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Orienting edges to fight fire in graphsI

Julien Bensmaila, Nick Brettellb

aUniversité Côte d’Azur, CNRS, I3S, Inria, France
bSchool of Mathematics and Statistics, Victoria University of Wellington, New Zealand

Abstract

We investigate a new oriented variant of the Firefighter Problem. In the
traditional Firefighter Problem, a fire breaks out at a given vertex of a
graph, and at each time interval spreads to neighbouring vertices that have
not been protected, while a constant number of vertices are protected at each
time interval. In the version of the problem considered here, the firefighters
are able to orient the edges of the graph before the fire breaks out, but the
fire could start at any vertex. We consider this problem when played on a
graph in one of several graph classes, and give upper and lower bounds on
the number of vertices that can be saved. In particular, when one firefighter
is available at each time interval, and the given graph is a complete graph,
or a complete bipartite graph, we present firefighting strategies that are
provably optimal. We also provide lower bounds on the number of vertices
that can be saved as a function of the chromatic number, of the maximum
degree, and of the treewidth of a graph. For a subcubic graph, we show that
the firefighters can save all but two vertices, and this is best possible.

1. Introduction

The Firefighter Problem was introduced by Hartnell [5] in 1995, and can
be described as follows. Suppose we are given a graph G, and a vertex v of
G at which a fire breaks out. At each time unit, the fire propagates from
each burning vertex to all of its unprotected neighbours. At the end of each
time unit, a firefighter is allowed to permanently protect one vertex that is
not already burning. Typically, the firefighters’ goal is to prevent as many
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vertices as possible from burning. Following [4], MVS(G, {v}; 1) denotes the
maximum number of vertices of G that can be saved if a fire breaks out at a
vertex v and one firefighter is available, over all strategies. More generally,
if f ≥ 1 firefighters can protect the graph at each step, and the fire starts at
the vertices in S ⊆ V (G), then the maximum number of vertices of G that
can be saved is denoted MVS(G,S; f).

This problem has gained increasing attention since its introduction; see [4]
for a comprehensive survey. Some investigations into directed versions have
also been conducted recently [1, 7], where the fire propagates from a burnt
vertex only through its outgoing incident arcs. As noted in [4], this directed
version is, in a sense, at least as difficult as the undirected version, since there
exists an orientation for any undirected graph in which the fire propagates
as in the undirected version. Moreover, keeping the fire contained to a small
set of burnt vertices is generally difficult, even in the undirected version of
the problem. As evidence of this statement, we refer the reader to [6], where
the decision problem Firefighter (given a graph G and initial burning
vertex v ∈ V (G), is MVS(G, {v}; 1) ≥ k?) is shown to be NP-complete for
cubic graphs; and to [3], where the problem is shown to be NP-complete for
trees of maximum degree 3.

In this paper, we investigate a new variant of this problem, based on the
following question: how can we orient the edges of G in order to minimise the
number of burnt vertices? Such a problem might be viewed, for example,
as a model of the spread of information, or a virus, where there is some
mechanism that enforces that the flow is only in one direction. Alternatively,
imagine a system of rivers, where dams and floodgates can be installed to
ensure that, in the event of a flood, the flow is in a certain direction; and
structures can be built that block the flow completely.

Note that the orientation of G is fixed before the first vertex burns, and
cannot be modified later. One motivation for such a restriction is that the
operation of orienting G could correspond to a complicated real-life task
that is too costly to perform on-demand. Moreover, if the orientation can
be modified at will, the problem becomes very easy; simply ensure that an
edge that is incident to one burnt and one unburnt vertex is oriented towards
the burnt vertex. For the same reason, this version of the problem is only
interesting when a fire can break out at any vertex (not known beforehand).

Let G be an undirected graph and let f be an integer at least 1. We can
view this problem as a two-player game played on G: player 1 is the fire, and
their goal is to maximise the number of vertices that burn, while player 2
is the fire brigade, and their goal is to minimise this number. The game
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proceeds as follows: player 2 picks an orientation for G, then player 1 picks
a vertex at which the fire breaks out, then, at each time interval, player 2
picks f vertices to protect, until the fire no longer propagates. We denote

by
−→
β (G, f) the number of vertices that burn when both players employ an

optimal strategy.

Alternatively, let
−→
β (G, v; f) denote the minimum number of vertices

that burn for a graph G with f firefighters when the fire starts at the vertex
v of G, taken over all firefighting strategies and all orientations for G; then−→
β (G, f) is the maximum of

−→
β (G, v; f) over all vertices v of G. For the sake

of simplicity, we will sometimes adopt the following slight abuse of notation:

for a positive integer k, the notation
−→
β (G, f ≤ k) denotes

−→
β (G, f) for any

f ≤ k. For an oriented graph
−→
G , we let β(

−→
G, f) denote the maximum

number of vertices that burn using an optimal firefighting strategy using f
firefighters, taken over every possible vertex for the fire to break out. Thus−→
β (G, f) is the minimum of β(

−→
G, f) taken over all orientations

−→
G of G. We

analogously define β(G, f), where G is an undirected graph, as the maximum
number of vertices that will burn using an optimal firefighting strategy when
G is viewed as a directed graph with arcs −→uv and −→vu for each edge uv of G.
Thus β(G, f) = |V (G)| −minv∈V (G) MVS(G, {v}; f).

