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ABSTRACT: Our work is motivated by the application of the so-called Model-based Predictive Control (MPC)
in the context of irrigation networks. The main obstacles for applying classical centralized methods to such
complex systems are the huge computational effort required to solve the corresponding optimization problems
and the lack of flexibility in the problem structure’s description. In this work we propose the application of the
multiagent paradigm to a distributed scheme of MPC. The global optimization problem is firstly decomposed
into sub-problems which are then solved in parallel by agents. The communication between agents is then
used to guarantee the convergence of this distributed scheme to the global optimum. In addition, agents are
given the ability to rearrange and reconfigure themselves in order to improve the fault tolerance of the control
scheme. Finally, the proposed approach is validated in a simulated irrigation system made of interconnected
canal reaches interconnected through actuated gates.
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1 INTRODUCTION

Water is a critical resource for our survival and irri-
gation is one of the main stress put on this resource.
That is why designing efficient control mechanisms
for water systems is crucial. Those systems are com-
plex collections of interconnected water bodies (e.g.
lakes, reservoirs), natural canals, and pipes. Gates,
dams, pumps, and valves are used to control water
flows and achieve proper delivery of irrigation water.

Controlling such heterogeneous and spatially dis-
tributed systems is very challenging using centralized
techniques due to communication constraints, com-
putational cost and the required adaptivity.

Free surface canals, in which the water flow dynamics
are usually modeled using the Saint-Venant (or Shal-
low Water) partial differential equations (PDEs), are
commonly the main components used for long range
water transportation in irrigation networks. The con-
trol design for such systems is generally based on
one of the two following approaches. The first one,
called the indirect approach, begins with an approxi-
mation of the PDEs by ordinary differential equations
(ODEs) to which a finite-dimensional control synthe-
sis is applied. The advantage of this approach is the
availability of control synthesis techniques for ODEs.

Finite dimensional approximations for these dynam-
ics often result in meaningless qualitative dynamical
properties for the approximated solution. This usu-

ally motivates the ”direct approach” where the con-
trol design is directly derived from the infinite dimen-
sional model. The obtained control law is numerically
approximated only at the implementation stage.

Our objective here is to study the direct approach
for linearized Saint-Venant equations. This ap-
proach can however be applied to more general hy-
perbolic systems of conservation laws used in sev-
eral fields such as gas dynamics (Serre 1999), road
traffic (Colombo, Goatin & Rosini 2011), air traf-
fic (Bayen, Raffard & Tomlin 2006), transport-
reaction processes (Dubljevic, Mhaskar, El-Farra &
Christofides 2005), and pressurized water transporta-
tion systems (Georges 2009).

We are particularly interested in the model predic-
tive control (MPC - also known as receding hori-
zon control), in which the control action is obtained
by solving repeatedly, online, a finite horizon open-
loop optimal control problem. Among the advan-
tages of MPC, one can mention the ability to ob-
tain a guaranteed stability, to handle constraints, to
incorporate forecast information and to minimize a
given criterion. The approach was well studied for
finite-dimensional systems, even in the nonlinear case
(see e.g. (Findeisen, Imsland, Allgöwer & Foss 2003)
and (Rawlings & Mayne 2009)). Some extension to
infinite-dimensional systems was also investigated, as
in (Ito & Kunisch 2002). But the latter work is
concerned only with the case of distributed control.
In (Christofides & Daoutidis 1997) and (Dubljevic
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et al. 2005), the authors proposed MPC approach for
parabolic systems but the control synthesis was based
on a finite-dimensional approximation of the PDEs.
An infinite-dimensional MPC for boundary control
of nonlinear Saint-Venant equations was considered
in (Georges 2009), and solved by calculus of varia-
tions approach. Our recent work ((Pham, Georges &
Besançon 2010, Pham, Georges & Besançon 2012))
established the stability of MPC for a single linear
hyperbolic system as well as for a cascaded network
of such systems.

