫ ௖݂଴௞
തതതതത. ଵ݃௞ ൅ ௖݂ଵ௞൯ ൅ ௦݂ଵ௞	 (18)

fc0k and fc1k force the output ok respectively to 0 or 1 taking
into account CSc. It is supposed CSc have to be designed in
order to give always the same priority to outputs. What the
reader has to notice, it is that during the PLC scan time, a safe
value of ok has to be found. This means that the value of ok
has to be compliant with all CSc implying ok. If fc0k and fc1k
are badly defined, a safe value of ok can be impossible to
compute. To illustrate this problem, let’s take a simple
example. Suppose the 2 following CSc (equation 19):
ଵܿܵܥ ൌ .ଵ݋ ;ଶതതത݋ ଶܿܵܥ	 ൌ .ଶ݋ ଷതതത (19)݋

If when CSc1 is TRUE the priority is given to o1 and when
CSc2 is TRUE the priority is given to o3, if o1=1 and o3=0, it
is impossible to find a safe value of o2. We propose here a
simple solution to detect this problem. The idea is to check
that during the PLC scan time one CSc is not violated 2
times. That will be the case if after having tried to find a
solution (NCSc+1) times, you do not get a solution. Hence, this
means there is a problem of definition of CSc. In this case,
the priority has to be given to CSs. Even if safety constraints
are formally checked before implementation, this problem
can occur if a failure appears in the process.

Let’s define ௖݂଴
ሬሬሬሬሬԦ

 and ௖݂ଵ
ሬሬሬሬሬԦ

 as column vectors representing

respectively the k values of fc0k and fc1k. ௖݂଴
ሬሬሬሬሬԦ

 and ௖݂ଵ
ሬሬሬሬሬԦ

 can be
obtained through 2 matrices MC0 and MC1 that the control
engineer has to define during the initial safety analysis stage
to indicate the priority between outputs. MC0 and MC1 are
matrices with NCSc columns and No lines and indicate for

each CSc, if the outputs (ሬܱԦ) have to be forced respectively to
0 or 1. Using the matrix logical product, one can write
equations (20 and 21).

ሬሬሬሬሬሬሬԦܿܵܥ ൌ ቌ
ଵܿܵܥ
…

ே಴ೄ೎ܿܵܥ
ቍ, column vector of CSc

ሬܱԦ ൌ ൮

…ଵ݋
௞݋
…
ே೚݋

൲, column vector of outputs ݋௞

௖݂଴
ሬሬሬሬሬԦ ൌ ቌ

௖݂଴ଵ
…
௖݂଴ே೚

ቍ ൌ .0ܥܯ ሬሬሬሬሬሬሬԦܿܵܥ

௖݂଴
ሬሬሬሬሬԦ ൌ ൮

…0ଵଵܥܯ
…

0ே೚ଵܥܯ

……
…
…

…0ଵே಴ೄ೎ܥܯ
…

0ே೚ே಴ೄ೎ܥܯ

൲ . ቌ
ଵܿܵܥ
…

ே಴ೄ೎ܿܵܥ
ቍ (20)

௖݂ଵ
ሬሬሬሬሬԦ ൌ ቌ

௖݂ଵଵ
…
௖݂ଵே೚

ቍ ൌ .1ܥܯ ሬሬሬሬሬሬሬԦܿܵܥ

௖݂ଵ
ሬሬሬሬሬԦ ൌ ൮

…1ଵଵܥܯ
…

1ே೚ଵܥܯ

……
…
…

…1ଵே಴ೄ೎ܥܯ
…

1ே೚ே಴ೄ೎ܥܯ

൲ . ቌ
ଵܿܵܥ
…

ே಴ೄ೎ܿܵܥ
ቍ (21)

Figure 4 presents the algorithm which is detailed in order
for the reader to be able to implement it in a PLC in ST

language (IEC 611131-3).
// g1k are calculated previously (functional constraints, FC) in the PLC
program. MC0 and MC1 for the CSc are known
// Each ݋௞, ௦݂଴௞,	 ௦݂ଵ௞	 are calculated at each scan PLC
// check that the CSs respect ௦݂଴௞. ௦݂ଵ௞ ൌ FALSE
// init ௖݂଴௞	and	 ௖݂ଵ௞
Flag_CSs = FALSE
For k=1 to No