Since an undirected graph G can be viewed as a directed graph
−→
G where,

for each edge uv of G, there are arcs −→uv and −→vu in
−→
G , orienting the edges of

an undirected graph effectively decreases the outdegree of some (or all) of
the vertices of G. Thus, orienting the edges of a graph is a very strong tool
to prevent the fire from propagating too widely. As further evidence of this
claim, observe that if u is a vertex in G with maximum degree ∆, then u is
a threat to fire containment. But this threat can be easily managed in an

orientation
−→
G of G by orienting all edges incident to u towards u: in such a

situation, a fire that breaks out at u will not propagate any further.
It is not too surprising that the oriented version of the problem swings the

balance in favour of the firefighters, but it is perhaps surprising the extent
to which it does so. Suppose one firefighter is available at each time interval.
We show that for a connected graph G, at most one vertex burns using an
optimal strategy if and only if G contains at most one cycle. We describe a
strategy by which, for any subcubic graph, at most two vertices burn. We
can also guarantee at most two vertices burn using an optimal strategy on
a partial 2-tree. For graphs with maximum degree 4, at most five vertices
burn; but this bound may not be sharp. Consider the decision problem
OrientedFirefighter, where the input is a graph G, and the question
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is: “For a given positive integer k, is
−→
β (G, 1) ≥ k?” As a straightforward

consequence of our results, this problem is trivial (running in constant time)
when restricted to trees, subcubic graphs, or partial 2-trees. This is in
contrast to the problem Firefighter, which is NP-complete when the input
is restricted to these graph classes.

One other interesting aspect of this problem is that the properties of

a “good” orientation
−→
G (from the firefighters’ point of view) are different

from the usual properties which are considered “good” in an orientation.
For example, having an orientation with large diameter and long longest
paths is usually desirable; refer, for example, to the investigations in [2]. In
the given context, however, we try to find an orientation that avoids such
properties.

Much of our focus, in what follows, is proving an upper bound on
−→
β (G, f)

for any G in some class of graphs. To find such an upper bound x, we need
only prove the existence of a “good” orientation and strategy by which we
can guarantee no more than x vertices burn. On the other hand, it seems, in
general, more difficult to prove lower bounds, where all possible orientations
and strategies must be considered. However, a trivial lower bound is given
by considering the minimum outdegree over all possible orientations of a
graph. Furthermore, it seems easier to obtain tight lower bounds for dense
graphs. For the class of complete graphs, or the class of complete bipartite
graphs, we prove sharp lower bounds when one firefighter is available at
each time interval. Thus, the strategies described that meet these bounds
are optimal.

In what follows, we assume that G is finite and simple, unless other-
wise stated. We also assume that G is connected; if not, we can consider

each connected component of G in turn. We study the parameter
−→
β (G, f)

throughout, assuming that the fire starts at a single vertex, f ≥ 1, and the
firefighters’ goal is always to save the maximum number of vertices.

After having introduced some useful tools and basic observations in Sec-

tion 2, we consider several approaches to finding bounds for
−→
β in Sections 3

to 6. We start by considering complete graphs and bipartite graphs, in
Section 3. We then demonstrate, in Section 4, some relationships between−→
β and several graph invariants: namely, chromatic number, arboricity, and
the size of a feedback vertex set. We focus on graphs that have bounded
treewidth, bounded degree, or are planar, in Section 5. In Section 6, we

give a characterisation of the class of graphs G for which
−→
β (G, 1) = 1, and

discuss a characterisation of the class of graphs G with
−→
β (G, 1) = k, where

k ≥ 2.
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Figure 1: An example of firefighting in an oriented graph.

Drawing conventions. In all figures, a burnt vertex is filled with black, and
a label x indicates that this vertex burnt at time x. A diamond vertex rep-
resents a protected vertex, and a label y′ indicates that this vertex has been
protected at time y (that is, it was protected immediately after the vertices
labelled y started burning). Time units are numbered starting from 1. See
Figure 1 for an example.

2. Preliminaries

In this section, we introduce several foundational results that will be
used in subsequent sections. We start with the following observation, which

will be used to deduce lower bounds on
−→
β .

Observation 2.1. Let H be a subgraph of a graph G. Then

−→
β (G, f) ≥

−→
β (H, f)

for every f ≥ 1.

Proof. Let
−→
G be any orientation of G, and let

−→
H be its restriction to H.

If a fire in
−→
G breaks out at some vertex u ∈ V (

−→
H ), then at least

−→
β (H, f)

vertices of
−→
G [V (

−→
H )] will burn. The inequality follows.

In the context of the traditional Firefighter Problem, it has been shown
that it is often difficult to prevent the fire from spreading widely. However,
when the firefighters have the ability to orient the graph, firefighting be-
comes easier, as there is always an orientation that, essentially, reduces the
degree of each vertex by almost a half (we make this precise in Lemma 2.3).
This increases the number of graphs for which firefighting is manageable
with a given number of firefighters. In particular, firefighting on trees is
straightforward, due to the following lemma.
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Lemma 2.2. Every tree admits an orientation with maximum outdegree at
most 1.

Proof. Let T be a tree. Arbitrarily choose a root node r of T , and let
−→
T

be the orientation of T obtained by orienting all edges towards r (that is, if
uv is an edge of T and u is nearer to r than v, then orient uv from v to u).

Then
−→
T has maximum outdegree at most 1.

Lemma 2.3. Every graph G admits an orientation
−→
G with

d+
−→
G

(v) ≤
⌊
dG(v)

2

⌋
+ 1

for every v ∈ V (G).

Proof. While G is not a forest, repeatedly pick a cycle C in G, add C to a
set C, and remove E(C) from G. At the end of this procedure, we have a
decomposition of G into a forest F and a collection C of edge-disjoint cycles.

The claimed orientation
−→
G is obtained by orienting the elements of F and

C as follows:

• Orient the edges of every tree T of F so that T has maximum outdegree
at most 1. This is possible by Lemma 2.2.

• For every cycle C of C, orient its edges in order to form a directed
cycle.

Note that orienting any cycle of C contributes at most 1 to the outdegree

of each vertex in
−→
G . Since every vertex v is traversed by at most

⌊
dG(v)

2

⌋
cycles of C, orienting the cycles of C contributes at most

⌊
dG(v)

2

⌋
to the

outdegree of v. The claim then follows.

