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Orienting edges to fight fire in graphs

Julien Bensmaila,1, Nick Brettella,2

aLIP, UMR 5668 ENS Lyon, CNRS, UCBL, INRIA, Université de Lyon, France

Abstract

We investigate a new oriented variant of the Firefighter Problem. In the traditional Firefighter
Problem, a fire breaks out at a given vertex of a graph, and at each time interval spreads to
neighbouring vertices that have not been protected, while a constant number of vertices are
protected at each time interval. In the version of the problem considered here, the firefighters
are able to orient the edges of the graph before the fire breaks out, but the fire could start at
any vertex. We consider this problem when played on a graph in one of several graph classes,
and give upper and lower bounds on the number of vertices that can be saved. In particular,
when one firefighter is available at each time interval, and the given graph is a complete graph,
or a complete bipartite graph, we present firefighting strategies that are provably optimal. We
also provide lower bounds on the number of vertices that can be saved as a function of the
chromatic number, of the maximum degree, and of the treewidth of a graph. For a subcubic
graph, we show that the firefighters can save all but two vertices, and this is best possible.

1. Introduction

The Firefighter Problem was introduced by Hartnell [5] in 1995, and can be described as
follows. Suppose we are given a graph G, and a vertex v of G at which a fire breaks out. At each
time unit, the fire propagates from each burning vertex to all of its unprotected neighbours.
At the end of each time unit, a firefighter is allowed to permanently protect one vertex that is
not already burning. Typically, the firefighters’ goal is to prevent as many vertices as possible
from burning. Following [4], MVS(G, {v}; 1) denotes the maximum number of vertices of G
that can be saved, over all strategies. More generally, when f ≥ 1 firefighters can protect the
graph at each step, and the fire starts at the vertices in S ⊆ V (G), then the maximum number
of vertices of G that can be saved is denoted MVS(G, S; f).

This problem has gained increasing attention since its introduction; see [4] for a comprehen-
sive survey. Some investigations into directed versions have also been conducted recently [1, 7],
where the fire propagates from a burnt vertex only through its outgoing incident arcs. As
noted in [4], this directed version is, in a sense, at least as difficult as the undirected version,
since there exists an orientation for any undirected graph in which the fire propagates as in
the undirected version. Moreover, keeping the fire contained to a small set of burnt vertices
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is generally difficult, even in the undirected version of the problem. As evidence of this state-
ment, we refer the reader to [6], where the decision problem Firefighter (given a graph G
and initial burning vertex v ∈ V (G), is MVS(G, {v}; 1) ≥ k?) is shown to be NP-complete for
cubic graphs; and to [3], where the problem is shown to be NP-complete for trees of maximum
degree 3.

In this paper, we investigate a new variant of this problem, based on the following question:
how can we orient the edges of G in order to minimise the number of burnt vertices? Such a
problem might be viewed, for example, as a model of the spread of information, or a virus, where
there is some mechanism that enforces that the flow is only in one direction. Alternatively,
imagine a system of rivers, where dams and floodgates can be installed to ensure that, in the
event of a flood, the flow is in a certain direction; and structures can be built that block the
flow completely.

Note that the orientation of G is fixed before the first vertex burns, and cannot be modified
later. One motivation for such a restriction is that the operation of orienting G could correspond
to a complicated real-life task that is too costly to perform on-demand. Moreover, if the
orientation can be modified at will, the problem becomes very easy; simply ensure that an edge
that is incident to one burnt and one unburnt vertex is oriented towards the burnt vertex. For
the same reason, this version of the problem is only interesting when a fire can break out at
any vertex (not known beforehand).

Let G be an undirected graph and let f be an integer at least one. We can view this
problem as a two-player game played on G: player 1 is the fire, and their goal is to maximise
the number of vertices that burn, while player 2 is the fire brigade, and their goal is to minimise
this number. The game proceeds as follows: player 2 picks an orientation for G, then player 1
picks a vertex at which the fire breaks out, then, at each time interval, player 2 picks f vertices

to protect, until the fire no longer propagates. We denote by
−→
β (G, f) the number of vertices

that burn when both players employ an optimal strategy.

Alternatively, let
−→
β (G, v; f) denote the minimum number of vertices that burn for a graph

G with f firefighters when the fire starts at the vertex v ofG, taken over all firefighting strategies

and all orientations for G; then
−→
β (G, f) is the maximum of

−→
β (G, v; f) over all vertices v of

G. For the sake of simplicity, we will sometimes adopt the following slight abuse of notation:
−→
β (G, f ≤ k) denotes

−→
β (G, f) for any f ≤ k. For an oriented graph

−→
G , we let β(

−→
G, f)

denote the maximum number of vertices that burn using an optimal firefighting strategy using

f firefighters, taken over every possible vertex for the fire to break out. Thus
−→
β (G, f) is the

minimum of β(
−→
G, f) taken over all orientations

−→
G of G. We analogously define β(G, f), where

G is an undirected graph, as the maximum number of vertices that will burn using an optimal
firefighting strategy when G is viewed as a directed graph with arcs −→uv and −→vu for each edge
uv of G. Thus β(G, f) = |V (G)| −minv∈V (G) MVS(G, {v}; f).

Since an undirected graph G can be viewed as a directed graph
−→
G where, for each edge

uv of G, there are arcs −→uv and −→vu in
−→
G , orienting the edges of an undirected graph effectively

decreases the outdegree of some (or all) of the vertices of G. Thus, orienting the edges of a
graph is a very strong tool to prevent the fire from propagating too widely. As further evidence
of this claim, observe that if u is a vertex in G with maximum degree ∆, then u is a threat to

fire containment. But this threat can be easily managed in an orientation
−→
G of G by orienting

all edges incident to u towards u: in such a situation, a fire that breaks out at u will not
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propagate any further.
It is not too surprising that the oriented version of the problem swings the balance in favour

of the firefighters, but it is perhaps surprising the extent to which it does so. Suppose one
firefighter is available at each time interval. We show that for a connected graph G, at most
one vertex burns using an optimal strategy if and only if G contains at most one cycle. We
describe a strategy by which, for any subcubic graph G, at most two vertices burn. We can
also guarantee at most two vertices burn using an optimal strategy on a partial 2-tree G. For
graphs with maximum degree 4, at most five vertices burn; but this bound may not be sharp.
Consider the decision problem OrientedFirefighter, where the input is a graph G, and the

question is: “is
−→
β (G, 1) ≥ k?” As a straightforward consequence of our results, this problem is

trivial (running in constant time) when restricted to trees, subcubic graphs, or partial 2-trees.
This is in constrast to the problem Firefighter, which is NP-complete when the input is
restricted to these graph classes.

One other interesting aspect of this problem is that the properties of a ‘good’ orientation
−→
G

(from the firefighters’ point of view) are different from the usual properties which are considered
‘good’ in an orientation. For example, having an orientation with large diameter and long
longest paths is usually desirable; refer, for example, to the investigations in [2]. In the given
context, however, we try to find an orientation that avoids such properties.

Much of our focus, in what follows, is proving an upper bound on
−→
β (G, f) for any G in

some class of graphs. To find such an upper bound x, we need only prove the existence of a
‘good’ orientation and strategy by which we can guarantee no more than x vertices burn. On
the other hand, it seems, in general, more difficult to prove lower bounds, where all possible
orientations and strategies must be considered. However, a trivial lower bound is given by
considering the minimum outdegree over all possible orientations of a graph. Furthermore, it
seems easier to obtain tight lower bounds for dense graphs. For the class of complete graphs,
or the class of complete bipartite graphs, we prove sharp lower bounds when one firefighter
is available at each time interval. Thus, the strategies described that meet these bounds are
optimal.

In what follows, we assume that G is finite and simple, unless otherwise stated. We also
assume that G is connected; if not, we can consider each connected component of G in turn.

We study the parameter
−→
β (G, f) throughout, assuming that the fire starts at a single vertex,

f ≥ 1, and the firefighters’ goal is always to save the maximum number of vertices.
After having introduced some useful tools and basic observations in Section 2, we consider

several approaches to finding bounds for
−→
β in Sections 3 to 6. We start by considering complete

graphs and bipartite graphs, in Section 3. We then demonstrate, in Section 4, some relationships

between
−→
β and several graph invariants: namely, chromatic number, arboricity, and the size

of a feedback vertex set. We focus on graphs that have bounded treewidth, bounded degree,
or are planar, in Section 5. In Section 6, we give a characterisation of the class of graphs for

which
−→
β (G, 1) = 1, and discuss a characterisation of the class of graphs G with

−→
β (G, 1) = k,

where k ≥ 2.

Drawing conventions: In all figures, a burnt vertex is filled with black, and a label x indicates
that this vertex burnt at time x. A diamond vertex represents a protected vertex, with a label
y′ indicating that this vertex has been protected at time y (that is, it was protected immediately
after the vertices labelled y started burning). Time units are numbered starting from 1. See
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Figure 1: An example of firefighting in an oriented graph.

Figure 1 for an example.

2. Preliminaries

In this section, we introduce several foundational results that will be used in subsequent
sections. We start with the following observation, which will be used to deduce lower bounds

on
−→
β .

Observation 2.1. Let H be a subgraph of some graph G. Then
−→
β (G, f) ≥

−→
β (H, f) for any f .

Proof. Let
−→
G be any orientation of G, and let

−→
H be its restriction to H . If a fire in

−→
G breaks

out at some vertex u ∈ V (
−→
G ) ∩ V (

−→
H ), then at least

−→
β (H, f) vertices of

−→
G [V (

−→
H )] will burn.

