
10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France
”Toward circular Economy”

A NEW APPROACH FOR THE BEST-CASE SCHEDULE IN A

GROUP SEQUENCE

Zakaria YAHOUNI1,2 , Nasser MEBARKI1 , Zaki SARI2

1 LUNAM, Université de Nantes, 2 MELT

IRCCyN, Institut de Recherche en Communications Manufacturing Engineering Laboratory
et Cybernétique de Nantes, UMR CNRS 6597 of tlemcen

Nantes - France Tlemcen - Algeria

firstName.lastName@irccyn.ec-nantes.fr zaki sari@yahoo.com

ABSTRACT: The job-shop scheduling problem is an NP-hard optimization problem. It is generally solved
using either predictive methods such as discrete optimization which try to find a solution that fits constraints and
that optimizes one or more objectives or using reactive methods such real-time control methods which try to build
incrementally in real-time a solution of the problem. Predictive-reactive methods try to combine both advantages
of predictive and reactive methods (i.e., good performances and reactivity). The group sequencing method is one
of the most studied predictive-reactive methods. The goal of this method is to have a sequential flexibility during
the execution of the schedule and to guarantee a minimal quality corresponding to the worst-case.The best-case
quality has also been successfully addressed by Pinot (2008) using a branch and bound procedure. It has been
established for every regular objective. In this paper we propose two new branching processes to compute the
best-case for the makespan which is one of the most studied regular objective. The experiments made on very
well-known instances of the job-shop problem show the benefits of these new branching procedures.

KEYWORDS: JobShop, Group Sequence, Branch and Bound, Makespan, Best-case, Flexibility .

1 INTRODUCTION

The job shop problem with precedence constraints
and release date is a classical scheduling situation
(J/ri,Pred/f according to the classification of Graham
et al. (1979)), where ji denotes the job number i
and every job is composed of one or many operations
O0, O1, Oj−1, Oj where Oj−1 is the precedence
operation of Oj and in contrast Oj is the successor of
Oj−1 (denoted as Γ− and Γ+ resp.), an operation Oi
has a release date ri, a starting time ti, an execution
time pi and a completion time Ci, each operation
needs to be executed on a resource called machine Mk

(each machine executes only one operation at a time),
f being an objective function, the objective treated.
In this paper we adress only the makespan which is a
classical regular objective. The makespan corresponds
to the total time of the schedule execution, denoted
Cmax.

Predictive modeling techniques are a classical solution
for a job shop problem where all data and parame-
ters of the problem are assumed to be fully known.
However, in practice, manufacturing problems are not
always deterministic, many disturbances can occur
during the execution of the schedule which change

the data of the initial problem. These disturbances
will, in most cases, deteriorate the expected perfor-
mances. The workaround for this problem requires the
development of a new robust and flexible solution that
takes into account the uncertainties of the workshop.
Three approaches are proposed and studied in the lit-
erature for scheduling under uncertainties Davenport
and Beck (2000). The first ones are proactive methods
that treat uncertainties only in the static phase of the
overall process of the resolution, the second methods
are called reactive methods that work symmetrically
to the proactive ones, this approach manages uncer-
tainties during the dynamic phase in real-time with
the scheduling process and does not benefit from the
advantages that provide the proactive methods.
Proactive-Reactive methods benefit from both ad-
vantages of the previous approaches, they take into
account flexibility during the offline and the online
phases; in the static phase they build a flexible solu-
tion to ensure a certain performance while responding
to unexpected events during the resolution phase. For
a detail information about this three approaches see
Esswein (2003).
One of the most famous proactive-reactive methods is
the group sequence method that was created by Er-
schler and Roubellat (1989). This method is composed

10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France

of two phases:

• A predictive phase which aims at computing a
solution offline. This solution is a set of schedules.

• A reactive phase in which a schedule is realized on-
line in the shop. This phase relies on the solution
proposed during the predictive phase and takes
into account the real state of the shop. Thus, the
schedule which is realized takes into account the
uncertainties which occur in the shop.

