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ABSTRACT: In this paper, we study an integrated production and outbound distribution scheduling problem
with one manufacturer and one customer. The manufacturer has to process a set of jobs and deliver them in
batches to the customer. Each job has a release date and a delivery deadline. The objective of the problem
is to decide a feasible integrated production and distribution schedule minimizing the transportation cost
subject to the delivery deadline constraints. We consider three problems with different ways how a job can be
produced and delivered: Non-splittable production and delivery (NSP-NSD) problem, Splittable production and
non-splittable delivery (SP-NSD) problem and Splittable production and delivery (SP-SD) problem. We provide
a polynomial-time algorithm that solves two special cases of problems SP-NSD and SP-SD. We also develop
a B&B algorithm that solves the NP-hard problem NSP-NSD. The computational results show that the B&B
algorithm outperforms an ILP formulation of the problem implemented on a commercial solver.

KEYWORDS: Supply chain scheduling, batching and delivery, single manufacturer, single customer,
release dates, delivery deadlines.

1 INTRODUCTION

1.1 Motivation

Supply chain management is an active domain con-
sisting of the optimization and management of flows
between different actors that generally have conflict-
ing objectives, which makes the coordination of their
decisions a crucial issue in supply chain management.
In recent years, supply chain coordination issues have
received great attention from several researchers. Be-
fore 2000, most of the work has focused on coordina-
tion at the strategic and tactical levels, see e.g. the
surveys by (Sarmiento and Nagi, 1999) and (Erengüç
et al., 1999). (Thomas and Griffin, 1996) pointed out
the need for research that addresses supply chain is-
sues at an operational level rather than a strategic
level. This has triggered a certain amount of research
on supply chain coordination at the operational level.
(Hall and Potts, 2003) were the first to study coor-
dination issues among scheduling, batching and de-
livery decisions in a three-stage supply chain formed
by suppliers, manufacturers, and customers. They
study two individual decision models, corresponding
to the viewpoint of one supplier or one manufacturer
respectively.

Recently, growing attention have been devoted to in-
tegrated supply chain scheduling issues. (Chen, 2010)
surveys integrated production and outbound distri-
bution scheduling (IPODS). Outbound distribution
deals with a manufacturer shipping his products to
the next stage of the supply chain, that typically be-
longs to another company. As a consequence, the
receiving firm may set due dates or deadlines that
will constrain the production/distribution problem.
The focus of the analysis is on coordinating produc-
tion decisions (typically, sequencing) and distribution
decisions (typically, batching).

1.2 Problem settings

In this paper, we consider an integrated produc-
tion and outbound distribution model in a supply
chain consisting of one manufacturer and one cus-
tomer. The customer orders a set of jobs (or orders)
N = {1, . . . , n} to the manufacturer who has to pro-
cess them on a single machine, and then deliver them
in batches to the customer location. Each job j ∈ N
has a release date rj (the date when raw material is
available to process j), a processing time pj and a de-
livery deadline dj . After processing on the machine,
the jobs can be grouped into batches of maximum
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size c > 0, corresponding to a full truck load, and
then sent to the customer location. The jobs are unit
sized, i.e. a truck can carry at most c jobs at a time.
The delivery operation is operated by a third party
logistic provider that is supposed to be able to de-
liver any batch at any time. The batch is available
to be delivered when all jobs of this batch are com-
pleted. The transportation time of a batch and the
corresponding subcontracting cost are supposed to be
independent on the batch constitution. Hence, we can
assume without loss of generality that the transporta-
tion time is 0 and the transportation cost of a batch
is equal to 1.

Let (σ, θ) denote the integrated schedule, where σ
and θ are respectively the production schedule and
the delivery schedule. In this integrated schedule,
Cj(σ) is the completion time of job j on the machine
and Dj(θ) is the delivery time of job j to the cus-
tomer location. An integrated schedule is feasible,
if Dj(θ) ≤ dj , for all j ∈ N . The objective of the
problem is to decide a feasible integrated production
and distribution schedule minimizing the transporta-
tion cost TC, which is here equal to the number of
delivery batches.