The inequality follows.

In the context of the traditional Firefighter Problem, it has been shown that it is often
difficult to prevent the fire from spreading widely. However, when the firefighters have the ability
to orient the graph, firefighting becomes easier, as there is always an orientation that, essentially,
reduces the degree of each vertex by almost a half (we make this precise in Lemma 2.3). This
increases the number of graphs for which firefighting is manageable with a given number of
firefighters. In particular, firefighting on trees is straightforward, due to the following lemma.

Lemma 2.2. Every tree admits an orientation with maximum outdegree at most 1.

Proof. Let T be a tree. Arbitrarily choose a root node r of T , and let
−→
T be the orientation of

T obtained by orienting all edges towards r (that is, if uv is an edge of T and u is nearer to r

than v, then orient uv from v to u). Then
−→
T has maximum outdegree at most 1.

Lemma 2.3. Every graph G admits an orientation
−→
G with

d+−→
G
(v) ≤

⌊

dG(v)

2

⌋

+ 1

for each vertex v ∈ V (G).

Proof. While G is not a forest, repeatedly pick a cycle C in G, add C to a set C, and remove
E(C) from G. At the end of this procedure, we have a decomposition of G into a forest F and

a collection C of edge-disjoint cycles. The claimed orientation
−→
G is obtained by orienting the

elements of F and C as follows:
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• Orient the edges of every tree T of F so that T has maximum outdegree 1. This is possible
by Lemma 2.2.

• For every cycle C of C, orient its edges in order to form a directed cycle.

Note that orienting any cycle of C contributes at most 1 to the outdegree of each vertex in
−→
G . Since every vertex v is traversed by at most ⌊dG(v)

2
⌋ cycles of C, orienting the cycles of C

contributes at most ⌊dG(v)
2

⌋ to the outdegree of v. The claim then follows.

Let
−→
G be a directed graph, and let v be a vertex of

−→
G . The eccentricity of v, denoted

ecc(v), is the greatest distance from v to any other vertex of
−→
G . The radius of

−→
G , denoted

rad(
−→
G ), is the minimum eccentricity of a vertex of

−→
G .

We now consider some rough bounds on β for oriented graphs with bounded maximum
outdegree.

Observation 2.4. Let
−→
G be an oriented graph with maximum outdegree ∆+. Then,

(i) β(
−→
G, f ≥ ∆+) = 1, and

(ii) β(
−→
G, 1) ≤ |V (

−→
G)| − rad(

−→
G).

Proof. By positioning ∆+ firefighters on the outneighbours of the initially burning vertex, (i)
is trivial.

We now consider (ii). Assume the fire breaks out at u, and partition V (
−→
G ) into layers

{u}, V1, V2, . . . , Vd, where d = ecc(u) and, for every i ∈ {1, 2, . . . , d}, the part Vi contains the

vertices of
−→
G at distance i from u. Note that at time i + 1, all vertices in layers V1, V2, . . . , Vi

are either burnt or protected. Now consider the strategy that protects a vertex in Vi at each
time unit i. Applying this strategy, at least d vertices will be saved. In the worst case, when d

is at a minimum, d = rad(
−→
G ). The bound then follows.

We note that when f = ∆+ − 1, the basic strategy used in the proof of (ii) is sufficient to
prevent the fire propagating widely.

Corollary 2.5. For every oriented graph
−→
G with maximum outdegree ∆+,

β(
−→
G,∆+ − 1) ≤ 1 +

|V (
−→
G)| − 1

∆+
.

Proof. Applying the strategy described in the proof of Observation 2.4, we deduce that at
most one new vertex burns at each time unit. For each burning vertex v, we protect ∆+ − 1
outneighbours of v, so, in the worst case, 1 of ∆+ outneighbours of v burns. Excluding the

vertex at which the fire starts, 1
∆+ of the |V (

−→
G )| − 1 vertices burn, and the result follows.

We now consider a lower bound for
−→
β that can be obtained by considering the minimum

outdegree of the given graph.

Lemma 2.6. Let
−→
G = (V,A) be a directed graph with maximum outdegree ∆+. Then ∆+ ≥ |A|

|V |
.

Moreover, if equality holds, then d+(v) = |A|
|V |

for every v ∈ V .
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Figure 2: An optimal orientation for firefighting in a tree.

Proof. By the handshaking lemma for directed graphs,

∆+ · |V | ≥
∑

v∈V

d+(v) = |A|.

The result follows easily.

Corollary 2.7. Let G be a graph. Then
−→
β (G, 1) ≥ |E(G)|

|V (G)|
.

3. Firefighting in basic graph classes

In this section, we give lower and upper bounds on the number of vertices we can save for
trees, complete graphs, and bipartite graphs.

3.1. Trees

Unlike for the traditional Firefighter Problem, there is an optimal strategy when the given
graph is a tree (see Figure 2, for example).

Proposition 3.1. For every tree T , we have
−→
β (T, f ≥ 1) = 1.

Proof. By Lemma 2.2, every tree admits an orientation with maximum outdegree at most 1.
The result follows easily.

3.2. Complete graphs

In this section, we focus on the family of complete graphs. We first present a lower bound

on
−→
β (Kn, 1), and then upper bounds on

−→
β (Kn, f). Combining these results, we are able to

compute
−→
β (Kn, 1) for any n, demonstrating that the firefighting strategy used to derive the

upper bounds is optimal when f = 1.
The lower bound is the following:

Proposition 3.2. For every n ≥ 1, we have
−→
β (Kn, 1) ≥ n− 3.

Proof. Clearly, we may assume that n ≥ 4. Let
−→
K be an orientation ofKn, and let u be a vertex

with maximum outdegree ∆+. Let N1 be the outneighbours of u. Since |E(Kn)| =
n(n−1)

2
, it

follows, by Lemma 2.6, that |N1| ≥
n−1
2
, so |N1| ≥ 2. Let N2 be the vertices in the second

outneighbourhood of u; that is, N2 contains those vertices not in {u} ∪ N1 with an incoming

incident arc from a vertex of N1. Finally, let N3 = V (
−→
K) \ ({u} ∪ N1 ∪ N2). Suppose N3 is

non-empty, and consider the arcs incident with a vertex x in N3. Such arcs that are incident
with u or a vertex in N1 are oriented away from x, since otherwise x would be in the first or
second outneighbourhood of u. Thus d+(x) ≥ |N1|+ 1 > d+(u); a contradiction. So N3 = ∅.

6
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Figure 3: A partial orientation of Kn, as in the proof of Proposition 3.2. A solid arrow signifies the direction of
all arcs between vertices in the two subsets, whereas a dashed arrow indicates the existence of an arc with the
given orientation between the two subsets.

Suppose that a fire starts at u. If the first firefighter is positioned at a vertex in N2, then
it follows that n − 2 vertices will burn. So we may now assume that a vertex in N1, say v, is
protected at time 1. Let N ′

1 = N1\{v}, let N
′
2 be the subset of N2 consisting of outneighbours of

a vertex in N ′
1, and let N ′

3 = V (
−→
K )\({u, v}∪N ′

1∪N
′
2). Since all but at most one of the vertices in

N ′
2 burn at time 3, we may assume that N ′

3 is non-empty (otherwise at least n−2 vertices burn).
Now consider the arcs incident with a vertex x in N ′

3. Evidently, such arcs that are incident
with a vertex in N ′

1 ∪ {u} are oriented away from x. Thus d+(x) ≥ |N ′
1|+ 1 = d+(u) = ∆+, so

all arcs incident with x and a vertex in N ′
2 are oriented towards x. This situation is illustrated

in Figure 3.
Now, if |N ′

2| > 1, then a fire starting at u will spread to all unprotected vertices in N ′
3 at

time 4. In this case, n− 3 vertices burn. If N ′
2 = ∅, then N ′

3 = ∅, and n− 1 vertices burn. So
we may assume that N ′

2 = {w}. Then, if a fire instead starts at w, and |N ′
3| > 1, it spreads to

all unprotected vertices in N ′
1 ∪ {u} at time 3, so at most three vertices can be saved. In the

remaining case, |N ′
3| ≤ 1, so |N ′

1| ≥ n− 4, in which case when a fire starts at u, at least n− 3
vertices burn. This completes the proof.

Proposition 3.2 is our first confirmation that
−→
β is not bounded above by some constant for

all graphs. In particular, for any k there exists a graph G with
−→
β (G, 1) > k.

Now we consider upper bounds on
−→
β for complete graphs. First, we focus on complete

graphs with odd order, since they admit a regular orientation that facilitates an effective defence
strategy. We then use this result to derive a similar upper bound for complete graphs with
even order.

Proposition 3.3. For odd n ≥ 3,

−→
β (Kn, f) ≤











n− 3f if f < n−1
4
,

n−1
2

− f + 1 if n−1
4

≤ f < n−1
2
,

1 if f ≥ n−1
2
.

Proof. Let V (Kn) = {v0, v1, . . . , vn−1} and let
−→
K be the orientation of Kn where, for every

i ∈ {0, 1, . . . , n − 1} and j′ ∈ {i + 1, i + 2, . . . , i + n−1
2
}, the edge vivj is oriented from vi to

vj , where j = j′ mod n. Note that
−→
K is n−1

2
-outregular. For each vertex vi ∈ V (

−→
K ), we
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associate an ordering vi+1, vi+2, . . . , vi+n−1

2

on the outneighbours of vi, where the subscripts are

interpreted modulo n, and when we refer to consecutive outneighbours, or outneighbours with
the largest indices, we mean with respect to this ordering.