This method aims at describing a set of feasible sched-
ules in order to delay decisions to take into account
uncertainties and evaluates a group sequence accord-
ing to the worst-case quality in the set of feasible
schedules. This approach has been widely studied in
the past years Esswein (2003); Aloulou and Artigues
(2007); Artigues et al. (2005); Pinot et al. (2007, 2009);
Pinot and Mebarki (2009); Logendran et al. (2005);
Cardin et al. (2013).

Esswein (2003); Artigues et al. (2005) proved that
the worst-case quality of a group sequence can be
computed in a polynomial time for regular min-max
objectives, this criterion is very helpful to evaluate a
decision during the execution of the schedule. How-
ever, the best-case quality of a group sequence can
also be interesting by providing to the decision maker
two bounds, i.e., the minimal and the maximal quality
of the schedule (Zworst and Zbest resp.)Mebarki et al.
(2013). The computation of the best-case quality is
based on the lower bounds proposed by Pinot and
Mebarki (2008). These lower bounds are very inter-
esting because they can be computed in polynomial
time and they are used in a branch and bound algo-
rithm used to compute the exact value of the best-case
quality of any regular objective. Very good results
were obtained but the method is very sensible to the
branching process. To improve the branching proce-
dure, we propose two new branching procedures for
the makespan, which is one of the most used criteria
to schedule jobs in a shop. The results show the ef-
ficiency of these methods regarding the one used by
Pinot and Mebarki (2009).

This paper is organized as follows: second section
gives a brief definition with an example of the group
sequence method. Section three describes the branch
and bound method for the best-case in a group se-
quence method, in section four and five, we propose
our contribution, by proposing two techniques for the
branching process in the branch and bound algorithm
for the best-case schedule in a group sequence, then
we present the experimentations made. The last two
sections include the discussion of the results obtained
and the conclusion.

2 GROUP SEQUENCE

Group of permutable operations was introduced by
LAAS-CNRS laboratory, Toulouse, France Erschler
and Roubellat (1989), this approach has been used in
the ORDO software. The objective of this method is
to provide to the decision-maker a sequential flexibility
during the execution of the schedule and to ensure a
certain quality that is represented by the worst process
case.

A group of permutable operations is composed of
groups Gi (or Gl,k where k is the machine index and
l is the index of the group in the machine k), each
group contains one or many operations that will be
executed in the same resource Gi:={O1, O2, .., On}, n
is the number of operations in the group Gi, n! is the
number of permutations that can be concluded from
this group. A group of permutable operations is said
feasible if any permutation among all the operations of
the same group gives a feasible schedule that satisfies
all the constraints of the problem. As a matter of fact,
a group sequence describes a set of valid schedules,
without enumerating them.

The quality of a group sequence is expressed in the
same way as that a classical schedule, it is measured as
the quality of the worst semi-active schedule found in
the group sequence as defined in Aloulou and Artigues
(2007).

To illustrate this definition, let us study an example
where the problem is described in tab 1.

ji j1 j2 j3
Oi 1 2 3 4 5 6 7 8 9
Mk M2 M1 M3 M3 M2 M1 M1 M2 M3
pi 1 4 4 4 3 1 2 3 2

Table 1: Example of a Job shop problem

Figure 1: Group Schedule

Tab. 1 presents a job shop problem with three ma-
chines and three jobs, while Figure 1 represents a
feasible group sequence solving this problem. This
group sequence is made of seven groups: two groups of
two operations and five groups of one operation. This
group sequence describes four different semi-active

10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France

schedules shown in Figure 2. Note that these sched-
ules do not always have the same makespan: the
best-case quality is with Cmax=12 and the worst-case
quality is with Cmax=14.

Figure 2: Enumeration of the semi-active schedules

The execution of a group sequence consists in choosing
a particular schedule among the different possibilities
described by the group sequence. It can be viewed
as a sequence of decisions: each decision consists in
choosing an operation to execute in a group when this
group is composed of two or more operations. For
instance, for the group sequence described on Figure
1, there are two decisions to be taken: on M1, at the
beginning of the scheduling, either operation O2 or O7

has to be executed. Let us suppose the decision taken
is to schedule O2 before O7, on M2, there is another
decision: scheduling operation O5 or O8 first, so at
the end we have four semi-active schedules.