Flag_CSs = Flag_CSs + fs0k.fs1k
 ௖݂଴௞ = False // INIT

 ௖݂ଵ௞= False //INIT

End for
Flag = not Flag_CSs
Cpt =0 // counter for the CSc

While (Flag and Cpt<NCSc)

// each ok is calculated using ݋௞ ൌ ௦݂௢௞
തതതതത. ൫ ௖݂଴௞

തതതതത. ଵ݃௞ ൅ ௖݂ଵ௞൯ ൅ ௦݂ଵ௞
// olk is the intermediary value of ok	
For k=1 to No

௞݈݋ ൌ ௦݂௢௞
തതതതത. ൫ ௖݂଴௞

തതതതത. ݃ଵ௞ ൅ ௖݂ଵ௞൯ ൅ ௦݂ଵ௞
 End For
 // check if a CSc is violated
 Flag = FALSE
 For i=1 to NCSc
 Calculate CSci by using olk values
 Flag = Flag + CSci
 End For
 Cpt= Cpt +1
 // if Flag =TRUE, priority is given to a ok using MC0 and MC1
 If Flag Then
 For k=1 to No

 ௖݂଴௞ ൌ FALSE
 ௖݂ଵ௞ ൌ FALSE
 For j=1 to NCSc
 ௖݂଴௞ ൌ ௖݂଴௞ ൅ .0௞௝ܥܯ ݆ܿܵܥ
 ௖݂ଵ௞ ൌ ௖݂ଵ௞ ൅ .1௞௝ܥܯ ݆ܿܵܥ
 End For
 End For

End If
End While
If Flag_CSs Then

print "PROBLEM BAD DEFINITION CSs"
Break // STOP with problem

End If
If (cpt= =NCSc) Then
 print "PROBLEM BAD DEFINITION CSc"
 // in case of bad definition of CSc, ok are set
 // to a safe value, with a priority to FALSE

For k=1 to No

௞݈݋ ൌ ௦݂௢௞
തതതതത. ௦݂ଵ௞

 End For
End If
// The outputs are set with safe values
For k=1 to No

௞݋ ൌ ௞݈݋
End For

Fig. 4. Safe controller algorithm.
This algorithm is quite original because one can see there

is a WHILE structure inside the PLC program in order to
manage the CSc. This is something that could not be seen as a
good practice for PLC programmer using LADDER. This
algorithm is simple and the program structure (i.e. control
design pattern) is always the same whatever the system to be
controlled and its specification. It can also be used with an
existing PLC program. Even if the functional constraints are
wrong, the system remains safe. In addition, if some safety
constraints become incoherent there is no problem of infinite
loop with the WHILE structure. This guarantees that the PLC
watchdog will never be set even if there are failures in the
process. The algorithm starts with an initialization stage

where fc0k and fc1k are assigned to 0. After, the WHILE loop is
started. The first calculation of equation (18) supplies a set of
outputs respecting only the CSs because fc0k and fc1k are set
initially to 0. After, the CSc are calculated. If one of them is
not respected, new values of fc0k and fc1k using MC0 and MC1
are calculated and the WHILE loop is repeated. This process
is repeated until the set of outputs respects the set of safety
constraints (CSs and CSc) or if the number of iterations is
greater than the number of CSc.

4. EXAMPLE ON A SORTING SYSTEM

The control algorithm will be illustrated by the mean of a
virtual system from the ITS PLC collection, proposed by the
Portuguese company Real Games. ITS PLC collection is a set
of simulation software dedicated to automation training
(Riera et al. 2009). Demos and technical descriptions of the
five virtual industrial systems are available and freely
downloadable at web address www.realgames.pt. As part of
the work presented in this paper, the “sorting system” is used.
The objective of this system is to transport boxes from entry
conveyor to exit conveyor by sorting them according to for
instance their height (Figure 5).