Let
−→
G be an oriented graph, and let v be a vertex of

−→
G . The eccentricity

of v, denoted ecc(v), is the greatest distance from v to any other vertex of
−→
G . The radius of

−→
G , denoted rad(

−→
G), is the minimum eccentricity of a

vertex of
−→
G .

We now consider some rough bounds on β for oriented graphs with
bounded maximum outdegree.

Observation 2.4. Let
−→
G be an oriented graph with maximum outdegree ∆+.

Then
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(i) β(
−→
G, f ≥ ∆+) = 1, and

(ii) β(
−→
G, 1) ≤ |V (

−→
G)| − rad(

−→
G).

Proof. By positioning ∆+ firefighters on the outneighbours of the initially
burning vertex, (i) is trivial.

We now consider (ii). Assume the fire breaks out at u, and partition

V (
−→
G) into layers {u}, V1, V2, . . . , Vd, where d = ecc(u) and, for every i ∈

{1, 2, . . . , d}, the part Vi contains the vertices of
−→
G at distance i from u.

Note that, at time i, no vertex of Vi is burning. So consider the strategy
that protects a vertex in Vi at each time unit i. Applying this strategy, at
least d vertices will be saved. In the worst case, when d is at a minimum,

d = rad(
−→
G). The bound then follows.

We note that when f = ∆+ − 1, the basic strategy used in the proof of
(ii) is sufficient to prevent the fire propagating widely.

Corollary 2.5. Let
−→
G be an oriented graph with maximum outdegree ∆+.

Then

β(
−→
G,∆+ − 1) ≤ 1 +

|V (
−→
G)| − 1

∆+
.

Proof. Applying the strategy described in the proof of Observation 2.4, we
deduce that at most one new vertex burns at each time unit. For each
burning vertex v, we protect ∆+ − 1 outneighbours of v, so, in the worst
case, one of ∆+ outneighbours of v burns. Excluding the vertex at which the

fire starts, 1
∆+ of the |V (

−→
G)| − 1 vertices burn, and the result follows.

We now consider a lower bound for
−→
β that can be obtained by consid-

ering the minimum outdegree of the given graph.

Lemma 2.6. Let D = (V,A) be a directed graph with maximum outdegree

∆+. Then ∆+ ≥ |A|
|V | . Moreover, if equality holds, then d+(v) = |A|

|V | for
every v ∈ V .

Proof. By the handshaking lemma for directed graphs,

∆+ · |V | ≥
∑
v∈V

d+(v) = |A|.

The result follows easily.

Corollary 2.7. Let G be a graph. Then
−→
β (G, 1) ≥ |E(G)|

|V (G)| .
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Figure 2: An optimal orientation for firefighting in a tree.

3. Firefighting in basic graph classes

In this section, we give lower and upper bounds on the number of vertices
we can save for trees, complete graphs, and bipartite graphs.

3.1. Trees

Unlike for the traditional Firefighter Problem, there is an optimal strat-
egy when the given graph is a tree (see Figure 2, for example).

Proposition 3.1. Let T be a tree. Then
−→
β (T, f ≥ 1) = 1.

Proof. By Lemma 2.2, every tree admits an orientation with maximum out-
degree at most 1. The result follows easily.

3.2. Complete graphs

In this section, we focus on the family of complete graphs. We first

present a lower bound on
−→
β (Kn, 1), and then upper bounds on

−→
β (Kn, f).

Combining these results, we are able to compute
−→
β (Kn, 1) for any n, demon-

strating that the firefighting strategy used to derive the upper bounds is
optimal when f = 1.

The lower bound is the following:

Proposition 3.2.
−→
β (Kn, 1) ≥ n− 3 for every n ≥ 4.

Proof. Clearly, we may assume that n ≥ 5. Let
−→
K be an orientation of

Kn, and let u be a vertex with maximum outdegree ∆+. Let N1 be the
outneighbours of u. Since |E(Kn)| = n(n−1)

2 , it follows, by Lemma 2.6, that
|N1| ≥ n−1

2 , so |N1| ≥ 2. Let N2 be the vertices in the second outneighbour-
hood of u; that is, N2 contains those vertices not in {u}∪N1 with an incoming

incident arc from a vertex of N1. Finally, let N3 = V (
−→
K) \ ({u} ∪N1 ∪N2).

Suppose N3 is non-empty, and consider the arcs incident with a vertex x in
N3. Such arcs that are incident with u or a vertex in N1 are oriented away
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u

v

N ′2

N ′1

N ′3

Figure 3: A partial orientation of Kn, as in the proof of Proposition 3.2. A solid arrow
signifies the direction of all arcs between vertices in the two subsets, whereas a dashed
arrow indicates the existence of an arc with the given orientation between the two subsets.

from x, since otherwise x would be in the first or second outneighbourhood
of u. Thus d+(x) ≥ |N1|+ 1 > d+(u); a contradiction. So N3 = ∅.

Suppose that a fire starts at u. If the first firefighter is positioned at a
vertex in N2, then it follows that n − 2 vertices will burn. So we may now
assume that a vertex in N1, say v, is protected at time 1. Let N ′1 = N1\{v},
let N ′2 be the subset of N2 consisting of outneighbours of a vertex in N ′1, and

let N ′3 = V (
−→
K)\ ({u, v}∪N ′1∪N ′2). Since all but at most one of the vertices

in N ′2 burn at time 3, we may assume that N ′3 is non-empty (otherwise at
least n − 2 vertices burn). Now consider the arcs incident with a vertex x
in N ′3. Evidently, such arcs that are incident with a vertex in N ′1 ∪ {u} are
oriented away from x. Thus d+(x) ≥ |N ′1| + 1 = d+(u) = ∆+, so all arcs
incident with x and a vertex in N ′2 are oriented towards x. This situation is
illustrated in Figure 3.