The usefulness of the MPC approach for these prob-
lems related to interconnected infinite-dimensional
systems is however limited by the required compu-
tational effort when the control action for the whole
network is calculated in a centralized manner by a
single controller. This obstacle can be tackled by us-
ing the so-called distributed MPC configuration or
decomposition-coordination approach in which the
optimization problem of the entire system is divided
into several sub-problems, each of them being allo-
cated to a local controller (sometimes referred to as
an ”agent”). The global optimal control action is then
obtained by exchanging information between these
agents. This is currently a living topic in the MPC
community and several results have been established
(see e.g. (Scattolini 2009), (Stewart, Venkat, Rawl-
ings, Wright & Pannocchia 2010), (Christofides, Scat-
tolini & de la Peña 2013) or (Liu, Chen, de la Peña &
Christofides 2010)), mostly in the finite-dimensional
case, while very few studies ((Georges 2009)) consider
the infinite-dimensional case.

In this paper, we consider an algorithm of distributed
model predictive control (DMPC) for a system of cas-
caded reaches of an irrigation canal through the con-
necting sliding gates. The DMPC was in fact consid-
ered in several works for water transportation systems
(see (Carpentier & Cohen 1993), (Fawal, Georges
& Bornard 1998), (Zarate-Florez, Molina, Besancon
& Faille 2012) and (Igreja, Lemos, Cadete, Rato &
Rijo 2012)), but with a finite-dimensional model.

In the irrigation canals control problem, the compu-
tational costs of centralized algorithms is mainly a
financial problem, not a computation time one. The
control sampling time is commonly around 5 min-
utes or above. The need for decentralization is there-
fore motivated essentially by robustness of the con-
trol architecture with respect to actuators/sensors
faults, communication breaks, system openness, or
runtime modification of control objectives. To ad-
dress these needs, another main objective of this pa-
per is to explore the combination of the DMPC ap-
proach with the multi-agent paradigm. Multi-agent
systems (MAS) are able to address problems where
the structure of the model may change at runtime.
MAS can also manage dynamical interactions be-

tween the subsytems (agents) or open systems in
which components may be added or removed at run-
time. This paper shows how combining DMPC with
MAS improves the adaptability and fault tolerance of
a water management system by making it able to han-
dle a component failure without requiring to redesign
the control architecture.

Specifically regarding DMPC, the novelty of our work
in comparison with previous ones dealing with irri-
gation systems (e.g. (Negenborn, van Overloop, Ke-
viczky & Schutter 2009) or (Igreja et al. 2012)) can be
summarized in two facts. The first one is the formu-
lation of the DMPC directly in infinite-dimensional
setting. The second one is the implementation of this
control scheme in a MAS simulation platform which
allowed us to change the decomposition of the control
scheme at runtime.

The paper is organized as follows. In the first sec-
tion the considered system of cascaded network of
irrigation canal reaches is presented. The principle of
centralized MPC and its application to such system
is summarized in section 2. In section 3, a decompo-
sition approach called prediction decomposition pro-
posed by are considered and applied to obtain a de-
centralized MPC scheme. The convergence of these
algorithms to the global optimum is discussed. The
next section is dedicated to present the general con-
cepts of multi-agent systems, the ASTRO architec-
ture (Occello, Demazeau & Baeijs 1998) and its appli-
cation in order to improve the adaptability and fault
tolerance of the control scheme. Simulation results
are presented in Section 6. Some conclusions and fu-
ture research directions are finally given.

2 IRRIGATION NETWORKS

In this paper, we present an application involving the
linearized model of an irrigation canal consisting of
N cascaded pools. Each pool is usually described
by a set of two partial differential equations (PDEs)
named Saint-Venant equations, which represent the
mass and the momentum conservation (see (Graf &
Altinakar 2000)):

Bi∂thi + ∂xQi = 0

∂tQi + ∂x

(
Q2

i

Bihi
+ 1

2Bigh
2
i

)
= gBihi(Ii − J(Qi, hi),

(x, t) ∈ [0, L]× [0,∞), i = 1, ..., n,

(1)

where hi denotes the water depth, Qi the discharge,
g the gravitational acceleration, Bi the canal width,
Ii the slope and J the friction term.