Inputs (Sensors):
C0: Feeder belt exit detector, C1: Lower case detector, C2: Higher case
detector, C3 Exit detector of the entry conveyor, C4-C5: Detectors of the
turntable position, C6: Turntable pallet detector, C7: Entry detector of the
left exit conveyor, C9: Exit detector of the left exit conveyor, C8: Entry
detector of the right exit conveyor, C10: Exit detector of the right exit
conveyor
Outputs (Actuators): A0: Feeder belt, A1: Entry conveyor, A2: Turntable
rollers (loading), A3: Turntable rollers, A4: Turntable, A5: Left exit
conveyor, A6: Right exit conveyor

Fig. 5. Virtual sorting system from ITS PLC collection
The system is instrumented using 11 sensors to determine

the size of the boxes (small or large) and the entry or exit of a
box in different conveyors (feeding, intermediate,
evacuation) or turntable. The seven outputs of the PLC can
activate the various conveyors and the turntable. The
specification used is as follows. After pressing the “start”
button, the boxes are sent successively one to the left elevator
and one to the right elevator. After pressing the “stop” button,
boxes in transit are evacuated. The safety analysis has
resulted in 17 CSs (equation (22)) and 5 CSc (equation (23)),
formally checked using the UPPAAL model checker
(Behrmann et al. 2002) and the methodology proposed in
(Riera et al. 2011, Marangé et al. 2010). With this set of
safety constraints (CSs and CSc), whatever the controller, the
collisions between boxes and falling down of boxes, are
avoided (figure 6). Explanation about CSs and CSc can be
found in (Benlorhfar et al. 2011). This set of constraints
ensure the controllability (there is at least one controller

allowing to bring boxes to the left elevator and the right
elevator), and the safety regardless of the control. It should be
noted that these constraints are permissive (large control
space allowed) but require five observers (2P, P36, P67, P79
and P810). This example is interesting because the separation
of safety and functional aspects simplifies a lot the control
design. Indeed, from a functional point of view, the problem
consists in only deciding if the box goes to the right or to the
left.

Fig. 6. Unsafe situations avoided
P36, P67, P79, P810 are observers which allow knowing

that a box is respectively present between the sensors C3 and
C6, C6 and C7, C7 and C9, and C8 and C10 (sensors
excluded). For example, P36 is set to 1 on the falling edge of
the sensor C3 and reset to 0 on a rising edge of the sensor C6.
In this system, the distance between the sensors C0 and C1 is
smaller than the size of a box. The observer 2P (figure 8)
indicates if C0=C1=1, 2 boxes are present and not only one
(figure 7).
1ݏܵܥ ൌ 2ܲ. ;0ܣ 2ݏܵܥ ൌ .3ܥ .4തതതതܥ ;1ܣ 3ݏܵܥ ൌ .3ܥ .4ܥ .6ܥ 1ܣ
4ݏܵܥ ൌ .3ܥ ܲ36. ;1ܣ 5ݏܵܥ	 ൌ .5തതതതܥ ;3ܣ 6ݏܵܥ	 ൌ .4ܥ .6ܥ 2ܣ
7ݏܵܥ ൌ .4തതതതܥ .5തതതതܥ ;2ܣ 8ݏܵܥ	 ൌ .5ܥ .6ܥ ;4തതതതܣ 9ݏܵܥ	 ൌ .5ܥ .8ܥ 4തതതതܣ
10ݏܵܥ ൌ .5ܥ .7ܥ ;4തതതതܣ 11ݏܵܥ	 ൌ .5ܥ ܲ67. 4തതതതܣ
12ݏܵܥ ൌ .5ܥ .7ܥ 13ݏܵܥ ;2ܣ ൌ .4ܥ .9ܥ 4ܣ
14ݏܵܥ ൌ .4ܥ .	6തതതതܥ ;4ܣ 15ݏܵܥ	 ൌ .4ܥ P79. 	;4ܣ
16ݏܵܥ ൌ .4ܥ P810. 17ݏܵܥ ;4ܣ ൌ .4ܥ .10ܥ (22) 4ܣ
1ܿܵܥ ൌ .0ܥ .0ܣ ;1തതതതܣ 2ܿܵܥ	 ൌ .3ܥ .4ܥ .1ܣ 2തതതതܣ
3ܿܵܥ ൌ .5ܥ C8. .2ܣ ;5തതതതܣ 4ܿܵܥ	 ൌ .5ܥ .7ܥ .3ܣ 6തതതതܣ
5ܿܵܥ ൌ A2. (23) 3ܣ