Now, if |N ′2| > 1, then a fire starting at u will spread to all unprotected
vertices in N ′3 at time 4. In this case, n − 3 vertices burn. If N ′2 = ∅, then
N ′3 = ∅, and n− 1 vertices burn. So we may assume that N ′2 = {w}. Then,
if a fire instead starts at w, and |N ′3| > 1, it spreads to all unprotected
vertices in N ′1∪{u} at time 3, so at most three vertices can be saved. In the
remaining case, |N ′3| ≤ 1, so |N ′1| ≥ n − 4, in which case when a fire starts
at u, at least n− 3 vertices burn. This completes the proof.

Proposition 3.2 is our first confirmation that
−→
β is not bounded above by

some constant for all graphs. In particular, for any k there exists a graph G

with
−→
β (G, 1) > k.

Now we consider upper bounds on
−→
β for complete graphs. First, we focus
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on complete graphs with odd order, since they admit a regular orientation
that facilitates an effective defence strategy. We then use this result to derive
a similar upper bound for complete graphs with even order.

Proposition 3.3. Let n ≥ 3 be an odd integer. Then

−→
β (Kn, f) ≤


n− 3f if f < n−1

4 ,
n−1

2 − f + 1 if n−1
4 ≤ f < n−1

2 ,

1 if f ≥ n−1
2 .

Proof. Let V (Kn) = {v0, v1, . . . , vn−1} and let
−→
K be the orientation of Kn

where, for every i ∈ {0, 1, . . . , n − 1} and j′ ∈ {i + 1, i + 2, . . . , i + n−1
2 },

the edge vivj is oriented from vi to vj , where j = j′ mod n. Note that
−→
K is n−1

2 -outregular. For each vertex vi ∈ V (
−→
K), we associate an ordering

vi+1, vi+2, . . . , vi+n−1
2

on the outneighbours of vi, where the subscripts are

interpreted modulo n, and when we refer to consecutive outneighbours, or
outneighbours with the largest indices, we mean with respect to this order-
ing.

We may assume, by symmetry, that the fire breaks out at v0, and that
f < n−1

2 (otherwise the fire can be stopped at time 1). Let F1 be the
f consecutive outneighbours of v0 with the largest indices, and set B2 =
N+(v0) \ F1. In particular, |B2| = n−1

2 − f . Then, at time 1, we protect all
vertices in F1. By our choice of F1 and B2, the fire will propagate to B2 at
time 2.

Now let B′3 = N+(vn−1
2
−f ) \ F1. In other words, B′3 contains those

vertices which may potentially burn at time 3. Obviously, if f ≥ |B′3|, then
we can entirely protect B′3 at time 2, and hence stop the fire propagation.
The upper bound given when f ≥ n−1

4 then follows. Now we may assume
that f < n−1

4 . Let F2 be the f consecutive vertices of B′3 with the largest
indices, and set B3 = B′3 \ F2. By the remark above, B3 is non-empty and,
more precisely, |B3| = |N+(vn−1

2
−f )| − 2f . We protect the vertices in F2

at time 2. The fire then propagates to B3 at time 3. Now note that the
last vertex of B3 has an outgoing arc towards all unburnt and unprotected
vertices (since B3 = {vn−1

2
+1, . . . , vn−1−2f} with 2f < n−1

2 ). Let B′4 be this

subset of vertices. We have B′4 = N−(v0) \B3 \ F2, hence

|B′4| =
n− 1

2
−
(
n− 1

2
− 2f

)
− f = f ;

so all vertices of B′4 can be protected at time 3. Thus, the set of vertices
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that burn is {v0} ∪B2 ∪B3. It follows that

β(
−→
K, f) ≤ 1 +

(
n− 1

2
− f

)
+

(
n− 1

2
− 2f

)
= n− 3f,

as claimed.

Complete graphs with even order do not admit a regular orientation like
the one described in the proof of Proposition 3.3. However, we can obtain
similar bounds for these graphs by “sacrificing” a vertex.

Corollary 3.4. Let n ≥ 4 be an even integer. Then

−→
β (Kn, f) ≤


n− 3f if f < n−2

4 ,
n
2 − f + 1 if n−2

4 ≤ f < n−2
2 ,

2 if n−2
2 ≤ f < n

2 ,

1 if f ≥ n
2 .

Proof. Let Kn be a complete graph, with n even and at least 4, containing

a vertex v. Let
−→
K be an orientation of Kn for which

−→
K −{v} is outregular,

as in the proof of Proposition 3.3, and all arcs incident to v are oriented

towards v. Then, if the fire breaks out at v in
−→
K , it will not propagate

to any other vertices. If the fire breaks out at some other vertex, then the
strategy described in Proposition 3.3 applies: the only difference is that v

will also burn. Thus
−→
β (Kn, f) ≤

−→
β (Kn−1, f) + 1, so the corollary holds

when f < n
2 . Finally, clearly

−→
K has outdegree n

2 – so
−→
β (Kn, f ≥ n

2 ) = 1 as
required.

By combining Propositions 3.2 and 3.3 and Corollary 3.4, we deduce the
following when f = 1:

Theorem 3.5.
−→
β (Kn, 1) = n− 3 for every n ≥ 5.

On the other hand,
−→
β (K3, 1) = 1 and

−→
β (K4, 1) = 2 (by Corollary 2.7,

and Proposition 3.3 or Corollary 3.4, respectively). From Observation 2.1

and Theorem 3.5, this also gives a lower bound on
−→
β (G, 1) whenever the

clique number of G is known.
We suspect that the strategy presented in the proof of Proposition 3.3

is also optimal when f > 1, leading to the following conjecture:

Conjecture 3.6. Let f ≥ 1 and n ≥ 4f + 1. Then
−→
β (Kn, f) = n− 3f .
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3.3. Bipartite graphs

In this section we consider bounds on
−→
β for bipartite graphs. Since

bipartite graphs have no cliques of size bigger than 2, Proposition 3.2 gives

only a trivial lower bound on
−→
β for these graphs.