The friction is modeled by the classical Manning for-
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Pool i-1

Pool i

Figure 1 – Multi-pool system

mula ((Graf & Altinakar 2000)):

J(h,Q) =
Q2

k2B2h2
(

Bh
B+2h

)4/3
, (2)

where k is the Manning-Strickler (MS) coefficient.

Interconnections between pools are subject to a set of
N + 1 sliding (or sluice) gate equations:

Qgi = K2
i Θ2

i (t)2g(hgius− h
gi
ds), i = 1, ..., N + 1, (3)

These have been obtained from the linearization of
usual submerged gates equations (Graf & Altinakar
2000). Also N − 1 discharge conservation constraints
must hold:

Qi(L, t) = Qi+1(0, t), i = 1, ..., n− 1, (4)

where Qgi is the discharge through the gate, Ki the
gate coefficient, Θi its opening, hgius and hgids are the
water levels at upstream and at downstream respec-
tively.

Let us now consider the linearization of the system
around a uniform steady state (h̄i, Q̄i) which has to
satisfy Q̄i = constant and J(h̄i, Q̄i) = I. Denote by
h̃i = hi − h̄i, Q̃i = Qi − Q̄i deviation of the state h
and Q around this steady state. We obtain then:

∂th̃i = −B−1
i ∂xQ̃i,

∂tQ̃i = ζ∂xh̃i + κ∂xQ̃i + ρh̃i + φQ̃i,
(5)

with appropriate ζ, κ, ρ and φ. Let us additionally
define:

G =

(
0 −B−1

i

ζ κ

)
, H =

(
0 0
ρ φ

)
. (6)

In the sub-critical regime (low flow speed), G has

two eigenvalues satisfying ai = − Q̄i

Bih̄i
+
√
gh̄i >

0 and bi = − Q̄i

Bih̄i
−
√
gh̄i < 0. By applying the trans-

formation(
αi
βi

)
= P−1

(
h̃i
Q̃i

)
with P =

(
1 1

−Biai −Bibi

)
,

(7)

we have a new system:

∂t

(
αi
βi

)
=

(
ai 0
0 bi

)
∂x

(
αi
βi

)
+

(
ci di
ci di

)(
αi
βi

)
, (8)

with

(
ci
di

)
= P−1HP .

The N + 1 gate equations (3) can also be linearized
and combined with the discharge conservation (4) to
form a linear boundary condition as(
αi−1(L, t)
βi(0, t)

)
=

(
m11
i m12

i

m21
i m22

i

)(
βi−1(L, t)
αi(0, t)

)
+

(
b1i
b2i

)
gi.

(9)

The first and the last junction have the same form:

β1(0, t) = m22
1 α1(0, t) + b21g1,

αN (L, t) = m11
N+1βN (L, t) + b1N+1gN+1.

(10)

where mjk
i , b1,2i are appropriate constants. In the se-

quel, for the sake of simplicity, we adopt the notation
αi,0 = αi(0, t), αi,L = αi(L, t) and similarly for βi.

We add an integrator to inputs gi as follows:

ġi = ui, i = 1, ..., N + 1 (11)

In such a way, system (8)-(9) can be rewritten in the
abstract form (see e.g. (Curtain & Zwart 1995), or
(Pham et al. 2010, Pham et al. 2012)):

ż(t) = Az(t) + Bu(t), t > 0
z(0) = z0,

(12)

where A is the infinitesimal generator of a C0-
semigroup, B is a linear bounded operator. The new
state z and the new control u are determined by

z =

(
g,

v −Bg

)
, v = (α1 · · ·αN β1 · · ·βN )T

u = (u1 · · ·uN+1)T ,

(13)

with appropriate bounded operator B (see (Pham
et al. 2012) for more detail). In this form, we can
employ the C0-semigroup theory (see (Curtain &
Zwart 1995)) to establish the well-posedness as well as
the existence of an optimal control for system (8)-(9).

3 MODEL-BASED PREDICTIVE CON-
TROL FOR IRRIGATION NETWORKS

Let us consider system (8)-(9) and recall for it the
principle of MPC or Receding Horizon Optimal Con-
trol:

• At each time t, we obtain the current state z(t).