We consider three problems with different ways how
a job can be produced and delivered.

• Non-splittable production and delivery (NSP-
NSD) problem: A job is non-preemptable
(or non-splittable) in production and a fin-
ished job must be delivered in one batch.
Using the five-field notation proposed by
(Chen, 2010), this problem can be denoted by
1|rj , dj |v(∞, c), direct|1|TC.

• Splittable production and non-splittable delivery
(SP-NSD) problem: A job can be split in pro-
duction, but a finished job must be delivered
in one batch. This problem can be denoted by
1|rj , pmtn, dj | v(∞, c), direct|1|TC.

• Splittable production and delivery (SP-SD) prob-
lem: A job can be split in both production
and delivery. This problem can be denoted by
1|rj , pmtn, dj |v(∞, c), direct, split|1|TC.

We do not consider the non-splittable production
but splittable delivery (NSP-SD) problem, because
we can show that for any optimal solution of NSP-
SD problem, if it exists, its splittable delivery sched-
ule can be transformed into a non-splittable deliv-
ery schedule with the same transportation cost, while
maintaining the same production schedule. Hence
this problem reduces to problem NSP-NSD.

Illustrative example: To illustrate the three
problems, we consider the following example with six

jobs where the vehicle capacity c is equal to 2. Table
1 gives the jobs’ parameters.

Job j 1 2 3 4 5 6 7
pj 4 2 2 2 2 3 1
rj 0 2 2 2 13 12 17

dj 12 5 12 12 16 18 19

Table 1: Illustrative example: jobs’ parameters

Figure 1: Optimal schedules for the three problems

Figure 1 shows the optimal schedules for the three
problems. In a production schedule, [j] means that
the whole job j is produced. In a delivery schedule,
[j] means that the whole job j is delivered. When [j]
is preceded by a constant α, 0 < α < 1, this means
that a part of job j is produced or delivered.

Case NSP-NSD: In the optimal schedule, the pro-
duction sequence is ([2], [1], [3], [4], [5], [6], [7]). There
exists an idle time before job 2, because if job 1 is
processed before 2, then job 2 would be late. A sim-
ilar reason for the second idle time holds. There are
five delivery batches: {[2]}, {[1], [3]}, {[4]}, {[5]}, {[6]}
and {[7]}, which depart respectively at time 4, 10, 12,
15, 18 and 19 as shown in Figure 1(a).

Case SP-NSD: The production sequence is
( 1
2 [1], [2], [3], 12 [1], [4], 13 [6], [5], 2

3 [6], [7]), where the
job 1 and 6 are split respectively into two parts.
The optimal schedule has four delivery batches:
{[2]}, {[1], [3]}, {[4]}, {[5]} and {[6], [7]}, which depart
respectively at time 4, 8, 10, 15 and 18 as shown in
Figure 1(b). Since job 2 cannot be delivered with any
other job because of its release time and deadline,
transportation cost cannot be improved for the first
4 jobs with the non-splittable delivery. However, we
can split job 6 in production in order to deliver the
jobs 6 and 7 in one batch.

Case SP-SD: The production sequence is the same
as problem SP-NSD. The optimal schedule has three
full delivery batches: { 12 [1], [2], 12 [3]}, { 12 [3], 1

2 [1], [4]},
{[5]} and {[6], [7]}, which depart respectively at time
5, 10, 15 and 18 as shown in Figure 1(c). For example,
the first full filled delivery batch consists of half of job
1, job 2 and half of job 3. With the splittable delivery,
the first four jobs can be delivered in two full batches.
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Remark that in the three cases, jobs delivered to-
gether are not necessarily sequenced consecutively,
which makes the considered problems different from
classical batching models.