We first give a lower bound on
−→
β for complete bipartite graphs, by

finding a lower bound on the maximum outdegree for any orientation of
such a graph.

Proposition 3.7. Let p, q, f with f ≤ pq
p+q − 1. Then

−→
β (Kp,q, f) ≥ pq

p+ q
+ 2− f.

Proof. Let
−→
K be an orientation of Kp,q with maximum outdegree ∆+. Since

−→
K has p + q vertices and pq arcs, ∆+ ≥ pq

p+q , by Lemma 2.6. Hence, there

exists some vertex v ∈ V (
−→
K) such that d+(v) ≥ pq

p+q .

Note that the claim is proved whenever ∆+ > pq
p+q . So assume ∆+ = pq

p+q .

By Lemma 2.6, actually every vertex has outdegree precisely pq
p+q . Each of

the (at least pq
p+q − f) vertices that burn at time 2 has pq

p+q outneighbours,
none of which are protected or burning prior to the arrival of the time-
2 firefighters. Thus, at least one such vertex burns at time 3, provided
pq
p+q − f ≥ 1.

Consider now when f = 1. Assume, without loss of generality, that

q ≥ p. If q ≥ p(p − 1), then Proposition 3.7 implies that
−→
β (Kp,q, 1) ≥ p.

We will see, in Observation 3.9, that, for such p and q, this bound is sharp.
However, when q is much smaller than p2, this bound is poor. We now
consider an improved bound when p, q ≥ 6. The proof is similar to that for
Proposition 3.2, but requires a more careful case analysis.

Proposition 3.8.
−→
β (Kp,q, 1) ≥ min{p, q} for every p, q ≥ 6.

Proof. Let (P,Q) be the bipartition of Kp,q with |P | = p and |Q| = q. Let
−→
K be an orientation of Kp,q and let u be a vertex with maximum outdegree.
Without loss of generality, let u be in P . We now consider the ith outneigh-

bourhood Ni of u in
−→
K , for each i. Let N1 be the set of outneighbours of u,

so each arc incident with u is oriented away from u if and only if its other
end is in N1. Let N2 be the subset of P \ {u} consisting of vertices with an
incoming arc from a vertex in N1. Let N3 be the subset of Q\N1 consisting
of vertices with an incoming arc from a vertex in N2. Every vertex v in
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u

N1

N2

N4

N3

Figure 4: A partial orientation of Kp,q, as in the proof of Proposition 3.8. A solid arrow
signifies the direction of all arcs between vertices in the two subsets, whereas a dashed
arrow indicates the existence of an arc with the given orientation between the two subsets.

P \ (N2 ∪ {u}) has arcs towards each vertex of N1, otherwise v would be
in N2. Since u has maximum outdegree, all other arcs incident with v are
oriented towards v. So let N4 = P \ (N2 ∪ {u}) and observe that all arcs
between a vertex in Q \ N1 and a vertex in N4 are oriented towards the
vertex in N4. Suppose Q \ (N1 ∪N3) is non-empty, and let v be a vertex in
this set. Then v has every vertex in P as an outneighbour, so a fire starting
at v will burn at least p vertices, satisfying the proposition. So we may
assume that Q = N1 ∪N3. This situation is illustrated in Figure 4.

We may assume that N3 6= ∅, otherwise if a fire starts at u, then q
vertices will be burning at time 2, satisfying the proposition. Since p, q ≥ 6,
Lemma 2.6 implies that |N1| ≥ 3. If |N2| ≤ 2, then N4 6= ∅, and a fire
starting at a vertex in N3, say w, will spread to all but at most one vertex
of N4∪{u,w} at time 2, and all but at most two vertices of N1∪N4∪{u,w}
at time 3. Since |N1| ≥ 3, at least p vertices burn, as required. So we may
assume that |N2| ≥ 3.

We now deduce further structure by considering when the fire starts at
u. In what follows, when we say that (X,Y ) is a partition of a set Z, the
sets X and Y need not be non-empty. Let (N ′1, F1) be a partition of N1, let
N ′′2 be the set of outneighbours of N ′1, and let (N ′2, F2) be a partition of N ′′2 .
Note that N ′′2 ⊆ N2. Let N ′′3 be the set of outneighbours of N ′2 in N3, and
let (N ′3, F3) be a partition of N ′′3 . Also, let Z = N3\N ′′3 , so each arc between
Z and N ′2 is towards N ′2. Finally, let N ′′4 be the set of outneighbours of N ′3
in P \ ({u} ∪N ′′2 ), let Y be the remaining vertices in P , and let (N ′4, F4) be
a partition of N ′′4 . We illustrate this situation in Figure 5. The vertices in
F1 ∪ F2 ∪ F3 ∪ F4 represent vertices that are protected in the first four time
units if the fire starts at u. So |F1 ∪ · · · ∪ Fi| ≤ i for i ∈ {1, 2, 3, 4}.
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u

N1

N ′1

F1N ′′2

N ′2

F2 N ′′3

N ′3

F3N ′′4

N ′4

F4

N3

Y

Z

Figure 5: A partial orientation of Kp,q, as in the proof of Proposition 3.8, taking into
account vertices that are protected in the first four time intervals when the fire starts at
u.
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Since |N1| ≥ 3 and |F1| ≤ 1, we have |N ′1| ≥ 2. If |N ′1| = 2, then ∆+ = 3,
and it follows that p = q = 6 and d+(v) = 3 for each vertex v, by Lemma 2.6.
But in this case, it is easily verified that |N ′2| ≥ 2 and |N ′3| ≥ 1, implying
that at least p = q = 6 vertices burn, as required, when a fire starts at u.
So we may assume that |N ′1| ≥ 3.