Group sequencing has an interesting property: the
quality of a group sequence in the worst-case can
be computed in polynomial time for minmax regular
objective functions like makespan (Esswein (2003);
Artigues et al. (2005); Aloulou and Artigues (2007).
Thus, it is possible to compute the worst-case quality
for large scheduling problems. Consequently, this
method can be used to compute the worst-case quality
in real-time during the execution of the schedule. Due
to this property, it is possible to use group sequencing
in a decision support system in real-time during the
execution of the scheduling process.

This method enables the description of a set of sched-
ules in an implicit manner (i.e. without enumerating
the schedules) and guarantees a minimal performance
that corresponds to worst-case quality. But the best-
case quality should also be interesting to know which
operation to chose from a current group to get possibly
the best schedule.

3 BRANCH AND BOUND APPROACH
FOR THE BEST-CASE IN A GROUP SE-
QUENCE

Pinot and Mebarki (2009) have proposed a branch
and bound algorithm to compute the best case quality
in a group sequence. This algorithm relies on lower
bounds proposed by Pinot and Mebarki (2008)

3.1 Lower bounds

The lower bounds are computed using a relaxation
on the resources by making the assumption that each
resource has an infinite capacity. In this case, the best-
case lower bound for starting time of an operation (θi)
is computed as the maximum of the best-case (lower
bound) completion time (χj) of all its predecessors:
for an operation Oi , its predecessors include the
predecessors given by the problem (Γ−(i)) but also
the operations on the previous group on the same
machine (g−(i) being the predecessor group of g(i)
on the same machine). Pinot and Mebarki (2008)
improved these lower bounds by using a property
of group-sequencing: an operation in a given group
cannot be executed until all the execution of all the
operations of its previous group. As a consequence, an
operation can only begin after the optimal makespan
of the previous group. It needs the computation of the
optimal makespan of a group (named as γgl,k) which
is polynomially solvable by ordering the operations in
ascending release date(θi) (Brucker and Knust (2008);
Lawler (1973)).

The improved lower bounds are presented in equation1,
and the lower bound of the example presented in tab.
1 is given in tab. 2:

θi = max(ri, γg−(i), max︸︷︷︸

j∈Γ−(i)

χj
)

χi = θi + ρi

γgl,k = Cmax1|ri|Cmax,∀Oi ∈ gl,k, ri = θi

(1)

Oi θi χi
1 0 1
4 0 4
7 0 2
2 1 5
8 2 5
5 4 7
6 7 8
3 5 9
9 9 11

Table 2: Lower bounds of operations in tab.1

10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France

3.2 Branch and Bound algorithm

Every operation on each group will be represented by
a node on the search space, A solution is an ordered
sequence between the operations of the same group;
The goal is to find an optimal solution that is repre-
sented by a group schedule with only one operation
per group.

To reduce the search space, Pinot and Mebarki (2009)
proposed a sufficient condition for the complete
sequencing of a current group that contains more than
one operation without loosing the optimal solution.
A valid sequence is chosen if the sequencing does
not degrade the objective function and it does not
interfere on the earliest starting time of the operations
with successor constraints and resources constraints.

4 IMPROVING THE BRANCHING PRO-
CESS FOR THE BRANCH AND BOUND
ALGORITHM

The branching procedure generates nodes, but the
way the nodes are explored affect the performances
of the algorithm: if the best solution is found sooner,
the upper bound will be better, and then more nodes
will be discarded.

Pinot and Mebarki (2009) ordered the groups with
more than one operation to their partial order, if
group G1 contains an operation O1 and group G2

contains an operation O2, O2 the successor of O1,
the order of the branching process is G1 then G2,
if no predecessor constraints are found between the
two groups, the tie is broken by ordering at first the
group with the smallest starting time. This branching
technique is called ’PredOrder’ in the next sections.

In this article we propose two new branching
techniques called NeighborDirectRel and Neigh-
borIndirectRel, only groups with more than one
operation are considered for the process, these
groups are called neighbors. NeighborDirectRel
and NeighborIndirectRel methods are based on the
predecessor successor relations between the neighbors.