We may assume, by symmetry, that the fire breaks out at v0, and that f < n−1
2

(otherwise
the fire can be stopped at time 1). Let F1 be the f consecutive outneighbours of v0 with the
largest indices, and set B2 = N+(v0) \ F1. In particular, |B2| =

n−1
2

− f . Then, at time 1, we
protect all vertices in F1. By our choice of F1 and B2, the fire will propagate to B2 at time 2.

Now let B′
3 = N+(vn−1

2
−f) \ F1. In other words, B′

3 contains those vertices which may

potentially burn at time 3. Obviously, if f ≥ |B′
3|, then we can entirely protect B′

3 at time 2,
and hence stop the fire propagation. The upper bound given when f ≥ n−1

4
then follows. Now

we may assume that f < n−1
4
. Let F2 be the f consecutive vertices of B′

3 with the largest
indexes, and set B3 = B′

3 \ F2. By the remark above, B3 is non-empty and, more precisely,
|B3| = |N+(vn−1

2
−f )|−2f . We protect the vertices in F2 at time 2. The fire then propagates to

B3 at time 3. Now note that the last vertex of B3 has an outgoing arc towards all unburnt and
unprotected vertices (since B3 = {vn−1

2
+1, . . . , vn−1−2f} with 2f < n−1

2
). Let B′

4 be this subset

of vertices. We have B′
4 = N−(v0) \B3 \ F2, hence

|B′
4| =

n− 1

2
−

(

n− 1

2
− 2f

)

− f = f ;

so all vertices of B′
4 can be protected at time 3. Thus, the set of vertices that burn is {v0} ∪

B2 ∪ B3. It follows that

β(
−→
K, f) ≤ 1 +

(

n− 1

2
− f

)

+

(

n− 1

2
− 2f

)

= n− 3f,

as claimed.

Complete graphs with even order do not admit a regular orientation like the one described
in the proof of Proposition 3.3. However, we can obtain similar bounds for these graphs by
‘sacrificing’ a vertex.

Corollary 3.4. For all even n ≥ 4,

−→
β (Kn, f) ≤



















n− 3f if f < n−2
4
,

n
2
− f + 1 if n−2

4
≤ f < n−2

2
,

2 if n−2
2

≤ f < n
2
,

1 if f ≥ n
2
.

Proof. Let Kn be a complete graph, with n even and at least 4, containing a vertex v. Let
−→
K

be an orientation of Kn for which
−→
K − {v} is outregular, as in the proof of Proposition 3.3,

and all arcs incident to v are oriented towards v. Then, if the fire breaks out at v in
−→
K , it

will not propagate to any other vertices. If the fire breaks out at some other vertex, then
the strategy described in Proposition 3.3 applies: the only difference is that v will also burn.

Thus
−→
β (Kn, f) ≤

−→
β (Kn−1, f) + 1, so the corollary holds when f < n

2
. Finally, clearly

−→
K has

outdegree n
2
– so

−→
β (Kn, f ≥ n

2
) = 1 as required.
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By combining Propositions 3.2 and 3.3 and Corollary 3.4, we deduce the following when
f = 1:

Theorem 3.5. For all n ≥ 5,
−→
β (Kn, 1) = n− 3.

On the other hand,
−→
β (K3, 1) = 1 and

−→
β (K4, 1) = 2 (by Corollary 2.7, and Proposition 3.3

or Corollary 3.4 respectively). From Observation 2.1 and Theorem 3.5, this also gives a lower

bound on
−→
β (G, 1) whenever the clique number of G is known.

We suspect that the strategy presented in the proof of Proposition 3.3 is also optimal when
f > 1, leading to the following conjecture:

Conjecture 3.6. For each f ≥ 1 and n > 4f + 1,

−→
β (Kn, f) = n− 3f.

3.3. Bipartite graphs

In this section we consider bounds on
−→
β for bipartite graphs. Since bipartite graphs have

no cliques of size bigger than two, Proposition 3.2 gives only a trivial lower bound on
−→
β for

these graphs.

We first give a lower bound on
−→
β for complete bipartite graphs, by finding a lower bound

on the maximum outdegree for any orientation of such a graph.

Proposition 3.7. For positive integers p and q, we have
−→
β (Kp,q, f) ≥

pq

p+q
+1− f . Moreover,

when f ≤ pq

p+q
− 1, we have

−→
β (Kp,q, f) ≥

pq

p+q
+ 2− f .

Proof. Let
−→
K be an orientation of Kp,q with maximum outdegree ∆+. Since

−→
K has p+q vertices

and pq arcs, ∆+ ≥ pq

p+q
, by Lemma 2.6. Hence, there exists some vertex v ∈ V (

−→
K ) such that

d+(v) ≥ pq

p+q
. If the fire breaks out at v, then at least pq

p+q
− f vertices will burn at time 2, thus

proving the first statement of the proposition.

If ∆+ > pq

p+q
, then

−→
β (Kp,q, f) >

pq

p+q
+1−f , satisfying the final statement of the proposition.

Otherwise, ∆+ = pq

p+q
, so, by Lemma 2.6, every vertex has outdegree precisely pq

p+q
. Each of

the (at least pq

p+q
− f) vertices that burn at time 2 has pq

p+q
outneighbours, none of which are

protected or burning prior to the arrival of the time-2 firefighters. Thus, at least one such
vertex burns at time 3, provided pq

p+q
− f ≥ 1.

Consider now when f = 1. Assume, without loss of generality, that q ≥ p. If q > p(p− 1),

then Proposition 3.7 implies that
−→
β (Kp,q, 1) ≥ p. We will see, in Observation 3.9, that, for

such p and q, this bound is sharp. However, when q is much smaller than p2, this bound is
poor. We now consider an improved bound when p, q ≥ 6. The proof is similar to that for
Proposition 3.2, but requires a more careful case analysis.

Proposition 3.8. Let Kp,q be a complete bipartite graph with p, q ≥ 6. Then

−→
β (Kp,q, 1) ≥ min{p, q}.

9



u

N1

N2

N4

N3

Figure 4: A partial orientation of Kp,q, as in the proof of Proposition 3.8. A solid arrow signifies the direction
of all arcs between vertices in the two subsets, whereas a dashed arrow indicates the existence of an arc with
the given orientation between the two subsets.

Proof. Let (P,Q) be the bipartition of Kp,q with |P | = p and |Q| = q. Let
−→
K be an orientation

of Kp,q and let u be a vertex with maximum outdegree. Without loss of generality, let u be in

P . We now consider the ith outneighbourhood Ni of u in
−→
K , for each i. Let N1 be the set of

outneighbours of u, so each arc incident with u is oriented away from u if and only if its other
end is in N1. Let N2 be the subset of P \ {u} consisting of vertices with an incoming arc from
a vertex in N1. Let N3 be the subset of Q\N1 consisting of vertices with an incoming arc from
a vertex in N2. Every vertex v in P \ (N2 ∪ {u}) has arcs towards each vertex of N1, otherwise
v would be in N2. Since u has maximum outdegree, all other arcs incident with v are oriented
towards v. So let N4 = P \ (N2 ∪ {u}) and observe that all arcs between a vertex in Q \ N1

and a vertex in N4 are oriented towards the vertex in N4. Suppose Q \ (N1 ∪N3) is non-empty,
and let v be a vertex in this set. Then v has every vertex in P as an outneighbour, so a fire
starting at v will burn at least p vertices, satisfying the proposition. So we may assume that
Q = N1 ∪N3. This situation is illustrated in Figure 4.

We may assume that N3 6= ∅, otherwise if a fire starts at u, then q vertices will be burning
at time 2, satisfying the proposition. Since p, q ≥ 6, Lemma 2.6 implies that |N1| ≥ 3. If
|N2| ≤ 2, then N4 6= ∅, and a fire starting at a vertex in N3, say w, will spread to all but at
most one vertex of N4∪{u, w} at time 2, and all but at most two vertices of N1∪N4∪{u, w} at
time 3. Since |N1| ≥ 3, at least p vertices burn, as required. So we may assume that |N2| ≥ 3.

We now deduce further structure by considering when the fire starts at u. In what follows,
when we say that (X, Y ) is a partition of a set Z, the sets X and Y need not be non-empty.
Let (N ′

1, F1) be a partition of N1, let N ′′
2 be the set of outneighbours of N ′

1, and let (N ′
2, F2)

be a partition of N ′′
2 . Note that N ′′

2 ⊆ N2. Let N ′′
3 be the set of outneighbours of N ′

2 in N3,
and let (N ′

3, F3) be a partition of N ′′
3 . Also, let Z = N3 \N

′′
3 , so each arc between Z and N ′

2 is
towards N ′

2. Finally, let N
′′
4 be the set of outneighbours of N ′

3 in P \ ({u} ∪N ′′
2 ), let Y be the

remaining vertices in P , and let (N ′
4, F4) be a partition of N ′′

4 . We illustrate this situation in
Figure 5. The vertices in F1 ∪ F2 ∪ F3 ∪ F4 represent vertices that are protected in the first 4
time units if the fire starts at u. So |F1 ∪ · · · ∪ Fi| ≤ i for i ∈ {1, 2, 3, 4}.