1.3 RELATED LITERATURE

First, consider the production settings. Recall that
the single machine scheduling problem with job re-
lease dates and deadlines 1|rj , dj |− is NP-complete,
see (Garey and Johnson, 1979). (Carlier, 1982) pro-
posed an efficient binary B&B algorithm to solve the
corresponding optimization version 1|rj |Lmax, where
Lmax = maxj∈N Lj = maxj∈N (Cj − dj). Here dj , j ∈
N, are no more deadlines, but due dates (i.e. they
can be violated). When preemption is allowed, prob-
lem 1|rj , pmtn|Lmax can be solved in polynomial time
O(n log n) using Jackson’s algorithm, see (Jackson,
1955).

It can be observed easily that problem 1|rj , dj |− re-
duces to our problem NSP-NSD, i.e. it is a special
case of our problem with c = 1. Consequently, prob-
lem NSP-NSD is NP-hard in the strong sense.

When considering delivery, a similar model has been
considered by Chen and Pundoor 2009 with the differ-
ence that all the jobs are available for processing at
time 0, i.e. rj = 0, j ∈ N , and the jobs may have
different sizes. The corresponding problem SP-SD
is proved to be polynomially solvable in time O(n2).
The other problems (NSP-NSD and NSP-SD) are NP-
hard in the strong sense. When the sizes of the jobs
are all equal to one, the problem NSP-NSD is poly-
nomially solvable in time O(n2 log n), see (Pundoor
and Chen, 2005).

When release dates are not all equal, to the best of
our knowledge, only individual delivery to several cus-
tomers is considered, i.e. c = 1. The objective is
to minimize the maximum delivery time. Almost all
considered problems in the literature are proved to be
NP-hard, see for example (Chen, 2010) and (Liu and
Cheng, 2002).

In this paper, we study in particular the problem
NSP-NSD and propose a B&B algorithm to solve it
optimally. This algorithm takes advantage of the bi-
nary B&B algorithm proposed by (Carlier, 1982) and
lower bounds on the transportation cost TC com-
puted by solving special cases of problem SP-NSD.

The paper is structured as follows. Section 2 consid-
ers problems SP-SD and SP-NSD. Section 3 presents
the B&B algorithm for the problem NSP-NSD fol-
lowed, in section 4 by numerical experiments to eval-
uate the performance of this algorithm. Finally, we
provide conclusions and perspectives in section 5.

2 PROBLEMS SP-SD AND SP-NSD

In this section, we give some properties for problems
SP-NSD and SP-SD. Then we provide a polynomial
time algorithm that solves these problems in two spe-
cial cases.

2.1 Properties

We introduce the definitions of production block and
the preemptive EDD (earliest due date) rule, (Jack-
son, 1955).

Definition 1 In a production schedule, a production
block is defined as a subset of jobs which are processed
consecutively without idle times. Set the minimum
starting processing time of jobs of the block as the
starting time of the block and the maximum comple-
tion time of jobs of the block as the ending time of the
block. The order of jobs is not taken into account in
the definition of the block.

Preemptive EDD rule: At each decision point t in
time, consisting of each release date and each job com-
pletion time, schedule an available job j (i.e. rj ≤ t)
with the earliest due date. If no job is available at
a decision point, schedule an idle time until the next
release date.

Next, we give some properties for problems SP-NSD
and SP-SD.

Lemma 1 If the problem is feasible, there exists an
optimal integrated schedule for problems SP-NSD and
SP-SD such that the following properties hold:

(1) Every job is processed in one production block
only.

(2) Each production block starts at the minimum re-
lease date of the jobs within this block.

Lemma 2 If the problem is feasible, there exists an
optimal integrated schedule for problems SP-NSD and
SP-SD such that the structure of production blocks,
consisting of the jobs composition, the starting time
and the ending time of each block, is the same as that
constructed by the preemptive EDD rule.

2.2 A polynomial time algorithm for two spe-
cial cases

We first introduce the Shortest Remaining Processing
Time (SRPT) rule to construct a production schedule
in the problems with preemption.
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SRPT rule: at each decision point t in time, con-
sisting of each release date and each job completion
time, schedule an available job j (i.e. rj ≤ t) with
the shortest remaining processing time. If no job is
available at a decision point, schedule an idle time
until the next release date.