If a fire starts at u, then at time 5 all vertices in {u} ∪ N ′1 ∪ N ′2 ∪
N ′3 ∪ N ′4 burn (where N ′i may be empty, for some i ∈ {2, 3, 4}, but then
N ′i ∪ N ′i+1 ∪ · · · ∪ N ′4 = ∅ by definition). If Y = ∅, then this is at least
p + |N ′1 ∪ N ′3| − |F2 ∪ F4| ≥ p vertices, satisfying the proposition. So we
henceforth assume that Y 6= ∅. In particular, observe that if |N ′3| > |F1|,
then any vertex in Y has outdegree more than u, so Y = ∅. So it remains
to consider when |N ′3| ≤ |F1| ≤ 1; the remainder of the proof is dedicated to
handling this case.

First, we show that |F1 ∪ N ′′2 | ≥ 3. If F1 = ∅, then N ′′2 = N2, which
has size at least 3, satisfying the claim. So assume that F1 6= ∅. Towards a
contradiction, suppose that |N ′′2 | ≤ 1. Recall that the only vertices in P \{u}
with incoming arcs from N ′1 are in N ′′2 . The vertices in P \ ({u} ∪N ′′2 ) can
be partitioned into (N2 \N ′′2 , N4), where |N2 \N ′′2 | ≥ 2, since |N2| ≥ 3. We
first consider a fire that breaks out at the vertex in F1. Let P ′ be a subset
of N2 \N ′′2 of size at least |N2 \N ′′2 | − 1. Let Q′ be the subset of vertices in
N3 that have outgoing arcs towards every vertex in P ′. If Q′ = ∅, then if a
fire starts at the vertex in F1, it spreads to P ′ at time 2, since if a vertex
in N2 \N ′′2 is protected, we may assume it is not in P ′. At time 3, the fire
spreads to all unprotected vertices in N3, since Q′ = ∅ implies that every
vertex of N3 is reachable from P ′; and to unprotected vertices in N ′1, since
P ′ is non-empty and all arcs between P ′ and N ′1 are towards N ′1. If the
first firefighter is positioned in P , then at least q − 1 + |P ′| vertices burn;
otherwise, q − 2 + |N2 \ N ′′2 | vertices burn; in either case q vertices burn
as required. Now we may assume that Q′ 6= ∅. Consider a fire starting
in Q′. At time 2, all unprotected vertices in {u} ∪ P ′ ∪ N4 burn, where
|{u} ∪ P ′ ∪ N4| ≥ p − 2. At time 3, all unprotected vertices in N ′1 burn,
since vertices in N ′1 have incoming arcs from both u and the non-empty set
P ′. Hence, a total of at least 1 + (p − 2) + 3 − 2 ≥ p vertices are burning
at this time. So we may assume that |F1 ∪N ′′2 | ≥ 3, and, in particular, that
N ′2 6= ∅.

If Z = ∅, then a fire starting at u burns q−|F1∪F3|+ |{u}∪N ′2| vertices.
This value is at least q, since N ′2 6= ∅, and when |N ′2| = 1, then |F1∪N ′′2 | ≥ 3
implies that |F2| ≥ 1 so |F1 ∪ F3| ≤ 2. So we may now assume that Z 6= ∅.

Suppose that |N ′3| = |F1| = 1. Recall that Y is non-empty. Since any
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vertex in Y has every vertex in N ′1∪N ′3 as an outneighbour, all arcs between
Z and Y are towards Y . Let (Z1, Z2) be the partition of Z such that vertices
in Z1 are outneighbours of some vertex in N ′4, whereas all arcs incident with
a vertex in Z2 and a vertex in N ′4 are oriented towards the vertex in N ′4.
Suppose that Z2 is non-empty, and consider a fire starting at a vertex in Z2.
Then all but at most one vertex of {u} ∪N ′2 ∪N ′4 ∪ Y burns at time 2, so a
total of at least p − |F2 ∪ F4| vertices are burning at this time. At time 3,
the fire will spread to the vertex in N ′3, if unprotected, since either Y or N ′2
is unprotected, as well as unprotected vertices of N ′1, since |{u} ∪ Y | ≥ 2.
Hence, at least p−|F2∪F4|+ |N ′1| vertices burn. Since |N ′1| ≥ 3 ≥ |F2∪F4|,
this is at least p vertices, as required.

So we may assume that Z2 is empty. Thus Z = Z1, and this set is
non-empty. If N ′4 = ∅, then, as in the previous paragraph, at least p −
|F2 ∪ F4| + |N ′1| ≥ p vertices burn when a fire starts at a vertex in Z. So
assume that N ′4 6= ∅. Now, a fire starting at u spreads to N ′1 ∪N ′2 ∪N ′3 ∪N ′4
at time 5, and all unprotected vertices in Z = Z1 at time 6, so at least
q − |F1 ∪ F3|+ |N ′2 ∪N ′4| vertices burn. This value is at least q, because N ′2
and N ′4 are non-empty, and when |F1∪F3| = 3, then |N ′2| ≥ 2, since F2 = ∅.
So the proposition holds when |N ′3| = 1.

Suppose that N ′3 = ∅. Then, by definition, N ′′4 = ∅. Recall that Y, Z 6= ∅.
Let z be a vertex in Z. If z has arcs towards every vertex in Y , then a fire
starting at z spreads to at least p− |F2| vertices by the end of time 2, and,
since |Y | ≥ 1, it spreads to unprotected vertices in N ′1 at time 3; so p vertices
burn as required. Thus, for each z in Z, there exists a vertex y in Y such
that there is an arc from y towards z. Moreover, every vertex in Y has at
most one outneighbour in Z, since u has maximum outdegree. It follows
that |Y | ≥ |Z|, and that there exists a subset Y ′ of Y with |Y ′| = |Z| such
that each y in Y ′ has precisely one outneighbour in Z, and for distinct y1, y2

in Y ′, their outneighbours in Z are distinct. Note, in particular, that each
vertex in Z has |Z| − 1 outneighbours in Y ′.