Since |N1| ≥ 3 and |F1| ≤ 1, we have |N ′
1| ≥ 2. If |N ′

1| = 2, then ∆+ = 3, and it follows
that p = q = 6 and d+(v) = 3 for each vertex v, by Lemma 2.6. But in this case, it is easily
verified that |N ′

2| ≥ 2 and |N ′
3| ≥ 1, implying that at least p = q = 6 vertices burn, as required,

when a fire starts at u. So we may assume that |N ′
1| ≥ 3.

If a fire starts at u, then at time 5 all vertices in {u} ∪N ′
1 ∪N ′

2 ∪N ′
3 ∪N ′

4 burn (where N ′
i

10



u

N1

N ′

1

F1N ′′

2

N ′

2

F2 N ′′

3

N ′

3

F3N ′′

4

N ′

4

F4

N3

Y

Z

Figure 5: A partial orientation of Kp,q, as in the proof of Proposition 3.8, taking into account vertices that are
protected in the first four time intervals when the fire starts at u.

may be empty, for some i ∈ {2, 3, 4}, but then N ′
i ∪N ′

i+1∪· · ·∪N ′
4 = ∅ by definition). If Y = ∅,

then this is at least p + |N ′
1 ∪ N ′

3| − |F2 ∪ F4| ≥ p vertices, satisfying the proposition. So we
henceforth assume that Y 6= ∅. In particular, observe that if |N ′

3| > |F1|, then any vertex in
Y has outdegree more than u, so Y = ∅. So it remains to consider when |N ′

3| ≤ |F1| ≤ 1; the
remainder of the proof is dedicated to handling this case.

First, we show that |F1 ∪ N ′′
2 | ≥ 3. If F1 = ∅, then N ′′

2 = N2, which has size at least 3,
satifying the claim. So assume that F1 6= ∅. Towards a contradiction, suppose that |N ′′

2 | ≤ 1.
Recall that the only vertices in P \ {u} with incoming arcs from N ′

1 are in N ′′
2 . The vertices in

P \ ({u} ∪N ′′
2 ) can be partitioned into (N2 \N

′′
2 , N4), where |N2 \N

′′
2 | ≥ 2, since |N2| ≥ 3. We

first consider a fire that breaks out at the vertex in F1. Let P
′ be a subset of N2 \N

′′
2 of size at

least |N2 \N
′′
2 |−1. Let Q′ be the subset of vertices in N3 that have outgoing arcs towards every

vertex in P ′. If Q′ = ∅, then if a fire starts at the vertex in F1, it spreads to P ′ at time 2, since
if a vertex in N2 \N

′′
2 is protected, we may assume it is not in P ′. At time 3, the fire spreads to

all unprotected vertices in N3, since Q′ = ∅ implies that every vertex of N3 is reachable from
P ′; and to unprotected vertices in N ′

1, since P ′ is non-empty and all arcs between P ′ and N ′
1

are towards N ′
1. If the first firefighter is positioned in P , then at least q−1+ |P ′| vertices burn;

otherwise, q − 2 + |N2 \N
′′
2 | vertices burn; in either case q vertices burn as required. Now we

may assume that Q′ 6= ∅. Consider a fire starting at q in Q′. At time 2, all unprotected vertices
in {u}∪P ′ ∪N4 burn, where |{u}∪P ′ ∪N4| ≥ p− 2. At time 3, all unprotected vertices in N ′

1

burn, since vertices in N ′
1 have incoming arcs from both u and the non-empty set P ′. Hence, a

total of at least 1 + (p − 2) + 3 − 2 ≥ p vertices are burning at this time. So we may assume
that |F1 ∪N ′′

2 | ≥ 3, and, in particular, that N ′
2 6= ∅.

If Z = ∅, then a fire starting at u burns q − |F1 ∪ F3| + |{u} ∪ N ′
2| vertices. This value

is at least q, since N ′
2 6= ∅, and when |N ′

2| = 1, then |F1 ∪ N ′′
2 | ≥ 3 implies that |F2| ≥ 1 so

|F1 ∪ F3| ≤ 2. So we may now assume that Z 6= ∅.
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Suppose that |N ′
3| = |F1| = 1. Recall that Y is non-empty. Since any vertex in Y has every

vertex in N ′
1 ∪ N ′

3 as an outneighbour, all arcs between Z and Y are towards Y . Let (Z1, Z2)
be the partition of Z such that vertices in Z1 are outneighbours of some vertex in N ′

4, whereas
all arcs incident with a vertex in Z2 and a vertex in N ′

4 are oriented towards the vertex in N ′
4.

Suppose that Z2 is non-empty, and consider a fire starting at a vertex in Z2. Then all but at
most one vertex of {u}∪N ′

2∪N ′
4∪Y burns at time 2, so a total of at least p−|F2∪F4| vertices

are burning at this time. At time 3, the fire will spread to the vertex in N ′
3, if unprotected,

since either Y or N ′
2 is unprotected, as well as unprotected vertices of N ′

1, since |{u} ∪ Y | ≥ 2.
Hence, at least p− |F2 ∪ F4|+ |N ′

1| vertices burn. Since |N ′
1| ≥ 3 ≥ |F2 ∪ F4|, this is at least p

vertices, as required.
So we may assume that Z2 is empty. Thus Z = Z1, and this set is non-empty. If N ′

4 = ∅,
then, as in the previous paragraph, at least p − |F2 ∪ F4| + |N ′

1| ≥ p vertices burn when a
fire starts at a vertex in Z. So assume that N ′

4 6= ∅. Now, a fire starting at u spreads to
N ′

1 ∪ N ′
2 ∪ N ′

3 ∪ N ′
4 at time 5, and all unprotected vertices in Z = Z1 at time 6, so at least

q−|F1∪F3|+|N ′
2∪N

′
4| vertices burn. This value is at least q, because N

′
2 and N ′

4 are non-empty,
and when |F1 ∪ F3| = 3, then |N ′

2| ≥ 2, since F2 = ∅. So the proposition holds when |N ′
3| = 1.

Suppose that N ′
3 = ∅. Then, by definition, N ′′

4 = ∅. Recall that Y, Z 6= ∅. Let z be a
vertex in Z. If z has arcs towards every vertex in Y , then a fire starting at z spreads to at least
p− |F2| vertices by the end of time 2, and, since |Y | ≥ 1, it spreads to unprotected vertices in
N ′

1 at time 3; so p vertices burn as required. Thus, for each z in Z, there exists a vertex y in
Y such that there is an arc from y towards z. Moreover, every vertex in Y has at most one
outneighbour in Z, since u has maximum outdegree. It follows that |Y | ≥ |Z|, and that there
exists a subset Y ′ of Y with |Y ′| = |Z| such that each y in Y ′ has precisely one outneighbour
in Z, and for distinct y1, y2 in Y ′, their outneighbours in Z are distinct. Note, in particular,
that each vertex in Z has |Z| − 1 outneighbours in Y ′.

Suppose that |Z| ≥ 2. We first consider when |Y | > |Z|. Then there exists some vertex y′ in
Y \Y ′. Since y′ has at most one outneighbour in Z, there is an arc from some vertex z′ in Z to y′.
So z′ has at least |Z| outneighbours in Y ; we denote these outneighbours by N+

Y (z
′). Suppose

that a fire starts at z′. Then, at time 2, all unprotected vertices in N ′
2 ∪ {u} ∪ N+

Y (z
′) burn.

At time 3, unprotected vertices in either N ′
1 ∪ F1 (if u was not protected at time 1) or N ′

1 ∪ F3

(otherwise) burn. By the end of time 3, at least |N ′
1∪Z∪F ′|+|N ′

2|+|{u, z′}|−2 = q−|F |+|N ′
2|

vertices burn, where {F, F ′} = {F1, F3}. Evidently |N ′
2| ≥ |F1|; and 3 ≤ |F1 ∪ F2| + |N ′

2| ≤
3−|F3|+ |N ′

2|, so |N ′
2| ≥ |F3|. Hence at least q vertices burn when |Y | > |Z|. If |Y | = |Z|, then,

by a similar argument, at least |N ′
1 ∪ F | + |Z| + |N ′

2| − 1 vertices burn, where F ∈ {F1, F3}.
Since |Y | = |Z| and |N ′

1| ≥ 3, this value is at least p − |F2| + |F | + 1, so we get the desired
result when |F | ≥ |F2| − 1. In the exceptional case, |F2| = 2, so F1 = ∅. But then N ′′

2 = N2, so
all arcs between vertices in Y ⊆ N4 and Z ⊆ N3 are towards Y ; a contradiction.

Finally, suppose |Z| = 1. Let Z = {z} and let y be the vertex in Y that has z as an
outneighbour. A fire starting at u burns all vertices in {u} ∪ N ′

2 ∪ (Q \ (F1 ∪ F3 ∪ {z})) by
the end of time 2, so at least q vertices burn when |N ′

2| ≥ |F1 ∪ F3|. So we may assume that
|N ′

2| < |F1 ∪ F3|. Then either |N ′
2| = 2 and F2 = ∅; or |N ′

2| = 1, in which case |F2| = 1. Thus
|N ′′

2 | = 2, so |Y | ≥ 3. Suppose there exists y′ ∈ Y \ {y} such that z is an outneighbour of y′.
Since u has maximum outdegree, arcs between y or y′ and F3 are oriented away from F3. Now
a fire starting at a vertex in F3 burns q− |F1 ∪F3|+2 vertices by the end of time 2. If F2 6= ∅,
this is at least q burning vertices, as required; otherwise, unprotected vertices in N ′

2 burn at
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time 3, so again at least q vertices burn as required. So we may assume that all arcs between
z and Y \ {y} are oriented away from z, where |Y \ {y}| ≥ 2. Now, if a fire starts at z, then at
least p−|F2∪{y}| vertices burn by the end of time 2, and then the fire spreads to unprotected
vertices of N ′

1 at time 3. So at least p vertices burn. This completes the proof.