Next, we provide a polynomial time algorithm (see
Algorithm A1) for problems SP-NSD and SP-SD in
the following two special cases:

case 1: the truck capacity is unlimited, i.e. c =∞.

case 2: In any production block of the schedule con-
structed by preemptive EDD rule, the jobs have
the same release date.

Algorithm A1

Step 1: Generate a production schedule σ with the
preemptive EDD rule. If Cj(σ) ≤ dj ,∀j ∈ N
go to Step 2, otherwise there is no solution and
STOP.

Step 2: Let N ′ ⊆ N denote the set of undeliv-
ered jobs. Set current delivery time T =
maxj∈N ′ Cj(σ).

Step 3: Find the set of undelivered jobs with the
deadline greater than or equal to T . Let S denote
this jobs’ set.

Step 4: If |S| ≤ c, deliver the jobs of S in one batch
which departs at time T . Otherwise, reschedule
the jobs of S in σ with the SRPT rule and do
not change the schedule of the other jobs, then
deliver the last completed c jobs of S in one batch
which departs at time T . If all jobs are delivered,
then STOP. Otherwise, go to step 2.

Theorem 1 Algorithm A1 finds an optimal inte-
grated schedule for problems SP-NSD and SP-SD in
the special case 1 in O(n2) time, and the special case
2 in O(n2 log n) time.

Remark that the computational complexity of prob-
lems SP-NSD and SP-SD in the general case is still
open.

3 A B&B ALGORITHM FOR PROBLEM
NSP-NSD

As it has been observed in section 1, the problem
NSP-NSD is strongly NP-hard. In this section, we
first present two heuristics to determine upper bounds
on TC. Then we describe a B&B algorithm to solve
our problem.

3.1 Heuristics

We first propose a polynomial time algorithm (see
algorithm A2) to construct an optimal delivery
schedule for a given feasible non-preemptive produc-
tion schedule σ, i.e. Cj(σ) ≤ dj ,∀j ∈ N .

Algorithm A2

Step 1: Let N ′ ⊆ N denote the set of undeliv-
ered jobs. Set current delivery time T =
maxj∈N ′ Cj(σ).

Step 2: Find the set of undelivered jobs with the
deadline greater than or equal to T . Let S denote
this jobs set.

Step 3: If |S| ≤ c, deliver all jobs of S in one batch
which departs at time T . Otherwise, deliver the
last c completed jobs of S in one delivery batch
which departs at time T . If all jobs are delivered,
then STOP. Otherwise, go to Step 1.

This algorithm can be used to determine an upper
bound of TC for a given production schedule without
preemption. In our B&B algorithm, we will use two
heuristics that try to construct a feasible integrated
schedule for problem NSP-NSD.

The first heuristic, denoted H1, uses the non-
preemptive EDD rule, which forces to create a
production schedule without preemption. If the
obtained production sequence is feasible, then we
apply algorithm A2.

Non-preemptive EDD rule: At each decision point t
in time, consisting of each starting of a production
block and each job completion time, schedule an
available job j (i.e. rj ≤ t) with the earliest due date.
If no job is available at a decision point, schedule an
idle time until the next release date.

The second heuristic, denoted H2, uses a feasible
SP-NSD integrated schedule to construct, if possible,
a feasible integrated schedule for problem NSP-NSD.

Heuristic H2

Step 1: Create a priority list of jobs, such that in the
given schedule, if Di < Dj , job i must be before
job j in the list, and if Di = Dj and Ci < Cj ,
job i must be before job j in the list.
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Step 2: Schedule each job as early as possible with-
out preemption. When there are several jobs
which can be scheduled, we choose the job with
the highest priority. Let σ be the constructed
schedule. If Cj(σ) ≤ dj ,∀j ∈ N , go to step
3. Otherwise, there is no feasible solution and
STOP.