Suppose that |Z| ≥ 2. We first consider when |Y | > |Z|. Then there
exists some vertex y′ in Y \ Y ′. Since y′ has at most one outneighbour in
Z, there is an arc from some vertex z′ in Z to y′. So z′ has at least |Z|
outneighbours in Y ; we denote these outneighbours by N+

Y (z′). Suppose
that a fire starts at z′. Then, at time 2, all unprotected vertices in N ′2 ∪
{u}∪N+

Y (z′) burn. At time 3, unprotected vertices in either N ′1∪F1 (if u was
not protected at time 1) or N ′1 ∪F3 (otherwise) burn. By the end of time 3,
at least |N ′1 ∪ Z ∪ F ′| + |N ′2| + |{u, z′}| − 2 = q − |F | + |N ′2| vertices burn,
where {F, F ′} = {F1, F3}. Evidently |N ′2| ≥ |F1|; and 3 ≤ |F1 ∪F2|+ |N ′2| ≤
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3−|F3|+ |N ′2|, so |N ′2| ≥ |F3|. Hence at least q vertices burn when |Y | > |Z|.
If |Y | = |Z|, then, by a similar argument, at least |N ′1 ∪ F |+ |Z|+ |N ′2| − 1
vertices burn, where F ∈ {F1, F3}. Since |Y | = |Z| and |N ′1| ≥ 3, this value
is at least p−|F2|+ |F |+1, so we get the desired result when |F | ≥ |F2|−1.
In the exceptional case, |F2| = 2, so F1 = ∅. But then N ′′2 = N2, so all arcs
between vertices in Y ⊆ N4 and Z ⊆ N3 are towards Y ; a contradiction.

Finally, suppose |Z| = 1. Let Z = {z} and let y be the vertex in Y
that has z as an outneighbour. A fire starting at u burns all vertices in
{u} ∪N ′2 ∪ (Q \ (F1 ∪ F3 ∪ {z})) by the end of time 2, so at least q vertices
burn when |N ′2| ≥ |F1 ∪F3|. So we may assume that |N ′2| < |F1 ∪F3|. Then
either |N ′2| = 2 and F2 = ∅; or |N ′2| = 1, in which case |F2| = 1. Thus
|N ′′2 | = 2, so |Y | ≥ 3. Suppose there exists y′ ∈ Y \ {y} such that z is an
outneighbour of y′. Since u has maximum outdegree, arcs between y or y′

and F3 are oriented away from F3. Now a fire starting at a vertex in F3

burns q − |F1 ∪ F3| + 2 vertices by the end of time 2. If F2 6= ∅, this is at
least q burning vertices, as required; otherwise, unprotected vertices in N ′2
burn at time 3, so again at least q vertices burn as required. So we may
assume that all arcs between z and Y \ {y} are oriented away from z, where
|Y \ {y}| ≥ 2. Now, if a fire starts at z, then at least p− |F2 ∪ {y}| vertices
burn by the end of time 2, and then the fire spreads to unprotected vertices
of N ′1 at time 3. So at least p vertices burn. This completes the proof.

This proposition implies a lower bound on
−→
β for any graph containing a

complete bipartite subgraph. Moreover, it shows that any family of graphs
containing graphs with arbitrarily large complete bipartite subgraphs has

no constant upper bound for
−→
β .

We now consider an upper bound for bipartite graphs.

Observation 3.9. Let G be a bipartite graph with bipartition (A,B). Then

−→
β (G, f) ≤ 1 + min {∆(A),∆(B)} − f.

Proof. Assume that ∆(A) ≤ ∆(B) and consider an orientation
−→
G of G

where all arcs are oriented from A to B. Note that if the fire breaks out
at some vertex of B, then it cannot propagate to other vertices of G. Now
if the fire breaks out at some vertex u in A, then, assuming the firefighters
protect f outneighbours of u at time 1, at most ∆(A)− f new vertices will
burn at time 2. However, the fire will not be able to propagate further, so
at most 1 + ∆(A)− f vertices burn.
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When f = 1, Propositions 3.7 and 3.8 imply that the strategy described
in the proof of Observation 3.9 is optimal for Kp,q with q ≥ p(p − 1) or
min{p, q} ≥ 6.

Theorem 3.10. Let p, q be two positive integers such that p, q ≥ 6, or p ≥ 1

and q ≥ p(p− 1). Then
−→
β (Kp,q, 1) = min{p, q}.

In general, however, the strategy in the proof of Observation 3.9 may not be
optimal, even for complete bipartite graphs. For example, for K2,2, it follows

from Observation 3.9 that
−→
β (K2,2, 1) ≤ 2. But K2,2 admits an orientation

with maximum outdegree 1; hence
−→
β (K2,2, 1) = 1. More generally, a cyclic

orientation can be used on Kp,p, similar to that used for complete graphs
in the proof of Proposition 3.3, to ensure that strictly fewer than p vertices
burn when f ≥ p−1

3 . We conjecture the following:

Conjecture 3.11.
−→
β (Kp,q, f) = 1 + min{p, q} − f for every f, p, q with

min{p, q} > 3f + 1.

4. Firefighting in graphs with particular properties

In this section, we describe several strategies for deducing upper bounds

on
−→
β . In each case we obtain these bounds by exploiting the value of some

graph invariant.

4.1. Graph classes with bounded chromatic number

Given an undirected graph G, a proper k-vertex-colouring of G is a par-
tition (V1, V2, . . . , Vk) of V (G) such that Vi is a stable set for each i ∈
{1, 2, . . . , k}. The least k such that G has a proper k-vertex-colouring is
called the chromatic number of G, and is denoted χ(G).

In the next proposition we give an upper bound on
−→
β , given a graph G,

in terms of the maximum degree and the chromatic number of G.

Proposition 4.1. Let G be a graph with maximum degree ∆. Then

(i)
−→
β (G, f ≥ ∆) = 1, and

(ii)
−→
β (G, 1 ≤ f < ∆) ≤ ∆χ(G).