• Then, for a given prediction time T and a cost
function J , we compute the optimal solution of
the problem:

min
ū∈L2(t,t+T ;RN+1)

J(z(t); ū)

s.t. ˙̄z(τ) = Az̄(τ) + Bū(τ), z̄(t) = z(t),
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where the notation ·̄ stands for the predicted
variables.

• The first part of the optimal control is applied
on the system in period [t, t+ σ) for a small σ.

• The procedure restarts at t+ σ.

One can note that since the actual state z(t) is up-
dated at each sampling step, the resulting control u(t)
is in fact in a feedback form which takes advantage
of a receding horizon strategy in comparison to an
open-loop optimal control.

We intend to employ this strategy to stabilize system
(8)-(9) using the following optimization problem:

min
u
J =

N+1∑
i=1

∫ T

0

mi(gi, ui)dt

+
N∑
i=1

∫ T
0

∫ L
0
li(αi, βi)dxdt

+

N+1∑
i=1

mf
i (gi(T )) +

∫ L

0

lfi (αi(·, T ), βi(·, T ))dx,

s.t. (8)-(9)

(14)

The stage cost functions mi and li and the terminal
cost functions mf

i and lfi are taken in quadratic form:

mi(gi, ui) = qig
2
i + riu

2
i , li(αi, βi) = (αi βi)Qi

(
αi
βi

)
,

mf
i (gi) = qfi gi(T )2, lfi (αi, βi) = (αi βi)Q

f
i

(
αi
βi

)
,

(15)

Using the transformation (13), the optimization prob-
lem (14) can be put in the following form:

min
u
J =

∫ T
0
〈z(t),Mz(t)〉dt+ 〈u,Ru〉

+〈z(T ),Mfz(T )〉,
s.t. (12),

(16)

with appropriate definite positive operatorsM , R and
Mf . In this form, we can show that there exists an
optimal solution (see (Curtain & Zwart 1995)), which
guarantees the feasibility at each sampling instant.
In addition, we can choose the weighting parameters
qi, ri, Qi, q

f
i and Qfi (which inspired from the Lya-

punov function proposed by (Coron, D’Andréa-Novel
& Bastin 2007)) in order that the closed-loop system
by MPC is asymptotically stable at the origin (see
(Pham et al. 2010)).

4 DISTRIBUTED MODEL-BASED PRE-
DICTIVE CONTROL

It is however difficult to solve the above optimiza-
tion problem with a centralized control structure due

to the computational complexity and to the robust-
ness of the controller. In this section, we consider the
prediction decomposition algorithm in order to get a
distributed control scheme.

4.1 Prediction decomposition

Let us recall firstly the principle of this approach for a
general optimization problem. Consider the following
problem:

min
u,v

J(u, v) =
N∑
i=1

Ji(ui, vi), (17)

s.t. θi(u, v) = vi−
∑
j 6=i

Hij(uj , vj) = 0, i = 1, ..., N

(18)

where u = (u1, ..., uN ) is the decision variable, and
v = (v1, ..., vN ) is interaction variable. The term
Hij(uj , vj) represents the influence of sub-system j
to sub-system i.

In order to deal with the constraints, we use the aug-
mented Lagrangian, which can be viewed as a mix of
Lagrangian and penalty method:

Lc(u, v, p) =
N∑
i=1

Ji(ui, vi) + 〈pi, θi(u, v)〉+ c
2‖θi(u, v)‖2

where c is a positive constant and pi is the mul-
tiplier associated with constraint (18). The origi-
nal constrained optimization problem is now equiv-
alent to finding a saddle-point of Lc(u, v, p). Thank
to the quadratic term of the constraint, the convex-
ity of the problem is enforced therefore, the conver-
gence of dual algorithms (where we find alternatively
min
u,v

Lc(u, v, p) with a fixed p then max
p

Lc(u, v, p) with

(u, v) found in the previous step) is ensured (see
(Cohen & Zhu 1984)).