NeighborDirectRel is described as follows:

• Generate a list called L(G) with all the groups
that contain more than one operation.

• for each group in L(G), generate a list of non
redundant groups called neighbors(Gi), that rep-
resents the related (succ or pred) groups from
L(G).

• order L(G) with ascending order of the cardinal
of each neighbors(Gi), ties are broken by ordering
the groups according to PredOrder method.

Let us illustrate this method using the example shown
in tab 3 and figure 3 (figure 3 is a group sequence
solution generated from tab 3 with a high flexibility) :

Oi 1 2 3 4 5 6 7 8 9 10 11 12
Mi M1 M3 M2 M1 M3 M2 M1 M3 M2 M1 M3 M2
Pi 3 4 2 2 3 4 3 5 5 2 2 2

Table 3: Flow shop problem

1. The groups with more than one operation are
generated :

L(G) = {G1 = (1, 4, 7, 10), G2 = (2, 5),
G3 = (3, 6), G4 = (8, 11), G5 = (9, 12)

2. For each group of L(G), generate the predecessor
and the successor groups without redundancy
neighbors(G1) = {G2, G4} (because O2,O5 are
the successors of O1,O4 and O8,O11 are the suc-
cessors of O7,O10)
neighbors(G2) = {G1, G3} (because O2,O5 are
the successors of O1,O3 and the predecessors of
O3,O6.
neighbors(G3) = {G2}.
neighbors(G4) = {G1, G5}.
neighbors(G5) = {G4}.

3. Card(neighbors(G3)) = Card(neighbors(G5)) =
1 and it is the smallest one, so G3 is chosen first
because of the precedence constraints between
O2, O3 and O5,O6.

4. Removing G3 from L(G) :
L(G) = {G1, G2, G4, G5}

5. Repeat process 2 to G1,G2,G4 and G5 :
neighbors(G1) = {G2, G4} .
neighbors(G2) = {G1} .
neighbors(G4) = {G1, G5}.
neighbors(G5) = {G4}.

6. Then G2 is chosen because it starts first.

7. Removing G2 from L(G) :
L(G) = {G1, G4, G5}

Figure 3: Group sequence solution for tab 3

10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France

8. Repeat process 2 to G1,G4 and G5 :
neighbors(G1) = {G4}.
neighbors(G4) = {G1, G5}.
neighbors(G5) = {G4}.

9. Then G1 is chosen because of the indirect prece-
dence constraint betweenO10 andO12 (O10 before
O11 and O11 before O12 so O10 before O12).

10. Removing G1 from L(G) :
L(G) = {G4, G5}

11. Repeat process 2 to G4 and G5 :
neighbors(G4) = {G5} .
neighbors(G5) = {G4} .

12. Then G4 is chosen before G5 because of the prece-
dence constraints between O8,O9 and O11,O12.

For the NeighborDirectRel method, the branching
order is : G3, G2, G1, G4 then G5.

In NeighborIndirectRel method, the search space of
the current neighbors is enlarged by looking not only
for the first successor and predecessor of the current
operation, but to all operations of the same job.

For example, with NeighborDirectRel, G5 has only
G4 as neighbor because of the precedence constraint
between O9, O12 and O8,O11 respectively while in
NeighborIndirectRel, G5 has G4 and G1 as neighbors
because O7 and O10 are in the same job as O9 and O12.

This method is described as follows :

• Generate a list called L(G) with all the groups
that contain more than one operation.

• For each group Gi in L(G), generate a list of none
redundant groups called neighbors(Gi), this list
contains the groups related to the operations in
the same job with the operations of Gi.

• order L(G) with ascending order of the cardinal
of each neighbors(Gi), ties are broken by ordering
the groups according to PredOrder method.

For our flowShop example described in table3, each
method generates different orders:

• PredOrder : {G1, G2, G3, G4, G5}

• NeighborDirectRel : {G3, G2, G1, G4, G5}

• NeighborIndirectRel : {G2, G3, G1, G4, G5}

In the next section we experiment our branching ap-
proaches (NeighborDirectRel and NeighborIndirec-
tRel) and compare the results with the classical
branching approach (PredOrder) used in Pinot and
Mebarki (2009). These experiments were made on the
makespan objective.