This proposition implies a lower bound on
−→
β for any graph containing a complete bipartite

subgraph. Moreover, it shows that any family of graphs containing graphs with arbitrarily large

complete bipartite subgraphs has no constant upper bound for
−→
β .

We now consider an upper bound for bipartite graphs.

Observation 3.9. For every bipartite graph G with bipartition (A,B),

−→
β (G, f) ≤ 1 + min{∆(A),∆(B)} − f.

Proof. Assume that ∆(A) ≤ ∆(B) and consider an orientation
−→
G of G where all arcs are

oriented from A to B. Note that if the fire breaks out at some vertex of B, then it cannot
propagate to other vertices ofG. Now if the fire breaks out at some vertex u inA, then, assuming
the firefighters protect f outneighbours of u at time 1, at most ∆(A)−f new vertices will burn
at time 2. However, the fire will not be able to propagate further, so at most 1 + ∆(A) − f
vertices burn.

When f = 1, Propositions 3.7 and 3.8 imply that the strategy described in the proof of
Observation 3.9 is optimal for Kp,q with q > p(p− 1) or min{p, q} ≥ 6.

Theorem 3.10. For all p, q ≥ 6, and for any p ≥ 1 and q > p(p− 1),

−→
β (Kp,q, 1) = min{p, q}.

In general, however, the strategy in the proof of Observation 3.9 may not be optimal, even
for complete bipartite graphs. For example, for K2,2, it follows from Observation 3.9 that
−→
β (K2,2, 1) ≤ 2. ButK2,2 admits an orientation with maximum outdegree 1; hence

−→
β (K2,2, 1) =

1. More generally, a cyclic orientation can be used on Kp,p, similar to that used for complete
graphs in the proof of Proposition 3.3, to ensure that strictly fewer than p vertices burn when
f ≥ p−1

3
. We conjecture the following:

Conjecture 3.11. For each f, p, q ≥ 1 with min{p, q} > 3f + 1,

−→
β (Kp,q, f) = 1 + min{p, q} − f.

4. Firefighting in graphs with particular properties

In this section, we describe several strategies for deducing upper bounds on
−→
β . In each case

we obtain these bounds by exploiting the value of some graph invariant.

13



1

1′ 2 2

2′ 3 3 3

Figure 6: Strategy described following the proof of Proposition 4.1 for ∆ = 3, k = 3 and f = 1.

4.1. Graph classes with bounded chromatic number

Given an undirected graph G, a proper k-vertex-colouring of G is a partition (V1, V2, . . . , Vk)
of V (G) such that Vi is a stable set for each i ∈ {1, 2, . . . , k}. The least k such that G has a
proper k-vertex-colouring is called the chromatic number of G, and is denoted χ(G).

In the next proposition we give an upper bound on
−→
β , given a graph G, in terms of the

maximum degree and the chromatic number of G.

Proposition 4.1. For a graph G with maximum degree ∆,

(i)
−→
β (G, f ≥ ∆) = 1, and

(ii)
−→
β (G, f) ≤ ∆χ(G) for 1 ≤ f < ∆.

Proof. Set k = χ(G), and let π = (V1, V2, . . . , Vk) be a proper k-vertex-colouring of G. Let
−→
G

be the orientation of G obtained by orienting every edge uv towards the vertex which belongs
to the part of π with the largest index. That is, if u ∈ Vi and v ∈ Vj with i < j, then orient uv

from u to v (or conversely if i > j). Note that the longest paths of
−→
G have length k − 1. The

result follows easily.

The bound given in Proposition 4.1 when f < ∆ is rough: we can find a bound that is
tighter, but less aesthetically pleasing, by considering the number of vertices protected at each
step, and utilising the fact that if a vertex burns at time t ≥ 2, then it has an in-neighbour, so
its outdegree is at most ∆− 1.

Proposition 4.2. Let G be a graph with maximum degree ∆ > 2 and chromatic number k.
Then, for 1 ≤ f < ∆,

−→
β (G, f) ≤

∆(∆− 1)k−1 − 2

∆− 2
− f

(

(∆− 1)k −∆k + 2k − 1

(∆− 2)2

)

.

Proof. Orient G as described in the proof of Proposition 4.1. The maximum number of vertices
will burn in the case where the fire starts at a vertex v with outdegree ∆, and all the neighbours
encountered in a search of depth k starting at v are distinct (see Figure 6). At each time interval,
the firefighters protect f outneighbours of burning vertices. We now calculate the number of
vertices that burn in this situation. Let St be the maximum number of vertices that burn at
time t. Then S1 = 1, S2 = ∆− f and, for any t ≥ 3, we have St = (∆− 1)St−1 − f . By solving
this recurrence relation, we deduce that for t ≥ 1,

St+1 = ∆(∆− 1)t−1 − f

(

(∆− 1)t − 1

∆− 2

)

.
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The chosen orientation ensures the fire propagates for at most k time intervals. Thus, an upper
bound on the total number of vertices that burn is given by 1 +

∑k

t=2 St. Hence

−→
β (G, f) ≤ 1 + ∆ ·

k−1
∑

t=1

[

(∆− 1)t−1
]

−
f

∆− 2
·
k−1
∑

t=1

[

(∆− 1)t − 1
]

= 1 +
(∆− 1)k−1 − 1

∆− 2

(

∆−
f(∆− 1)

∆− 2

)

+
f(k − 1)

∆− 2
,

which can be manipulated into the form given in the statement of the proposition.

Proposition 4.2 implies, in particular, that, since f ≥ 1, for any ∆ > 1 we have
−→
β (G, f) ≤ 2(∆− 1)χ(G)−1.

Thus, we can orient the edges of any 3-colourable graph so that, wherever the fire breaks out,
at most 2(∆− 1)2 vertices burn by some firefighting strategy. Furthermore, for a planar graph
(or, more generally, a 4-colourable graph), we can orient its edges so that at most 2(∆ − 1)3

vertices burn. By Brooks’ Theorem, we have that
−→
β (G, f) ≤ 2(∆− 1)∆.

In fact, since for a complete graph at most ∆ vertices burn, trivially (as f ≥ 1), and an odd
cycle has an orientation with maximum outdegree 1, we have that

−→
β (G, f) ≤ 2(∆− 1)∆−1.

Thus, any class of graphs with bounded maximum degree has bounded
−→
β . Given a graph

G with maximum degree 3, at most 6 vertices can burn using an optimal firefighting strategy
when one firefighter is available, by Proposition 4.2. For graphs with maximum degree 4, the
bound is 35. We will see in Sections 5.2 and 5.3 that these bounds are far from best possible.

4.2. Graph classes with bounded arboricity

The arboricity of an undirected graph G, denoted by a(G), is the least number of forests into
which the edges of G can be partitioned. A graph with small arboricity admits an orientation
with small maximum outdegree.

Observation 4.3. Every graph G admits an orientation with maximum outdegree at most a(G).

Proof. Let (E1, E2, . . . , Ea(G)) be a partition of E(G) inducing forests. Then, for every i ∈
{1, 2, . . . , a(G)} and for every tree T of the forest G[Ei], choose an arbitrary orientation of T

with maximum outdegree at most 1 (which exists by Lemma 2.2). Let
−→
G be the orientation

of G induced by the orientations of each tree of every G[Ei]. Then, since each vertex u of G,
in each of the a(G) directed forests, has outdegree at most 1, u has outdegree at most a(G) in
−→
G .

The following corollary is a straightforward consequence of Corollary 2.5 and Observa-
tions 2.4(i) and 4.3.

Corollary 4.4. For a graph G,

(i)
−→
β (G, f ≥ a(G)) = 1, and

(ii)
−→
β (G, a(G)− 1) ≤ 1 + |V (G)|−1

a(G)
.
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4.3. Graph classes with small feedback vertex set

A feedback vertex set of an undirected graph G is a subset F ⊆ V (G) of vertices whose
removal from G results in a forest. The next observation shows that for a graph with a small
feedback vertex set, there is an effective strategy for firefighting.

Observation 4.5. Let F ⊆ V (G) be a feedback vertex set of a graph G. Then

−→
β (G, f) ≤ max{1, |F | − f + 2}.

Proof. Consider the following orientation
−→
G of G. First, for every tree of G−F , choose a root

and orient its edges as described in the proof of Lemma 2.2 so that
−→
G [V (G) \F ] has maximum

outdegree at most 1. Next orient all edges between V (G) \ F and F towards F . Finally orient
all remaining edges, that is those joining vertices in F , arbitrarily.

Assume the fire starts at some vertex u of G. Note that, by the orientation of
−→
G , the fire

cannot propagate from F to V (G) \ F . Moreover, if u ∈ V (G) \ F , then, using one firefighter,
we can stop the propagation of the fire in G − F . Therefore, the worst case is where the fire
breaks out at a (non-root) vertex of V (G) \ F . In that situation, use the following strategy:
at time 1, use one firefighter to protect the other vertices of G − F (by protecting the parent
of the burnt vertex), and any remaining firefighters to protect vertices of F . At time 2, all
unprotected vertices of F can then burn (if F is complete to V (G) \ F ), but the fire will not
be able to propagate further, so 1 + |F | − (f − 1) vertices burn in this case.