By using linearization of the square of the constraint,
(Cohen 1980) proposed different methods to decom-
pose problem (18) into N sub-problems (each corre-
sponds to control input ui and can be solved by one
agent). These approaches were applied in the con-
text of distributed MPC e.g. by (Georges 2006) and
(Rantzer 2009). The prediction decomposition algo-
rithm consists of the following step:

1. At iteration k = 0: choose p0
i , i = 1, ..., N and

u0 = (u0
1, ..., u

0
N ) and w0 = (w0

1, ..., w
0
N ).

2. At iteration k: Each agent solves the following
problem in (ui, vi):

min
ui,vi

Ji(ui, vi) + 1
2ε‖ui − u

k
i ‖2

+
〈
pki + cθi(u

k, vk), ∂θi∂ui
(uk, vk)ui + ∂θi

∂vi
(uk, vk)vi

〉
s.t. vi = wki
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(19)

Let uk+1
i , vk+1

i be a solution and µk+1
i the asso-

ciated multiplier with constrain vi = wki .

3. Update pi and wi according to

wk+1
i = wki − ε(µ

k+1
i + pki ),

pk+1
i = pki + ρ(θi(u

k, vk))
(20)

4. If ‖pk+1−pk‖+‖wk+1−wk‖ is sufficiently small:
stop, otherwise return to step 2 with k replaced
by k + 1

In this algorithm, the interaction variables vi is fixed
to its prediction value given by previous iteration. As
consequence, problem (19) is in fact minimized only
in terms of ui, which reduces the number of decision
variables for each sub-problem.

Note that in the above algorithm, it is not necessary
to have a coordinator since information can be ex-
changed directly between agents.

4.2 Application to linearized Saint-Venant
equations

We apply now the above approaches to problem (14)
to decompose it into N + 1 sub-problems. Let us
first introduce the interconnection variables of each
sub-system as:

qi,+ = m12
i+1αi+1,0 + b1i+1gi+1,

qi,− = m21
i βi−1,L,

(21)

These variables qi,+ and qi,− play the role of vi in
the general presentation in the previous section. The
above relations can be seen as constraints for the op-
timization problem:

θi,+ = qi,+ −m12
i+1αi+1,0 − b1i+1gi+1 =0,

θi,− = qi,− −m21
i βi−1,L = 0,

In the sequel, the dependence of θi,+ and θi,− to their
arguments will be omitted for the sake of clarity. Let
us denote qi = (qi,+ qi,−)T , θi = (θi,+ θi,−)T and
pi = (pi,+ pi,−)T the associated multiplier to θi.
Then the boundary conditions (9) can be rewritten
as:

αi(L, t) = m11
i+1βi(L, t) + qi,+,

βi(0, t) = qi,− +m22
i αi(0, t) + b2i gi

(22)

1. At iteration k = 0: Choose p0
i , u

0
i and q0

i . Simu-
late the sub-system i to get α0

i , β
0
i and g0

i .

2. At iteration k: Solve in parallel

For i = 1, ..., N

min
ui

∫ T
0
mi(gi, ui)dt+

∫ T
0

∫ L
0
li(αi, βi)dxdt

+
∫ T

0
[ 1
2ε (ui − u

k
i )2 + Ck3,iαi,0 + Ck4,iβi,L + Ck5,igi]dt

+mf
i (gi(T ), ui(T ))

s.t. (8), (22) and qi = wki

(23)

with

Ck1,i = [pki,+ + cθi,+(qki,+, α
k
i+1,0, g

k
i+1)]

Ck2,i = [pki,− + cθi,−(qki,−, β
k
i−1,L)],

Ck3,i = −m12
i [pki−1,+ + cθi−1,+(qki−1,+, α

k
i,0, g

k
i )],

Ck4,i = −m21
i+1[pki+1,− + cθi+1,−(qki+1,−, β

k
i,L)],

Ck5,i = −b1i [pki−1,+ + cθi−1,+(qki−1,+, α
k
i,0, g

k
i )],

For the last control input (i = N + 1):

min
ui

∫ T
0

[mi(gi, ui) + 1
2ε (ui − u

k
i )2 + Ck5,igi]dt

+mf
i (gi(T ), ui(T )),

s.t. ġi = ui

(24)

Let uk+1
i , qk+1

i a solution and αk+1
i , βk+1

i , gk+1
i

the associated trajectory.