5 PROTOCOLE OF THE EXPERIMENTA-
TION

We took a well-known set of benchmark instances
called la01 to la40 from Lawrence (1984). These in-
stances are widely used in the job shop literature.
These are classical job shop instances, with m oper-
ations on each job (m as the number of machines),
each operation of a job executed on a different ma-
chine. It is composed of 40 instances of different sizes
(5 instances for each size). Thanks to the literature
on job shop Brucker et al. (1994) ; Esswein (2003)
; Pinot (2008), using the makespan objective allows
us to generate effective group sequences with optimal
solution known.

For each instance, we generated group sequences with
known optimal value using a greedy algorithm called
EBJG Esswein (2003) that merges two successive
groups according to different criteria until no group
merging is possible. This algorithm begins with a
one-operation-per-group sequence computed by the
optimal algorithm described in Brucker et al. (1994)
(the optimal schedules are taken from Pinot (2008)).
So, by construction, the optimal makespan of these
group schedules is the makespan of the one-operation-
per-group sequence, these optimal values are taken as
an upper bound for our experiment.

Depth-first search technique is used as a searching
strategy in our branch and bound algorithm. This
method goes directly to a solution where the nodes
are processed in a last-in-first-out order. In this mode,
it is very important to order the nodes correctly when
a list of nodes is added. It will allow to find good
solutions earlier. In this mode, the process of the
generated nodes are ordered in ascending order of the
lower bounds presented in section 3.

The experiments are made on an Intel(R) Core(TM)
i5 CPU 2.53GHz, the performances of the three algo-
rithms are given in the next section.

6 RESULTS AND DISCUSSION

The variables used for the columns of the tables are
defined as follows:
N1 : Total number of groups generated from the
given instance
N2 : Avg of number of operations per group in the
group sequence
N3 : Initial lower bound
N4 : Optimal makespan
N5 : Time in millisecond to find the optimal makespan
N6 : Number of the branched nodes to find the
optimal makespan
N7 : Total time in millisecond to finish the algorithm
(N5 + time to prove the optimality of the current
solution)

10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France

N8 : Number of the total branched nodes to finish
the algorithm (N6 + number of nodes to prove the
optimality of the current solution)

The three exact methods find the optimal solution for
all the instances in very short time. More than 75%
of the instances were solved in less than one second,
the longest time obtained for the three methods is 23
seconds.

Comparing the results provided in tab. 4, tab. 5 and
tab. 6, we can see that NeighborDirectRel and Neigh-
borIndirectRel give the same or better results than
PredOrder for almost all the instances. For Neighbor-
DirectRel we have four positive results (i.e., it gives
better results for N7 and N8 than PredOrder), two neg-
ative results and the rest are the same as PredOrder.
For NeighborIndirectRel, we have six positive results,
four negative results and thirty the same as PredOrder.
The number of positive results for the two methods is
bigger than the negative ones and for each instance, at
least one of these two methods dominates PredOrder
(for N7 and N8). For example for La04 both methods
dominates PredOrder. For La17, NeighborDirectRel
is less effective while NeighborIndirectRel is the best
one for this instance. For La37, we see the opposite,
NeighborDirectRel dominates while NeighborIndirec-
tRel is the least successful one. The achievement gap
between PredOrder and the branching methods pro-
posed in this paper is some times very noticeable, for
example for La36, the PredOrder method finished the
process after visiting 2675 nodes which is 62 times
bigger than the result given by our methods.

The results differences are noticeable for the number
of nodes to be processed to prove the optimality
of the best solution found so far (N8 − N6). For
this variable our two methods give better results for
almost all instances. This is because the number of
nodes to be processed to prove the optimality of the
solution will be smaller if the number of the first
sub-nodes of the branch and bound tree has less
sub-nodes, i.e, as the depth-first search technique
is used for our algorithm, the nodes in the left are
processed first.

At the first level of the tree, the lower bound is not so
accurate, so even if the exact solution is found sooner,
nodes on the right of the tree need to be processed to
prove the optimality of this solution.
With our methods, the nodes with large number of
relations are processed at the end of the tree while
the ones with the smallest number of relations are
processed first. This reduces the width of the tree
at its first levels where the lower bounds are not so
accurate. It enables to reduce the search space to
prove the optimality of the best solution found so far.