Step 3: Apply the algorithm A2 to compute a deliv-
ery schedule.

3.2 B&B algorithm

We recall the B&B algorithm by (Carlier, 1982) for
problem 1|rj |Lmax. The algorithm computes a lower
bound and an upper bound for each node based on
preemptive and non-preemptive EDD rule, respec-
tively. Branching is done by modifying release times
or deadlines. At every node, the algorithm constructs
the non-preemptive EDD schedule, then defines a
critical job and a critical set of jobs and considers two
subsets of schedules: the schedules where the critical
job precedes the jobs of the critical set and the sched-
ules where the critical job follows the jobs of critical
set.

We propose a B&B algorithm (see Algorithm B2) for
problem NSP-NSD based on the B&B algorithm of
Carlier. Let LB(Lmax, u) and UB(Lmax, u) denote
the lower bound of Lmax and the lower bound of
Lmax of node u respectively. Let LB(TC, u) and
UB(TC, u) denote the lower bound of TC and the
upper bound of TC of node u respectively. Let
UB∗(TC) denote the current best upper bound of
TC. The algorithm B2 uses the same branching as
Carlier’s algorithm. When a feasible solution is found
at node u, we apply another B&B algorithm from
the node u to try to find a local optimal solution
for TC. Branching of B1 is done by assigning at
each position of the schedule a job respecting a set
of rules (see algorithm B1). When algorithm B1
stops, algorithm B2 continues the branching for the
remaining active nodes.

Algorithm B1

Lower bound: we solve two relaxed problems, each
respecting one of the two special cases of prob-
lem SP-NSD by applying the algorithm A1.
Let (σ1, θ1) and (σ2, θ2) denote the obtained
SP-NSD integrated schedules. Set LB(TC) =
max{TC(σ1, θ1), TC(σ2, θ2)}.

Upper bound: Firstly, generate two integrated
schedules for problem NSP-NSD with the two
above obtained schedules (σ1, θ1) and (σ2, θ2) as
input by applying the heuristic H2. Secondly,

generate a third integrated schedule by apply-
ing the heuristic H1. Finally, if one or several
constructed integrated schedules are feasible, set
UB(TC) as the smallest TC among these sched-
ules. Otherwise, set UB(TC) = n + 1. Update
UB∗(TC) if necessary.

Branching: if LB(TC, u) < UB∗(TC, u) for a node
u, firstly choose one job to be scheduled in the
current position. A job j is candidate if it re-
spects the following three rules. Let N ′ denote
the set of unscheduled jobs without job j.

active scheduling rule: rj < mink∈N ′(rk +
pk)

deadline rule: rj + pj ≤ mink∈N ′(dk − pk)

precedence relations rule:
∑

k∈N ′ xkj = 0,
where xkj = 1 if the job k precedes the job
j, otherwise xkj = 0.

Then, require the candidate j to be scheduled at
the current position by setting rk = max(rk, rj +
pj),∀k ∈ N ′.

Algorithm 1: Algorithm B2

1 Generate the root associated with LB(Lmax, root)
and UB(Lmax, root) as the algorithm of Carlier, and
put this node in list L;

2 while L 6= ∅ do
3 Choose one node u in L with minimum

LB(Lmax, u) ;
4 if UB(Lmax, u) > 0 and LB(Lmax, u) ≤ 0 then
5 Generate LB(TC, u) and UB(TC, u) using

algorithm B1 ;
6 if LB(TC, u) < UB∗(TC) then
7 if UB(TC, u) < n+ 1 then
8 Apply algorithm B1 with the original

pj and dj , the modified rj of node u,
and the precedence relations between
jobs imposed at the path from the
root to the node u;

9 else
10 Branch as the algorithm of Carlier

and add new nodes with the bounds
of Lmax in L;

11 else
12 if LB(Lmax, u) ≤ UB(Lmax, u) ≤ 0 then
13 Apply algorithm B1 with the original pj

and dj , the modified rj of node u, and
the precedence relations between jobs
imposed at the path from the root to the
node u;