3. Send (αk+1
i,0 ,gk+1

i ,qk+1
i,− ) to sub-system (i−1) and

send (βk+1
i,L , qk+1

i,+ ) to sub-system (i+ 1).

4. Each agent updates the multiplier and interac-
tion variables according to

wk+1
i = wki − ε(pki + µk+1

i ),

pk+1
i = pki + ρθk+1

i

(25)

and constants Ck+1
j,i , j = 1, ..., 5 using received

information from neighbors.

5. Stop if ‖pk+1 − pk‖ is below a desired threshold.
Otherwise, make k ← k+ 1 and return to step 2.

where µk+1
i is the multiplier associated with the con-

straint qi = wki .

4.3 Convergence

Thanks to the convexity and the well-posedness of
the global problem and of each sub-problem, with
sufficiently small ε and ρ, the above decomposition
schemes converge to global optimum of (14) (see
(Cohen & Zhu 1984) and (Cohen 1980)).

5 MULTIAGENT SYSTEMS

The main specificity of the multiagent paradigm is its
way to tackle the problem of subdivision and distribu-
tion of control using a collection of autonomous enti-
ties, interacting with each other in a common environ-
ment, possibly belonging to an organisation (Ferber
1999). In a MAS, each agent has a local view of the
system, through its perceptions, and is responsible for
the control of some part of the whole system, through
its effectors. Agents can control physical devices, such
as a gate or a pumping station in an irrigation net-
work, or software components of the systems, such as



MOSIM14 - November 5-7-2014 - Nancy - France

selecting relevant weather forecasts or modeling users’
behavior. Some agents may also be responsible for a
combination of both physical and logical components.

To obtain a global behavior which is: coherent, meets
the system’s objective, and matches the local and
global requirements, agents have to interact with each
other. These interactions may be designed according
to problem-specific requirements or based on exist-
ing coordination strategies such as auction, negotia-
tion, or norms. Inter-agent interactions may create
and maintain dynamic organisations among agents.
These organisations can, in turn, support coordina-
tion strategies.

Centralized control often give very good results in
terms of optimality of given solutions and properties
provability. However many real-world systems are too
complex to be controlled using classical, centralized
control methods. Examples of characteristics of a sys-
tem which make it extremely difficult to control with
a centralized approach include:

• Heterogeneity: when a system is composed of sub
systems running at different time or space scales
(e.g. a pumping station and a gate);

• Openness: when new components may be added
to, or removed from, the system;

• Fault tolerance: in the sense of an ability to de-
grade gradually in case of failure of a sub-system.

In contrast, the multiagent paradigm take those char-
acteristics into account explicitly, at design and de-
ployment phases. Heterogeneity is addressed by en-
capsulating coherent sub-systems in dedicated agents
and adapting their behaviour to the appropriate
time/space scale. As the coupling between agents
is captured by their interactions, adding, removing
or rearranging components does not require modifi-
cation of individual agent’s behavior. This behavior
must be designed from the beginning with these con-
straints in mind. This loose coupling existing between
agents also improves the fault tolerance of a MAS.
Since there is no one single central controlling point,
there is no single component which is critical for the
system as a whole. The fact that an agent cannot
directly control another one ensure that dependen-
cies between agents are managed through interactions
These dependencies can thus be modified at runtime,
for example in response to failure of an agent or other
modifications of the system’s structure.

5.1 A multiagent approach

One key component of a MAS is the design of agents’
behaviors. Multiagent approaches help designers to
integrate in agents the different models and strate-

gies of such a system (organization models, interac-
tions models, environment models, trust/reputation
management, etc.). We use the DIAMOND (Jamont
& Occello 2007) method specially dedicated to the
design of real world embedded MAS.