 2P = 0 2P = 1

Fig. 7. Observers 2P
Concerning CSc, following the path of boxes, A2 has

priority over A1, and A1 has priority over A0 (CSc1=1
implies A0=0, CSc2=1 implies A1=0). A5 and A6 have
priority over A2 and A3 (CSc3=1 implies A2=0, CSc4=1
implies A3=0). At least, when A2 = A3 = 1, there is no
priority, A2 and A3 are reset to 0 (CSc5=1 implies
A2=A3=0). The specification of the functional part is
presented figure 8 using GRAFCET (IEC60848) which is
easy to implement in one of the PLC languages (IEC 61131-
3). The variable cpt_conv1 is a counter which indicates the
number of boxes on the entry conveyor (controlled by A1).
PC is an observer whose value is complemented on a falling
edge of the sensors C7 or C8, and allows directing the boxes
to the left elevator or the right elevator. One can notice that a
complete specification in GRAFCET is much more difficult
to get and to read because safety and functional aspects have
to be mixed. One can also note, that theoretically the motion
of the turntable must be maintained in steps 14 and 15. This
will be managed by the safety guards. Now it is possible to
write	 ௦݂଴௞, ௦݂ଵ௞ ଵ݃௞, MC0 and MC1 for each output from the
CSs (equation 24). The control algorithm has been

implemented successfully in a PLC with version ITS PLC PE
using a PLC M340 from Schneider Electric.

Fig. 8. Functional specification of the sorting system

0ܣ ൜ ௦݂଴଴ ൌ 2ܲ ௦݂ଵ଴ ൌ 0
݃10 ൌ ܺ2 ൅ ܺ3. 0ܥ

1ቐܣ
௦݂଴ଵ ൌ .3ܥ 4തതതതܥ ൅ .3ܥ .4ܥ 6ܥ ൅ .3ܥ ܲ36

௦݂ଵଵ ൌ 0
݃ଵଵ ൌ ܺ2. ൫0ܥ ൅ ሺܿݐ݌௖௢௡௩ଵ ൏൐ 0ሻ൯ ൅ ܺ3. ௖௢௡௩ଵݐ݌ܿ ൏൐ 0

2ܣ ൜ ௦݂଴ଶ ൌ .4ܥ 6ܥ ൅ .4തതതതܥ 5തതതതܥ ൅ .5ܥ 7ܥ ௦݂ଵଶ ൌ 0
݃ଵଶ ൌ ܺ12 ൅ ܺ14

3ܣ ൜ ௦݂଴ଷ ൌ 5തതതതܥ ௦݂ଵଷ ൌ 0
		݃ଵଷ ൌ ܺ15

4ቐܣ
௦݂଴ସ ൌ .4ܥ 6തതതതܥ ൅ .4ܥ ܲ79 ൅ .4ܥ ܲ810 ൅ .4ܥ 9ܥ ൅ .4ܥ 10ܥ

௦݂ଵସ ൌ .5ܥ 6ܥ ൅ .5ܥ 8ܥ ൅ .5ܥ 7ܥ ൅ .5ܥ ܲ67
݃ଵସ ൌ ܺ13

5ܣ ൜ ௦݂଴ହ ൌ 0 ௦݂ଵହ ൌ 0
݃ଵହ ൌ ܺ32

6ܣ ൜ ௦݂଴଺ ൌ 0 ௦݂ଵ଺ ൌ 0
݃ଵ଺ ൌ ܺ22

MC0 ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

1 0 0 0 0
0 1 0 0 0
0
0
0
0
0

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

1
1
0
0
ی0

ۋ
ۋ
ۋ
ۊ

									MC1 ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

0 0 0 0 0
0 0 0 0 0
0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
ی0

ۋ
ۋ
ۋ
ۊ

										 (24)