14 Remove u from L.
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4 Experimental results

We evaluate the performance of the B&B algorithm
B1 by comparing it with an ILP (integer linear pro-
gramming) model for the problem NSP-NSD. The
B&B algorithm B1 was implemented in C++ and the
ILP was implemented in Cplex V12.5.1. The experi-
ments were carried out on a DELL 2.50GHz personal
computer with 8GB RAM. The ILP model extends
the well-known disjunctive scheduling model as fol-
lows. Suppose that each batch departs at one dead-
line, and let s1, . . . , su denote the possible departure
dates. Let M be a sufficiently large number.

Decision variables:

• xij =

 1, if job i precedes job j, i = 1, . . . , n,
j = 1, . . . , n

0, otherwise

• tj = production starting time of job j,
j = 1, . . . , n

• yiq =

 1, if job i is delivered at time sq,
i = 1, . . . , n, q = 1, . . . , u

0, otherwise

• wq = number of batches departing at time sq,
q = 1, . . . , u

ILP:

min

u∑
q=1

wq (1)

s.t. tj − ti ≥ pi − (1− xij)M, i, j = 1, . . . , n(2)

xij + xji = 1, i, j = 1, . . . , n, i 6= j (3)

tj ≥ rj , j = 1, . . . , n (4)

tj + pj ≤
u∑

q=1

(yiqsq), j = 1, . . . , n (5)

n∑
i=1

yiq ≤ cwq, q = 1, . . . , u (6)

u∑
q=1

yiq = 1, i = 1, . . . , n (7)

yiq = 0, if di < sq, i = 1, . . . , n, q = 1, . . . u(8)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , n (9)

yiq ∈ {0, 1}, i = 1, . . . , n, q = 1, . . . , u (10)

wq ∈ N, q = 1, . . . , u (11)

In the ILP model, the objective function is to mini-
mize the number of delivery batches. Constraints 2
ensure that, in the production schedule, job j starts

after the completion of job i if job i precedes job
j. Constraints 3 guarantee that, in the production
schedule, either job i precedes job j or job j precedes
job i for any two different jobs i and j. Constraints
4 guarantee that, in the production schedule, each
job starts after its release date. Constraints 5 ensure
that each job is delivered after its production com-
pletion time. Constraints 6 are the constraints of the
truck capacity. Constraints 7 ensure that each job
is delivered in one batch only. Constraints 8 are the
constraints of the delivery deadline. Constraints (9)
– (11) give the domain of definition of each variable.

We reuse the method of (Briand et al., 2010) to
generate data for problem NSP-NSD. We consider
n ∈ {10, 20, 30, 50, 70, 100, 150, 200, 300, 500}. The
integers pj , rj and dj are generated respectively
from the uniform distribution [1,50], [0, α

∑n
j=1 pj ]

and [(1 − β)a
∑n

j=1 pj , a
∑n

j=1 pj ], where α, β ∈
{0.2, 0.4, 0.6, 0.8, 1} and a ∈ {100%, 100%}. If dj <
rj + pj , dj has been updated by rj + pj . We choose
a set of hard instances and test them with the B&B
algorithm of Carlier to find the minimum Lmax. This
value is added to each dj to ensure that we have at
least one feasible solution. For n ≤ 100, we con-
sider the batch capacity c ∈ {2, 3, dn8 e, d

n
4 e}, and

c ∈ {d n
50e, d

n
30e, d

n
20e, d

n
10e} for n > 100. A total num-

ber of 554 instances is obtained.

B&B algorithm
n Fea Opt Node Time
10 100% 100% 0 0.05
20 100% 100% 5 0.38
30 100% 97.5% 72 7.72
50 100% 90.00% 255 33.99
70 100% 87.50% 307 56.22
100 100% 80.00% 372 85.08
150 100% 51.19% 368 161.24
200 100% 62.50% 230 125.81
300 97.62% 46.43% 199 184.43
500 70.83% 12.50% 156 289.68

Table 2: Performance of the B&B algorithm.