Overview Four main stages may be distinguished
within our embedded multiagent design approach.
The definition of needs defines what the user needs
and characterizes whole system global functionali-
ties. The second stage is the multiagent-oriented
analysis which consists in decomposing a problem
into a multiagent solution. The third stage of the
method starts with a generic design which aims to
build the multiagent system without distinguishing
hardware/software parts. Finally, the implementa-
tion stage consists in partitioning the system in a
hardware part and a software part to produce the
code and the hardware synthesis.

Figure 2 – The DIAMOND lifecycle

Multiagent-oriented analysis As the description of
an agent gives a local vision (local behavior specifi-
cation) of the system, the description of the society
offers a global and external view of the system (exter-
nal interaction and organization specifications). To
obtain a complete view, we have to add an intermedi-
ate description concerning the social internal aspect.
This description precises how individual behaviors in-
terfere to compose the global behavior of the system
and inversely how the global objectives have to be
integrated to individual behaviors.

In the integrated approach proposed by DIAMOND,
four phases exist to drive from a global characteriza-
tion to the specification of local behaviors :

• the situation phase defines the overall setting,
i.e., the environment, the agents with their main
abilities and their contexts.

• an agent-centered phase defining individual
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agents from an internal point of view (indepen-
dently from social relations)

• a social phase describing interaction and organi-
zation from an external point of view

• a phase of socialization of individuals integrating
social influences in the agent behaviors

In order to integrate all required functionalities into
the agent’s behavior, the designer must choose a
decision-making architecture. This architecture is re-
sponsible to determine the next actions to be car-
ried out by the agent’s effectors, based on the cur-
rent internal state of the agent and the perceived
state of the environment. In this work we chose the
ASTRO decision-making architecture, which is de-
scribed briefly in the next section.

5.2 The ASTRO architecture

In the work described here each agent uses the AS-
TRO architecture (Occello et al. 1998), depicted by
Fig. 3. This architecture combines the benefits from
two classical classes of architectures: reactive and
cognitive ones.

In reactive architectures, agent’s actions are direct
consequences of the perceived state of the environ-
ment. The agent has no internal model of the world or
other kind of acquired knowledge. The behaviour of
the agent is usually based on a set of predefined rules
triggered by the agent’s perceptions. An arbitration
mechanism between these rules ensure the coherence
of the behavior. In most reactive architectures there
is no direct explicit communication between agents.
This kind of architecture is particularly suited for low
resources agents which must take actions quickly and
do not need careful planning. They are however un-
able to carry out complex functionalities.

Cognitive architecture are based on an explicit world
modeling process which builds an explicit representa-
tion of the world. This abstract construction is built
from the perceptions of the agent and its previous
states. Actions of the agent are based on a detailed
analysis of the modeled state and potentially acquired
knowledge. This kind of architecture is suited for
agents which have to plan actions on the long run,
acquire knowledge about their environment, or other
forms of reasoning about the environment or them-
selves. However this kind of architecture often fails
to work in highly constrained environments or when
there is a need for fast decision making.

Hybrid architectures tend to combine the advantages
of these two classes while avoiding their pitfalls.

In the ASTRO hybrid architecture, the integration
of deliberative and reactive capabilities is possible
through the use of parallelism in the structure of the

agent. The central component of the architecture is
a world representation. This representation is used
to determine current goals and plans, making the ar-
chitecture a cognitive one. In addition to this ”cogni-
tive”process, the world representation is continuously
monitored by a surveillance process which is respon-
sible for agent’s reactive behavior. This behavior is
based on triggers and guards which may be added
or removed at runtime. When a trigger or a guard
condition is met, its associated action is carried out
without any planning or scheduling phase. This al-
lows the agent to react quickly to situations requiring
immediate actions, making the architecture reactive.

Using this architecture we combined an individual be-
havior, which consists in the control of an actuated
gate using MPC, and a collective behavior respon-
sible for the coordination of the individual behav-
iors to avoid local optima (using the decomposition-
coordination presented in section 4).

In order to improve fault tolerance of the system, we
added another collective behavior to the agents. This
collective behavior detailed in the next section, gives
the agents the ability to reconfigure themselves in or-
der to adapt to some failure situations.