N1 N2 N3 N4 N5 N6 N7 N8
La01 30 1,67 650 650 0,025 15 0,025 15
La02 40 1,25 655 655 0,005 9 0,005 9
La03 35 1,43 588 597 0,008 13 0,008 13
La04 35 1,43 588 590 0,013 13 0,014 15
La05 29 1,72 593 593 0,011 17 0,011 17
La06 39 1,92 926 926 0,038 26 0,038 26
La07 45 1,67 890 890 0,026 24 0,026 24
La08 43 1,74 863 863 0,101 25 0,101 25
La09 41 1,83 951 951 0,03 26 0,03 26
La10 37 2,03 958 958 0,118 28 0,118 28
La11 41 2,44 1222 1222 0,249 34 0,249 34
La12 47 2,13 1039 1039 0,141 35 0,141 35
La13 47 2,13 1150 1150 0,16 32 0,16 32
La14 36 2,78 1292 1292 0,286 30 0,286 30
La15 51 1,96 1207 1207 0,095 35 0,095 35
La16 80 1,25 945 945 0,019 20 0,019 20
La17 80 1,25 761 784 0,019 18 0,962 772
La18 81 1,23 848 848 0,019 19 0,019 19
La19 85 1,18 842 842 0,017 15 0,017 15
La20 85 1,18 901 902 0,018 18 0,018 18
La21 117 1,28 1046 1046 0,061 31 0,061 31
La22 118 1,27 927 927 0,074 28 0,074 28
La23 120 1,25 1032 1032 0,064 29 0,064 29
La24 120 1,25 934 935 0,067 27 0,067 27
La25 118 1,27 976 977 0,061 31 6,063 2849
La26 142 1,41 1218 1218 0,245 45 0,245 45
La27 149 1,34 1252 1252 0,176 47 0,176 47
La28 141 1,42 1273 1273 0,184 54 0,184 54
La29 146 1,37 1196 1202 0,175 52 2,47 885
La30 147 1,36 1355 1355 0,219 44 0,219 44
La31 165 1,82 1784 1784 4,646 97 4,646 97
La32 158 1,90 1850 1850 1,221 106 1,221 106
La33 174 1,72 1719 1719 1,046 97 1,046 97
La34 177 1,69 1721 1721 1,053 97 1,053 97
La35 176 1,70 1888 1888 2,533 94 2,533 94
La36 186 1,21 1267 1268 0,345 38 23,096 2675
La37 187 1,20 1395 1397 0,325 35 0,325 35
La38 189 1,19 1196 1196 0,287 34 0,287 34
La39 191 1,18 1232 1233 0,304 34 3,175 359
La40 194 1,16 1222 1222 0,11 31 0,11 31

Table 4: PredOrder

10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France

N5 N6 N7 N8
La01 0,029 15 0,029 15
La02 0,005 9 0,005 9
La03 0,009 13 0,009 13
La04 0,014 13 0,015 14
La05 0,012 17 0,012 17
La06 0,046 26 0,046 26
La07 0,034 24 0,034 24
La08 0,108 25 0,108 25
La09 0,038 26 0,038 26
La10 0,13 28 0,13 28
La11 0,284 34 0,284 34
La12 0,164 35 0,164 35
La13 0,182 32 0,182 32
La14 0,311 30 0,311 30
La15 0,14 35 0,14 35
La16 0,021 20 0,021 20
La17 0,022 18 1,778 1639
La18 0,017 19 0,017 19
La19 0,016 15 0,016 15
La20 0,014 15 0,018 18
La21 0,071 31 0,071 31
La22 0,08 28 0,08 28
La23 0,074 29 0,074 29
La24 0,068 27 0,068 27
La25 0,069 31 4,341 2002
La26 0,29 45 0,29 45
La27 0,206 47 0,206 47
La28 0,249 54 0,249 54
La29 0,218 52 0,267 61
La30 0,247 44 0,247 44
La31 5,478 97 5,478 97
La32 2,239 106 2,239 106
La33 1,61 97 1,61 97
La34 1,641 97 1,641 97
La35 1,554 94 1,554 94
La36 0,163 38 0,181 42
La37 0,238 35 0,238 35
La38 0,119 34 0,119 34
La39 0,13 34 4,807 1328
La40 0,11 31 0,11 31