5. Firefighting in particular families of graphs

In this section, we give lower and upper bounds on
−→
β for specific families of graphs.

5.1. Partial k-trees

A k-tree is either a complete graph on k + 1 vertices or a graph that can be obtained from
a k-tree by adding a vertex that is adjacent to each of k vertices forming a clique. A partial

k-tree is a subgraph of a k-tree. It is well known that a k-tree is a maximal graph (in terms of
size) with treewidth exactly k, while a partial k-tree has treewidth at most k.

Since every k-tree contains a clique on k + 1 vertices, we obtain the following lower bound

using Proposition 3.2 and the fact that
−→
β (K4, 1) = 2.

Corollary 5.1. For a k-tree G, with k ≥ 3, we have
−→
β (G, 1) ≥ max{2, k − 2}.

We now give upper bounds on
−→
β for k-trees. The proof is based on the existence of an

orientation in which the fire can only spread towards a k-clique located, loosely speaking, at the
centre of the graph. By definition, a k-tree can be constructed starting from some (k+1)-clique
by repeatedly adding a new vertex that is adjacent to each vertex of a k-clique. We require
the following lemma stating that any k-tree can be constructed in this way starting from any

of its (k + 1)-cliques. We omit the routine proof.

Lemma 5.2. Let G be a k-tree. For every (k + 1)-clique K of G, we can construct G starting

from K by repeatedly adding a vertex that is complete to k vertices forming a clique.

For an undirected graph G, the diameter of G, denoted diam(G), is the maximum distance
between any two vertices of G.
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Figure 7: The orientation of a 3-tree described in the proof of Proposition 5.3.

Proposition 5.3. For a partial k-tree G,

(i)
−→
β (G, f ≤ 2k

diam(G)
) ≤ 1 + ⌊diam(G)

2
⌋ · (k − f)− f , and

(ii)
−→
β (G, f > 2k

diam(G)
) ≤ 1 + k · (⌊k

f
⌋ − 1).

Proof. By Observation 2.1, it suffices to prove these bounds for a (maximal) k-tree G. So let

G be a k-tree, and consider the orientation
−→
G of G that we now describe (as illustrated in

Figure 7). Let K be a (k + 1)-clique in G such that every vertex of G is at distance at most

⌊diam(G)
2

⌋ from a vertex of K in G. By Lemma 5.2, we can construct G starting from K by
repeatedly adding a vertex that is adjacent to each vertex of a k-clique in the existing graph.

In
−→
G , first orient the arcs of K as in the proof of Proposition 3.3. Then, for each iteration of

the construction of G that consists of adding a new vertex u and joining it to all vertices of a

k-clique, say Ku, orient all arcs in
−→
G from u towards V (Ku).

Assume the fire breaks out at some vertex u of
−→
G . The orientation

−→
G of G ensures that the

fire can only propagate towards the clique K. In particular, the fire will be contained as soon
as the vertices of K are reached. Therefore, the most vertices can burn when u is at distance
⌊diam(G)

2
⌋ from a vertex of K, so we assume this is the case.

By the construction of G and the orientation of the arcs of
−→
G , we note that, in

−→
G , the fire

can only propagate to k new vertices at each time unit, and the fire will not reach K until time
at most ⌊diam(G)

2
⌋. First, if f ≤ 2k

diam(G)
, then, no matter which vertices are protected at each

time unit, the fire spreads to the vertices of K at time diam(G)
2

. In this situation, f vertices can

be saved at each of the diam(G)
2

time intervals.
On the other hand, if f > 2k

diam(G)
, then there is a set S of k vertices which will burn at

the same time unit at least ⌊k
f
⌋, when unobstructed by firefighters. If, at each time unit, we

protect f unprotected vertices of S, then all vertices of S will be protected by the time the fire
neighbours S. In this case, at most 1 + k · (⌊k

f
⌋ − 1) vertices burn, as required.

It is worth noting that the anticipation strategy described in the proof of Proposition 5.3
demonstrates that, for some oriented k-trees, it is not always best to protect vertices adjacent
to the fire. As an example, consider kth powers of paths, where the kth power P k

n of the path Pn

on n ≥ 1 vertices is the graph with vertex set V (Pn) for which two vertices are adjacent if and
only if they are at distance at most k in Pn. Using the approach in the proof of Proposition 5.3,
pick a (k+ 1)-clique of P k

n with minimum distance to any other vertex, and then orient all the
edges towards this centre clique. When k is much greater than f and the underlying path is
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long, it is clear that if the firefighters protected close to the fire, then the fire would propagate
until the fire reaches the centre clique. Hence this is a situation where it is better for the
firefighters to anticipate the spread of the fire, as in Proposition 5.3(ii).

The following is a special case of the strategy described in the proof of Proposition 5.3.

Proposition 5.4. For every partial k-tree G, we have
−→
β (G, f ≥ ⌊k

2
⌋) ≤ 1 + ⌈k

2
⌉.

Proof. By Observation 2.1, we may assume that G is a k-tree. Let
−→
G be the orientation of

G obtained as described in the proof of Proposition 5.3. Assume the fire breaks out at some

vertex u of
−→
G , and denote by v1, v2, . . . , vk its k outneighbours. By the construction of G

and the way
−→
G was obtained, note that there are ⌈k

2
⌉ of the vi’s, say v1, v2, . . . , v⌈k

2
⌉, with

only ⌊k
2
⌋ outneighbours not among v⌈k

2
⌉+1, v⌈k

2
⌉+2, . . . , vk. Then protect v⌈k

2
⌉+1, v⌈k

2
⌉+2, . . . , vk at

time 1. The fire will then propagate to v1, v2, . . . , v⌈k

2
⌉ at time 2, but it then suffice to protect

v⌈k

2
⌉+1, v⌈k

2
⌉+2, . . . , vk at time 2 to stop the fire propagation. Note that this strategy remains

applicable if u belongs to the root clique since, by its orientation, its vertices have ‘small’

outdegree. Hence, with that strategy, at most 1 + ⌈k
2
⌉ vertices of

−→
G will burn.

We note that Proposition 5.4 is particularly interesting when k = 2: the edges of every
partial 2-tree can be oriented so that, firefighting with only one firefighter, at most 2 vertices
burn. This applies to well-known families of partial 2-trees, such as series-parallel or outerplanar
graphs.

5.2. Subcubic graphs

We now focus on subcubic graphs: that is, graphs with maximum degree 3. Recall that
for these graphs, Proposition 4.2 implies that at most 6 vertices burn when firefighting with 1
firefighter. We reduce this upper bound to 2, which is best possible.

Theorem 5.5. For a subcubic graph G, we have
−→
β (G, 1) ≤ 2.

Proof. We will describe an orientation
−→
G of G and a firefighting strategy on

−→
G for which at most

two vertices burn. Let B ⊆ E(G) be the set of all bridges of G. We first describe the orientation
on this set of edges. Note that B induces a forest. Moreover, the graph G/(E(G)\B), obtained
by contracting the edges not in B, is a tree. This tree has an orientation where each edge has

outdegree 1, by Lemma 2.2. Let this be the orientation of the edges of B in
−→
G , and call any

such arc in
−→
G a bridge arc. After orienting the remaining edges, such an orientation has the

property that for each connected (and 2-connected) component X of G\B, there is at most one

arc
−→
bz in B for which the tail b is in V (X).

We now consider the orientation of a connected component X of G\B in
−→
G . Each vertex

of X has degree 2 or 3 (if there was a vertex of degree 1, the incident edge would be a bridge
in G). If X consists only of degree-2 vertices, then X is a cycle, and we orient the edges such
that each edge has indegree 1 and outdegree 1. Now we may assume that there are at least two
vertices of degree 3 in X . We will construct a cubic multigraph X ′, and describe an orientation
on X ′ that extends to X . We obtain X ′ by replacing each maximal path vv1v2 · · · vpv

′ for which
each internal vertex has degree 2 with an edge vv′ (see Figure 8). Note that if there is a vertex

b ∈ V (X) for which B has an arc
−→
bz , then b is contained in some maximal cc′-path (say) in X for
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X

v v′

X ′

Figure 8: An example of a subcubic component X of G\B, and the corresponding cubic multigraph X ′, as
described in the proof of Theorem 5.5. A dotted edge represents a bridge in B.

which each internal vertex has degree 2. Clearly, X ′ is cubic and remains 2-connected. Thus,
according to Petersen’s Theorem there exists a partition (P ′, C ′) of the edges of X ′ such that
C ′ induces a collection of cycles (a 2-factor), while P ′ induces a perfect matching. Moreover,
it is well-known that there is such a partition for which P ′ contains any given edge of X ′. If
X ′ has an edge cc′ corresponding to a path containing b, then we pick a partition (P ′, C ′) such
that P ′ contains any edge adjacent to cc′; that is, C ′ contains cc′.

We orient the edges of X ′ such that each cycle of C ′ is 1-outregular (each vertex in C ′ has
indegree 1 and outdegree 1), and each edge of P ′ is oriented arbitrarily. This orientation extends
to an orientation of the edges in X , in the obvious way. Let (P,C) be the partition of edges
of X for which P (respectively, C) contains each edge in the path vv1 · · · vpv

′ corresponding to
an edge vv′ of P ′ (respectively, C ′). We call an arc in C a cycle arc, and an arc in P a path

arc. Note that P induces a disjoint union of paths, each oriented from one end to the other.
Moreover, each vertex v ∈ V (X) is incident to at most two outgoing arcs, and, when v has
outdegree precisely two, it has one outgoing path arc, one outgoing cycle arc, and one incoming
cycle arc.