5. CONCLUSION

This paper proposed a control synthesis method based on
the use of safety guards (represented as a set of logical
constraints which can be simple or combined). The result is a
control design pattern easy to implement in a PLC. If the
safety constraints are well defined and eventually formally
checked, the programmed controller is safe even if the
functional constraints are wrong because only one control
respecting the safety constraints is allowed. Contrary to SCT
approach (supervisory control theory (Ramadge et al. 1989)),
the algorithm has been designed to be implemented in a PLC.
The separation of “safety” and “functional” aspects allows
interesting perspectives, like better process performances and
flexibility, easier management of several operating modes
linked to a Manufacturing Execution System (MES) or
simpler management of the manual modes through Human-
Machine Interfaces (HMI) or Supervisory Control and Data
Acquisition (SCADA) systems. In addition, the prospects of
this work also seem to be important because the obtained
results could change the “traditional” way to design
controllers of automated production system.

ACKNOWLEDGEMENT

This work is integrated in the frame of the CPER project
MOSYP and is supported by Région Champagne-Ardenne,
FRANCE.

REFERENCES

Behrmann G., Bengtsson J., David A., Larsen K.G.,
Pettersson P., Yi W. (2002). Uppaal implementation
secrets. 7th International Symposium on Formal
Techniques in Real-Time and Fault Tolerant Systems.

Benlorhfar R., Annebicque D., Gellot F., Riera B. (2011).
Robust filtering of PLC program for automated systems
of production, 18th World Congress of the International
Federation of Automatic Control , Milano, Italy, august.

Cassandras C. G., Lafortune S., (1999). Introduction to
discrete event systems. Boston, MA: Kluwer Academic
Publishers.

Hietter Y., Roussel J.-M., Lesage J.-J. (2008). Algebraic
synthesis of dependable logic controllers 17th IFAC
World Congress, Seoul (Korea), pp. 4132-4137, July.

IEC INTERNATIONAL STANDARD 60848 (2002), Second
edition 2003-01, Programmable controllers – Part 3:
Programming languages GRAFCET specification
language for sequential function charts Reference
number CEI/IEC 60848: 2002.

IEC INTERNATIONAL STANDARD 61131-3 (2003),
Second edition 2002-02, GRAFCET specification
language for sequential function charts Reference
number CEI/IEC 61131-3: 2003.

Marangé P., Benlorhfar R., Gellot F., Riera B. (2010).
Prevention of human control errors by robust filter for
manufacturing system, 11th IFAC/IFIP/IFORS/IEA
Symposium on Analysis, Design, and Evaluation of
Human-Machine Systems, Valenciennes, France.

Ramadge G., Wonham W. M. (1989). The control of discrete
event systems, Proc. IEEE, Special issue on DEDSs, 77,
pp.81-98.

Riera B., Annebicque D., Gellot F., Philippot A. and
Benlorhfar R. (2012a). Control synthesis based on
logical constraints for safe manufacturing systems, 14th
IFAC Symposium on INformation COntrol problems in
Manufacturing (INCOM 2012), Bucarest, Romania, mai
2012.

Riera B., Benlorhfar R., Annebicque D., Gellot F. , Vigario
B., (2011). Robust control filter for manufacturing
systems: application to PLC training, 18th World
Congress of the International Federation of Automatic
Control , Milano, Italy.

Riera B., Gellot F., Philippot A., Vigario B., et D.
Annebicque (2012b). Synthèse de commande sure de
fonctionnement à base de contraintes logiques pour les
systèmes manufacturiers, 9th International Conference
on Modeling, Optimization & SIMulation
(MOSIM'2012), Bordeaux, France, juin 2012.

Riera B., Marangé P., Gellot F., Nocent O., Magalhaes A.,
Vigario B. (2009). Complementary usage of real and
virtual manufacturing systems for safe PLC training, 8th
IFAC Symposium on Advances in Control Education
(ACE’09). Kumamoto, Japan.

X3

X1

cpt_conv1 = 01

 BP_start

A0

C0+cpt_conv1<>0

A12

 BP_stop

c0

A0

cpt_conv1<>0

A13

(cpt_conv1=0).X11.X21.X31

X15

X11

X14

X11

11

C3.X1

A212

C6

A413

C5.PC

A315

 C7

C5.PC

A214

 C8

X22

X21

21

 C7.X1

A622

 C9

X32

X31

31

 C8.X1

A532

 C10