Table 5: NeighborDirectRel

N5 N6 N7 N8
La01 0,03 15 0,03 15
La02 0,006 9 0,006 9
La03 0,008 13 0,008 13
La04 0,015 13 0,015 14
La05 0,014 17 0,014 17
La06 0,038 26 0,038 26
La07 0,046 24 0,046 24
La08 0,117 25 0,117 25
La09 0,041 26 0,041 26
La10 0,138 28 0,138 28
La11 0,296 34 0,296 34
La12 0,151 35 0,151 35
La13 0,176 32 0,176 32
La14 0,349 30 0,349 30
La15 0,103 35 0,103 35
La16 0,022 20 0,022 20
La17 0,02 18 0,285 222
La18 0,018 19 0,018 19
La19 0,017 15 0,017 15
La20 0,016 15 0,189 121
La21 0,072 31 0,072 31
La22 0,075 28 0,075 28
La23 0,069 29 0,069 29
La24 0,065 27 0,096 42
La25 0,071 31 0,128 49
La26 0,3 0 0,609 147
La27 0,195 47 0,195 47
La28 0,229 54 0,229 54
La29 0,205 52 2,02 465
La30 0,241 44 0,241 44
La31 6,049 97 6,049 97
La32 2,084 106 2,084 106
La33 1,61 97 1,61 97
La34 1,373 97 1,373 97
La35 1,366 94 1,367 94
La36 0,165 38 0,185 43
La37 0,147 35 0,195 47
La38 0,129 34 0,129 34
La39 0,132 34 0,17 42
La40 0,107 31 0,107 31

Table 6: NeighborIndirectRel

10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France

Figures 4, 5 and 6 illustrate this property on the
flowShop example presented above (Table 3). In the
three figures, each node represents the sequence of
operations in the group. The upper bound is initialized
to infinity and the lower bound for every node is
calculated using equation 1, if a lower bound of a
current node is superior or equal than the upper bound,
the node will be abandoned, else if no group with
more than one operation left, the upper bound will
be updated to be equal to the lower bound.

For the three methods the best-case is found after
visiting five nodes. However, to prove the optimality,
PredOrder needs to visit five other nodes, Neighbor-
DirectRel needs to visit two nodes and NeighborIndi-
rectRel needs to visit only one node. In this example
using the depth-first search technique, the branching
process of PredOrder generates twenty four sub-nodes
at first, four of them have a lower bound smaller than
twenty one (i.e., 21 being the optimal solution), this
leads to create more sub-nodes, thus, it takes more
time to prove the optimality (figure 4). In contrast,
NeighborDirectRel and NeighborIndirectRel start with
only two nodes, as the first branched group has the
minimum number of relations with his neighbors, pro-
cessing this group first leads the lower bound to be
accurate with the next generated sub-nodes, thus it
reduces the search space (figure 5 and figure 6).

7 CONCLUSION

This paper addresses the best-case schedule in a group
sequence for the makespan. Pinot and Mebarki (2009)
have proposed a resolution for the best-case for any
regular objective using a branch and bound algorithm.
The branching process and consequently the resolution
time depends on the way groups are ordered. In this
paper, we proposed two new branching processes.

The experiments conducted on instances used as a
benchmark in the Job Shop literature show the effi-
ciency of the two proposed methods. However, none
of the methods evaluated dominates the others for all
the instances.

On future works, we will study the impact of the group
schedule flexibility on the results.

ACKNOWLEDGEMENT

”‘This work has been funded with support of the Eu-
ropean Commission. This communication reflects the
view only of the author, and the Commission cannot
be held responsible for any use which may be made
of the information contained therein”’.