The Tables 2-5 illustrate the performance of the B&B
algorithm and the ILP model. When imposing 5 min-
utes as the limit of execution time, we use the follow-
ing measures to compare the B&B algorithm and the
ILP model.

Fea: the percentage of instances for which a feasi-
ble solution is determined within the given time
limit.

Opt: the percentage of instances which are solved to
optimality within the given time limit.

Node: the average number of explored nodes.
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ILP
n Fea Opt Node Time
10 100% 73% 684726 102.43
20 100% 100% 9840 3.57
30 97.5% 85% 49955 50.02
50 40% 32.5% 41059 224.35
70 - - - -
100 - - - -
150 - - - -
200 - - - -
300 - - - -
500 - - - -

Table 3: Performance of the ILP model.

B&B algorithm
Gap1 Gap2

n Average Min Max Average
10 0% 0% 0% 0%
20 0% 0% 0% 0%
30 0.25% 10% 10% 10%
50 1.53% 11.11% 25% 15.28%
70 2.01% 7.14% 30% 16.1%
100 2% 2.94% 11.76% 10.02%
150 6.42% 2% 38.1% 13.15%
200 3.83% 3.33% 24.24% 10.21%
300 7.54% 3.13% 56.67% 14.38%
500 19.82% 10% 48.65% 24.07%

Table 4: Gaps for the B&B algorithm.

Time: the average CPU time in seconds.

Gap1: the relative gap measured by (UB∗(TC) −
LB∗(TC))/LB∗(TC), where UB∗(TC) and
LB∗(TC) are the best upper bound and lower
bound at the end of the algorithm. We consider
the instances for which we obtained at least one
feasible solution (optimal solution included).

Gap2: the relative gap for the instances for which we
obtained at least one feasible solution (optimal
solution excluded).

The results show that the B&B algorithm outper-
forms the ILP model. Remark that the average ex-
ecution time and the number of nodes with the ILP
model are always larger than the B&B algorithm, and
the ILP model cannot find a feasible solution with
n ≥ 70 within 5 minutes as time limit. Consulting
the gaps, we observe that the B&B algorithm has a
much better performance. Besides, the B&B algo-
rithm solves all the instances with n ≤ 20 optimally
within a very short execution time less than one sec-
ond, and more than 80% of the instances with n ≤ 100
optimally within an average execution time less than

ILP
Gap1 Gap2

n Average Min Max Average
10 6.6% 16.67% 44.44% 24.43%
20 0% 0% 0% 0%
30 1.83% 9.09% 27.27% 14.24%
50 6.51% 13.33% 50.43% 34.75%
70 - - - -
100 - - - -
150 - - - -
200 - - - -
300 - - - -
500 - - - -

Table 5: Gaps for the ILP model.

100 seconds. The B&B algorithm finds at least a fea-
sible solution with n up to 200 and 5 minutes as time
limit. In average, the Gap1 and the Gap2 of the B&B
algorithm are less than 8% and 16% when n ≤ 300.
However, the maximum Gap2 shows some hard cases.

5 Conclusion

In this paper, we study an integrated production and
outbound distribution scheduling problem with one
manufacturer and one customer. We provide a poly-
nomial time algorithm for two special cases of prob-
lems SP-NSD and SP-SD. We also provide a B&B
algorithm for the problem NSP-NSD and evaluate its
performance using numerical experiments. The re-
sults show that the proposed algorithm has the better
performance than the ILP model and can solve opti-
mally more than 80% of the instances with n ≤ 100
within an average execution time less than 100 sec-
onds.

Several important research issues remain open for fu-
ture investigations. A first important research direc-
tion is to study the complexity of problems SP-NSD
and SP-SD. Another issue is to provide a better lower
bound for the B&B algorithm. Finally, one might
consider extending the model to a production system
with parallel machines.
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