Now consider the orientation
−→
G obtained by combining the described orientations on B and

each component X of G\B (see Figure 9). A vertex may be incident to at most one outgoing
bridge arc. However, by the foregoing, such a vertex is either incident to two cycle arcs (one

outgoing, one incoming) or other bridge arcs (each incoming). Thus, the orientation
−→
G has the

property that every vertex has outdegree at most two, and each vertex with outdegree two is
incident to two cycle arcs.

Finally, we show that, regardless of where the fire breaks out in
−→
G , there is a strategy,

using one firefighter at each step, for which at most two vertices burn. Say the fire breaks out

at some vertex u of
−→
G . If u has outdegree 1, containing the fire is trivial. Otherwise, u has

outdegree 2, and hence is incident to cycle arcs
−→
tu and −→uv, and a bridge arc or path arc −→uw,

say. The firefighter blocks v at time 1, so, at time 2, the fire spreads to w. Now we prove that
w has outdegree 1, so the fire can be completely contained. Evidently this is the case if w is
incident to cycle arcs. If there is a path arc −→wx, the presence of adjacent path arcs implies that
w has degree 2, and hence outdegree 1. Finally, if w is incident only to bridge arcs, then it has

outdegree 1, by the choice of orientation of the edges B in
−→
X . This completes the proof.

Theorem 5.5 is best possible, since there are subcubic graphs, such as K4 or the Petersen
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X ′

1 1′

2′

2

X

Figure 9: An example of how the orientation
−→
G is obtained, and an application of the firefighting strategy on

−→
G , as described in the proof of Theorem 5.5. Thin arcs (respectively, edges) represent path arcs (respectively,
edges in the perfect matching P ′), the thick arcs (respectively, edges) represent cycle arcs (respectively, edges
in the 2-factor C′), and the dotted arcs represent bridge arcs.

graph, for which at least two vertices will necessarily burn, by Corollary 2.7.

5.3. Graphs with bounded maximum degree

Recall that, so far, the best upper bound on
−→
β we have seen when firefighting with one

firefighter in a graph with maximum degree d is roughly 2(d− 1)d−1. When d ≤ 3, however,
−→
β

is at most 2. In this section, we start by considering the case where d = 4, and show that, for

such graphs,
−→
β is at most 5. We then use a similar strategy to improve the upper bound in

general, for d ≥ 5. Here we are interested in the case where f = 1, although a similar approach
could also be used to obtain bounds when f ≥ 2. We define the following for legibility:

−→
βd = max{

−→
β (G, 1) : G is a graph with maximum degree d}.

So, for example,
−→
β3 = 2, by Theorem 5.5.

First, we observe that when finding upper bounds on
−→
β for the class of graphs with maxi-

mum degree ∆, we can restrict our attention to ∆-regular graphs.

Lemma 5.6. If there exists an integer x such that
−→
β (G, f) ≤ x for every ∆-regular graph G,

then
−→
β (G, f) ≤ x for every graph G with maximum degree ∆.

Proof. We will show that for every graph G with maximum degree ∆, there exists a ∆-regular
graph containing G as a subgraph; the lemma follows from this claim. Let G be a graph with
minimum degree d and maximum degree ∆. We describe a construction by which we can obtain
a ∆-regular graph that contains G as a subgraph. Clearly the lemma holds if d = ∆, so assume
that G is not ∆-regular. Take two copies G1 and G2 of G, and, for every vertex v of G with
degree strictly less than ∆, add an edge between the two vertices corresponding to v in G1

and G2. We obtain a graph with minimum degree strictly greater than d, maximum degree ∆,
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and containing G as a subgraph. By repeating this process, for ∆− d iterations, we eventually
obtain a ∆-regular graph as desired.

Proposition 5.7. We have
−→
β4 ≤ 5.

Proof. Let G be a graph with maximum degree 4. Let X be the subset of V (G) obtained by
the following iterative procedure: starting with X = ∅, while G −X has a degree-4 vertex x,
add x to X and remove x from G. Note that when this procedure terminates, X contains no
two adjacent vertices of G, and G−X has maximum degree at most 3. Let G′ = G−X . Recall

that, by Theorem 5.5,
−→
β (G′, 1) ≤ 2. Let

−→
G′ be the orientation of G′ described in the proof of

Theorem 5.5. Let
−→
G be the orientation of G′ such that

−→
G −X =

−→
G′, and all edges incident to

a vertex x in X are oriented towards x.
If the fire starts at a vertex in X , it cannot propagate any further due to the orientation

of
−→
G . So suppose the fire starts at a vertex of G′. We then employ the same firefighting

strategy on G′ as in the proof of Theorem 5.5. Whenever the fire spreads to a vertex of X , the
orientation ensures that it will not spread further from this vertex. So we only need to consider
how many vertices burn in G′, and how many vertices of X are adjacent to these burnt vertices
in G. Observe that at most two vertices of G′ burn. If the two vertices of G′ that burn have
degree 3 in G′, then these two vertices each have at most one neighbour in X , so at most 4
vertices burn in total. If, instead, the fire starts at a vertex that has degree at most 2 in G′,

then this vertex has one in-neighbour and one outneighbour in
−→
G′. So only one vertex of G′

burns, and hence at most 4 vertices burn in total. Finally, suppose the fire starts a vertex v1
with degree 3 in G′, then spreads to a vertex v2 at time 2 that has degree 2 in G′. Then v1 is
adjacent to at most one vertex of X in G, and v2 is adjacent to at most two vertices of X in
G. So at most 5 vertices burn in total. This completes the proof.

Since K4,4 is 4-regular and
−→
β (K4,4, 1) = 3, by Proposition 3.7, we have

−→
β4 ≥ 3. However,

finding its precise value remains an open problem.

Question 5.8. What is the value of
−→
β4?

We now focus on improving the upper bound on
−→
βd for any d ≥ 5. The next lemma is key to

our approach. The proof is similar to that for Proposition 5.7, but does not rely on properties
of the optimal orientation for subcubic graphs.

Lemma 5.9. For every d ≥ 2, we have
−→
βd ≤ max{d,

−−→
βd−1 · (d− 2) + 2}.

Proof. Let d ≥ 2 be fixed, and assume
−−→
βd−1 ≤ k for some k ≥ 1. Let G be a graph with

maximum degree d. We will describe an orientation
−→
G of G on which we can firefight with

only one firefighter in such a way at most max{d,
−−→
βd−1 · (d− 2) + 2} vertices burn.

As in the proof of Proposition 5.7, there is a subset X of V (G) that contains no two adjacent
vertices of G, and G−X has maximum degree at most d− 1. Let G′ = G−X . By the initial

assumption, there is an orientation
−→
G′ of G′ with β(

−→
G′, 1) ≤ k. Now, for each edge in G′, we

give the same orientation to the edge in
−→
G as in

−→
G′; whereas each edge incident to a vertex x

of X is oriented towards x.
We now consider a strategy for firefighting on

−→
G . Assume the fire breaks out at some

vertex u. If u is in X , then it is a sink, and the fire cannot propagate to the other vertices.
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Figure 10: The worst-case situation described in the proof of Lemma 5.9.

Now assume u is not in X . Due to the way the edges of G′ have been oriented in
−→
G , there is a

certain strategy that the firefighter can apply so that at most
−→
βd vertices of G′ burn. So apply

this strategy. Then x ≤
−→
βd vertices u1, u2, . . . , ux in G′ burn, where u1 = u.

Whenever a vertex ui burns at some time unit, then, at the next time unit, the fire will also

propagate in
−→
G −

−→
G′, that is to some vertices in X . There are exactly

dG(ui)− (d−−→
G′

(ui) + d+−→
G′

(ui))

such vertices. It is easy to check that the worst case, where the number of burnt vertices is at

a maximum, occurs when, for x =
−→
βd, the path u1u2 · · ·x is a directed path in

−→
G′, and we have

d+−→
G′
(ux) = 1 and d+−→

G′
(ui) = 2 for every i ∈ {1, 2, . . . , x − 1}. This last condition maximises the

quantity
x

∑

i=1

dG(ui)− (d−−→
G′
(ui) + d+−→

G′
(ui)),

and ensures that the firefighter cannot prevent the fire from reaching ux. In particular, at

each time unit i, the firefighter protects a vertex vi which is an outneighbour of ui in
−→
G′. See

Figure 10 for an illustration of this situation. Then, for each ui with i ∈ {2, 3, . . . , x − 1}, at

most d − 3 other vertices of
−→
G −

−→
G′ will burn, and at most d − 2 for u1 and ux. The total

number of vertices which will burn is hence

−−→
βd−1 + 2 · (d− 2) + (

−−→
βd−1 − 2) · (d− 3),

as claimed.

Using the upper bound from Theorem 5.5, we obtain the following:

Corollary 5.10. For every d ≥ 4, we have
−→
βd ≤ (d− 1)!.

5.4. Planar graphs

In this section we study the
−→
β parameter for planar graphs. First of all, it is well known

that planar graphs have arboricity at most 3 (due to Schnyder), so, by Corollaries 2.5 and 4.4,
for every such graph G:

•
−→
β (G, f ≥ 3) = 1, and
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•
−→
β (G, 2) ≤ |V (G)|+2

3
.

For this reason, we focus, in this section, on the problem of firefighting with only one firefighter
in a planar graph.

As in previous sections, our first question of interest is whether or not, for this family, the
−→
β parameter is bounded above by an absolute constant.