Figure 4: Solving the flow shop example using Pre-
dOrder (LB:Lower Bound / UB:Upper Bound)

Figure 5: Solving the flow shop example using Neigh-
borDirectRel (LB:Lower Bound / UB:Upper Bound)

10th International Conference of Modeling and Simulation - MOSIM14 November 5-7 - Nancy - France

Figure 6: Solving the flow shop example using Neigh-
borIndirectRel (LB:Lower Bound / UB:Upper Bound)

References

Aloulou, M. and Artigues, C. (2007). Worst-case eval-
uation of flexible solutions in disjunctive scheduling
problems. Computational Science and Its Appli-
cations - ICCSA 2007 International Conference,
Proceedings, Part III, 1205:1027–1036.

Artigues, C., Billaut, J.-C., and Esswein, C. (2005).
Maximization of solution flexibility for robust shop
scheduling. European Journal of Operational Re-
search, 165:314–328.

Brucker and Knust (2008). Complexity results for
scheduling problems. [online; retrieved on 2008-06-
18].

Brucker, P., Jurisch, B., and Sievers, B. (1994).
A branch and bound algorithm for the job-shop
scheduling problem. Discrete Applied Mathematics,
49:107–127.

Cardin, O., Mebarki, N., and Pinot, G. (2013). A
study of the robustness of the group scheduling
method using an emulation of a complex fms. Inter-
national Journal of Production Economics, 146:199–
207.

Davenport and Beck (2000). A survey of tehniques
for sheduling with uncertainty. Unpublished
manuscript.

Erschler and Roubellat (1989). An approach for real
time scheduling for activities with time and resource
constraints. In Slowinski, R. and Weglarz, J., edi-
tors, Advances in project scheduling. Elsevier.

Esswein, C. (2003). Un apport de flexibilité séquen-
tielle pour l’ordonnancement robuste. PhD thesis,
Université François Rabelais Tours(France).

Graham, Lawler, Lenstra, and Kan, R. (1979). Op-
timization and approximation in deterministic se-
quencing and scheduling: a survey. Annals of Dis-
crete Mathematics,5, 287-326.

Lawler, E. L. (1973). Optimal sequencing of a single
machine subject to precedence constraints. Man-
agement Science, 19:544–546.

Lawrence, S. (1984). Resource constrained project
scheduling: an experimental investigation of heuris-
tic scheduling techniques (supplement).

Logendran, R., CARSON, S., and HANSON, E.
(2005). Group scheduling in flexible flow shops.
International Journal of Production Economics,
96:143–155.

Mebarki, N., Cardin, O., and Guérin, C. (2013).
Evaluation of a new human-machine decision sup-
port system for group scheduling. In Narayanan,
S., editor, Analysis, Design, and Evaluation of
Human-Machine Systems, pages 211–217, Las Ve-
gas, Nevada, USA. IFAC.

Pinot, G. (2008). Coopération homme-machine pour
l’ordonnancement sous incertitudes. PhD thesis,
Université de Nantes (France).

Pinot, G., Cardin, O., and Mebarki, N. (2007). A
study on the group sequencing method in regards
with transportation in an industrial fms. In The
IEEE SMC 2007 International Conference, MON-
TREAL - CANADA.

Pinot, G. and Mebarki, N. (2008). Best-case lower
bounds in a group sequence for the job shop problem.
In 17th IFAC World Congress, Seoul, Korea.

Pinot, G. and Mebarki, N. (2009). An exact method
for the best case in group sequence: Application to
a general shop problem. In 13th IFAC Symposium
on Information Control Problems in Manufacturing,
Moscow, Russia.

Pinot, G., Mebarki, N., and Hoc, J. M. (2009). A
new human-machine system for group sequencing.
In International Conference on Industrial Engi-
neering and Systems Management, MONTREAL -
CANADA.

	INTRODUCTION
	GROUP SEQUENCE
	BRANCH AND BOUND APPROACH FOR THE BEST-CASE IN A GROUP SEQUENCE
	Lower bounds
	Branch and Bound algorithm

	IMPROVING THE BRANCHING PROCESS FOR THE BRANCH AND BOUND ALGORITHM
	PROTOCOLE OF THE EXPERIMENTATION
	RESULTS AND DISCUSSION
	CONCLUSION