5.3 Adaptive failure response

In order to give adaptability to the controlling sys-
tem as a whole, we added composition abilities to the
agents. This ability allows agents that detect they are
no longer able to control their gate to be integrated
in still functioning agents.

The composition process unfolds as follows: first, the
failing agent, wanting to initiate a composition, sends
a composition request to the most suitable agent.
This choice is based on the estimation of which com-
position will be able to fulfil its (now defunct) func-
tion. In our example, the most suitable agent is
the upstream one. Second, upon composition accep-
tance from the upstream agent, the failing agent sends
a topology reconfiguration message to its previously
downstream agent. Third, the upstream and failing
agents merge and the system resumes its controlling
scheme, this new composed agent being responsible
for the control of two pools.

Using this mechanism, the system can maintain its
overall ability to control the water flow in the canal
event though one agent lost its ability to act on the
gate it controlled. Compared to a centralized control
scheme or a static distributed MPC (DMPC), which
would require to be modified if an actuator failure oc-
curs, the presented control scheme is more adaptive.
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Figure 3 – ASTRO agent architecture
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6 SIMULATION RESULTS

In this section, we present some simulation results
carried out with a system of three cascaded pools of
the same length L = 3000m and width B = 4.36m.
The slopes are I1 = 2.4 × 10−4, I2 = 4.2 × 10−4

and I3 = 6.2 × 10−4. The steady state corresponds
to Q̄ = 4.1m3/s and h̄1 = 1.97m, h̄2 = 1.6m and
h̄3 = 1.4m. The PDEs are solved with the Lat-
tice Boltzmann Method (see (Pham et al. 2010))
with spatial step ∆x = 300m and ∆t = 1s. The
decomposition-coordination scheme uses c = 7, ε =
0.01 and ρ = 0.001. The cost function is formulated
with T = 30s.

Figure 5 presents the cost function of the
decomposition-coordination scheme, in comparison
with a centralized approach, with same turning pa-
rameters (which is the step size of the steepest descent
method). We can notice that the our decomposition
scheme converges faster than the centralized scheme.
Nevertheless, the computation time on a Intel Core
i7 3.4GHz, 8G RAM PC of the centralized scheme is
around 1s whereas that of the prediction decomposi-
tion are 12.8s respectively. The reason is that agents
have to realize several iterations before obtaining the
optimal solution of sub-problem (19). The advantage
of a distributed scheme in terms of computation time
will be more evident when the number of subsystems

increases.
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Figure 5 – Convergence of the decomposition-
coordination scheme

We consider next the closed-loop system with MPC
(σ = 10s). In order to reduce the communication
cost (and the computation time), we limit the num-
ber of exchanges between agents to 30. This choice is
justified by figure 5 where we can see that with 30 it-
erations, the decomposition schemes converge already
to the optimum. The results are presented in figure
6. We can see that the physical variables hi and Qi
converge to the steady state h̄i and Q̄i.
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Figure 6 – Water level (left) and discharge (right) in the canal. The red lines represent the desired values
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Figure 7 – Water level (left) and discharge (right) in the canal when the 2nd gate is blocked

In the second simulation we consider the case where
the second gate is blocked. The result is presented in
figure 7. We can see that water level and discharge are
always regulated around the desired values despite of
some small error.

7 CONCLUSIONS

In this paper we presented an application of the mul-
tiagent paradigm to the distributed, model-based pre-
dictive control of a water canal. In our experiments,
each agent was able to control one of the canal’s gates
using MPC and inter agent communication in order
to obtain an optimal distributed control. We sim-
ulated the failure of a gate’s actuator and gave the
system the ability to adapt to this failure by merging
the appropriate agents into a new one. Combining
the fine-grained, precise, control provided by DMPC
on one hand and the strategic adaptation provided by
MAS on the other hand, gave our approach an opti-
mal control scheme in favorable cases and the ability
to adapt to hardware failures by dynamically mod-
ifying the multiagent system’s structure. The pro-
posed agent composition mechanism maintains the
global convergence verifiability. The presented sys-
tem showed promising results regarding failure toler-
ance, ability to take global constraints into account

and aptitude to scale up.
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