Question 5.11. Is there a constant c ≥ 1 such that
−→
β (G, 1) ≤ c for every planar graph G?

Answering Question 5.11 does not seem straightforward. Experiments on families of planar
graphs suggest that such a constant c could exist, though we are not aware of an orientation
scheme and strategy that work for any planar graph. In particular, ‘denser’ planar graphs are
problematic. Consider the following example. Fix a large value of ∆ and let G be the planar
graph obtained as follows. Starting from a single vertex v, add a first layer of ∆ new vertices
around v, i.e. join v to all these vertices, and add edges between the vertices of the first layer
so that they induce a cycle. Now add a second layer of vertices around the first layer, and add
edges between the first and second layers so that all vertices of the first layer have degree ∆.
Repeat this procedure until a large number of vertices with degree ∆ are obtained. Assuming
∆ and the number of layers are sufficiently large, there is no obvious way to orient the edges
of the resulting graph to prevent fire propagation.

However, a simple counting argument shows that if the constant c mentioned in Ques-
tion 5.11 does exist, then c ≥ 3. A planar graph is maximal if any graph obtained by adding an
edge on the same vertex set results in a non-planar graph. It is well known that any maximal
planar graph G with more than two vertices has 3|V (G)| − 6 edges. Consequently, by applying
Corollary 2.7, we observe the following:

Observation 5.12. For any maximal planar graph G on at least 7 vertices,
−→
β (G, 1) ≥ 3.

In fact, we will show, in Observation 5.16, that such a c must be at least 4.

Although we have no concrete evidence that Question 5.11 has a negative answer, we suspect
the following direction might be more promising.

Conjecture 5.13. For every planar graph G,
−→
β (G, 1) is linear in ∆.

Since every planar graph is 4-colourable, by the Four-Colour Theorem, it follows from

Proposition 4.2 that
−→
β (G, 1) ≤ 2(∆ − 1)3 for every planar graph G. For some subclasses of

planar graphs, this can be further improved using the wide range of results in the literature
regarding these graphs. For example, since every triangle-free planar graph is 3-colourable by

Grötzsch’s Theorem, Proposition 4.1 implies that
−→
β (G, 1) ≤ 2(∆ − 1)2 whenever G is planar

and triangle-free. Moreover, since triangle-free planar graphs have arboricity 2, we have, by

Corollary 4.4, that
−→
β (G, 1) ≤ |V (G)|+1

2
.

Towards Conjecture 5.13, we now consider infinite planar grids, which received some at-
tention for both the directed and undirected versions of the Firefighter Problem [1, 8]. In
particular, the strategies described below could be useful for dealing with the general case.

We start by confirming Conjecture 5.13 for infinite rectangular grids (refer to Figure 11 for

an illustration), showing that ∆ is an upper bound for
−→
β for these grids.
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Figure 11: Firefighting in an infinite rectangular grid.
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Figure 12: Firefighting in an infinite triangular grid.

Proposition 5.14. For every infinite rectangular grid G, we have
−→
β (G, 1) = 3 < 4 = ∆.

Proof. Let
−→
G be the orientation of G (depicted in Figure 11) obtained as follows. Orient all

‘rows’ of G from, say, ‘right to left’. Now, orient all ‘even columns’ of G from, say, bottom

to top, and conversely for all ‘odd columns’. Then
−→
G is 2-outregular, and has the property

that, for every vertex u, one of its two outneighbours is in the third outneighbourhood of u.
Then, when the fire starts at u, protecting the vertices as in Figure 11 we can marshall the fire
towards the first protected vertex, hence ensuring that at most 3 vertices burn. Since for at
most three vertices to burn, we must have a 2-outregular orientation, it is easy to check that
this strategy is optimal.

We now focus on infinite triangular grids (see Figure 12 for an illustration). This case is of
interest since, in order to resolve Conjecture 5.13, one can restrict attention to maximal planar

graphs, by Observation 2.1. Here again, we confirm that ∆ is an upper bound for
−→
β .

Proposition 5.15. For every infinite triangular grid G, we have
−→
β (G, 1) ≤ 6 = ∆.

Proof. Let
−→
G be an orientation of G as depicted in Figure 12. Namely, the vertices of G are

decomposed into several layers, i.e. ‘parallel’ chains of consecutive adjacent vertices. All these
layers are oriented in the same direction. Finally, the edges between two consecutive layers are
oriented so that all ‘even layers’ are, say, ‘sinks’ (i.e. have all their incident arcs incoming)
while all ‘odd layers’ are ‘sources’ (i.e. have all their incident arcs outgoing).

Assume the fire starts at some vertex u. If u belongs to a sink layer, then u has outdegree 1
so the firefighter can just contain the fire by protecting the outneighbour of u at time 1. Now,
if u belongs to a source layer, then just apply the strategy described in Figure 12, consisting
in first protecting the layer of u, and then successively protecting the two adjacent sink layers.
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Figure 13: (Part of) an infinite hexagonal grid.

From this, we deduce that we can ensure that at most 6 vertices have burnt by the time the
fire is contained.

Observation 5.16. There exists a planar graph G with

−→
β (G, 1) ≥ 4.

Proof. We show that at least four vertices burn no matter how we orient a sufficiently large

triangulated grid. For such a graph, assume, towards a contradiction, there is an orientation
−→
G

by which at most three vertices can burn when firefighting with only one firefighter. Then the

maximum outdegree of
−→
G is at most 3 and

−→
G is locally 3-outregular. Assuming the fire starts

at some vertex u, we can protect one of the three outneighbours of u at time 1 before the fire
propagates to two new vertices v1 and v2. Now the outneighbourhood of v1 and v2 must be of

size at most 1, which is impossible due to the structure of
−→
G and the fact that v1 and v2 have

outdegree 3; a contradiction. So a fourth vertex must burn.

We finish this section by remarking that for infinite hexagonal grids (as depicted in Fig-
ure 13), even more vertices can be saved: namely all but at most 2. This follows from Theo-
rem 5.5, since hexagonal grids are subcubic graphs.

6. Characterising graphs by the number of vertices that burn

In this section we consider the problem of characterising the class of graphs for which at
most k vertices burn using an optimal firefighting strategy. That is, we wish to determine the
class of graphs

Bk = {G :
−→
β (G, 1) ≤ k},

for a positive integer k. Note that, by definition, we have B1 ⊆ B2 ⊆ · · · ⊆ B∞, where B∞ is
the class of all graphs. Although such a characterisation may be difficult in general, we give
an explicit characterisation of B1, discuss what we know about B2, and give some necessary
conditions for membership in Bk.

Theorem 6.1. Let G be a connected graph. Then G ∈ B1 if and only if G contains at most

one cycle.

Proof. (⇐) If G has no cycles, it is a tree, so
−→
β (G, 1) = 1 by Proposition 3.1. Now, if G

is unicyclic, we can start by orienting its unique cycle C such that each of its vertices has
outdegree 1 in C. Then, for every component T of G\E(C), orient its edges from the leaves
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Figure 14: A 4-regular graph contained in B2, and an optimal orientation.

towards C. Then the outdegree of every vertex in V (T )\V (C) is exactly 1, while the outdegrees
of the vertices in C have not changed. The resulting orientation is therefore 1-outregular, so
the fire can be immediately blocked at time 1.

(⇒) Suppose G is has distinct cycles C1 and C2. After removing an edge in E(C1) \E(C2)
from G, the resulting graph contains the cycle C2, so is not a tree. Hence G has more than

|V (G)| edges. By Corollary 2.7,
−→
β (G, 1) > 1, so G is not in B1.

Now we consider B2. By earlier results, this class contains all cubic graphs, K5, complete
bipartite graphs of the formK2,n, all partial 2-trees (thus, series-parallel graphs and outerplanar
graphs), and all subgraphs thereof. On the other hand, it does not contain the entire class
of planar graphs; in particular, it does not contain any maximal planar graph with at least
seven vertices. It also does not contain all graphs with maximum degree 4 (for example K4,4).
However, it does contain arbitrarily large 4-regular graphs; one example of such a graph is
given in Figure 14. However, it can be shown that every 4-regular graph in B2 has particular
structure; namely, every vertex is in a diamond (a graph that can be obtained by removing an
edge from K4).

For a graph G to be a member of the class, it is necessary that, for every subgraph G′

of G, we have |E(G′)| ≤ 2|V (G′)|, by Corollary 2.7 and Observation 2.1. This is not a suf-

ficient condition, however; for example, K4,4 satisfies the condition but
−→
β (K4,4, 1) ≥ 3 by

Proposition 3.7.
We can also deduce a necessary condition in terms of the minimum degree of G. If G

has minimum degree δ, then, by the handshaking lemma, |E(G)| ≥ δ
2
|V (G)|. Hence, by

Corollary 2.7, we have
−→
β (G, 1) ≥ δ

2
. Thus, another necessary condition for membership in B2

is that the graph has minimum degree at most 4. By Observation 2.1, any subgraph must also
have this property, which implies that, moreover, it is necessary that the graph is 4-degenerate.
Again, K4,4 is an example that demonstrates these conditions are not sufficient.

Problem 6.2. Characterise B2.

More generally, we can deduce necessary conditions for a graph G to be in Bk. Namely, if
G is a member of Bk, then every subgraph G′ of G satisfies |E(G′)| ≤ k|V (G′)|. Moreover, it
is necessary that a graph G in Bk is 2k-degenerate and, in particular, has minimum degree at
most 2k.
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