Proof. Set k = χ(G), and let π = (V1, V2, . . . , Vk) be a proper k-vertex-

colouring of G. Let
−→
G be the orientation of G obtained by orienting every

edge uv towards the vertex which belongs to the part of π with the largest
index. That is, if u ∈ Vi and v ∈ Vj with i < j, then orient uv from u to
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Figure 6: Strategy described in the proof of Proposition 4.1 for ∆ = 3, k = 3 and f = 1.

v (or conversely if i > j). Note that the longest directed paths of
−→
G have

length k − 1. The result follows easily.

The bound given in Proposition 4.1 when f < ∆ is rough: we can find
a bound that is tighter, but less aesthetically pleasing, by considering the
number of vertices protected at each step, and utilising the fact that if a
vertex burns at time t ≥ 2, then it has an inneighbour, so its outdegree is
at most ∆− 1.

Proposition 4.2. Let G be a graph with maximum degree ∆ > 2 and chro-
matic number k. Then

−→
β (G, 1 ≤ f < ∆) ≤ ∆(∆− 1)k−1 − 2

∆− 2
− f

(
(∆− 1)k −∆k + 2k − 1

(∆− 2)2

)
.

Proof. Orient G as described in the proof of Proposition 4.1. The maximum
number of vertices will burn in the case where the fire starts at a vertex v
with outdegree ∆, and all the neighbours encountered in a search of depth k
starting at v are distinct (see Figure 6). At each time interval, the firefighters
protect f outneighbours of burning vertices. We now calculate the number
of vertices that burn in this situation. Let St be the maximum number of
vertices that burn at time t. Then S1 = 1, S2 = ∆−f and, for any t ≥ 3, we
have St = (∆ − 1)St−1 − f . By solving this recurrence relation, we deduce
that for t ≥ 1,

St+1 = ∆(∆− 1)t−1 − f
(

(∆− 1)t − 1

∆− 2

)
.

The chosen orientation ensures the fire propagates for at most k time inter-
vals. Thus, an upper bound on the total number of vertices that burn is

19



given by 1 +
∑k

t=2 St. Hence

−→
β (G, f) ≤ 1 + ∆ ·

k−1∑
t=1

[
(∆− 1)t−1

]
− f

∆− 2
·
k−1∑
t=1

[
(∆− 1)t − 1

]
= 1 +

(∆− 1)k−1 − 1

∆− 2

(
∆− f(∆− 1)

∆− 2

)
+
f(k − 1)

∆− 2
,

which can be manipulated into the form given in the statement of the propo-
sition.

Proposition 4.2 implies, in particular, that, since f ≥ 1, for any ∆ > 1
we have −→

β (G, f) ≤ 2(∆− 1)χ(G)−1.

Thus, we can orient the edges of any 3-colourable graph so that, wherever the
fire breaks out, at most 2(∆−1)2 vertices burn by some firefighting strategy.
Furthermore, for a planar graph (or, more generally, a 4-colourable graph),
we can orient its edges so that at most 2(∆− 1)3 vertices burn. By Brooks’
Theorem, we have that

−→
β (G, f) ≤ 2(∆− 1)∆.

In fact, since for a complete graph at most ∆ vertices burn, trivially (as
f ≥ 1), and an odd cycle has an orientation with maximum outdegree 1, we
have that −→

β (G, f) ≤ 2(∆− 1)∆−1.

Thus, any class of graphs with bounded maximum degree has bounded−→
β . Given a graph G with maximum degree 3, at most six vertices can burn
using an optimal firefighting strategy when one firefighter is available, by
Proposition 4.2. For graphs with maximum degree 4, the bound is 35. We
will see in Sections 5.2 and 5.3 that these bounds are far from best possible.

4.2. Graph classes with bounded arboricity

The arboricity of an undirected graph G, denoted by a(G), is the least
number of forests into which the edges of G can be partitioned. A graph
with small arboricity admits an orientation with small maximum outdegree.

Observation 4.3. Every graph G admits an orientation with maximum
outdegree at most a(G).
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Proof. Let (E1, E2, . . . , Ea(G)) be a partition of E(G) inducing forests. Then,
for every i ∈ {1, 2, . . . , a(G)} and for every tree T of the forest G[Ei], choose
an arbitrary orientation of T with maximum outdegree at most 1 (which

exists by Lemma 2.2). Let
−→
G be the orientation of G induced by the ori-

entations of each tree of every G[Ei]. Then, since each vertex u of G, in
each of the a(G) oriented forests, has outdegree at most 1, we get that u

has outdegree at most a(G) in
−→
G .

The following corollary is a straightforward consequence of Corollary 2.5
and Observations 2.4(i) and 4.3.

Corollary 4.4. Let G be a graph. Then

(i)
−→
β (G, f ≥ a(G)) = 1, and

(ii)
−→
β (G, a(G)− 1) ≤ 1 + |V (G)|−1

a(G) .

4.3. Graph classes with small feedback vertex set

A feedback vertex set of an undirected graph G is a subset F ⊆ V (G)
of vertices whose removal from G results in a forest. The next observation
shows that for a graph with a small feedback vertex set, there is an effective
strategy for firefighting.

Observation 4.5. Let F ⊆ V (G) be a feedback vertex set of a graph G.
Then −→

β (G, f) ≤ max {1, |F | − f + 2} .

Proof. Consider the following orientation
−→
G of G. First, for every tree

of G − F , choose a root and orient its edges as described in the proof of

Lemma 2.2 so that
−→
G [V (G) \ F ] has maximum outdegree at most 1. Next

orient all edges between V (G) \ F and F towards F . Finally orient all
remaining edges, that is those joining vertices in F , arbitrarily.

Assume the fire starts at some vertex u of G. Note that, by the orien-

tation of
−→
G , the fire cannot propagate from F to V (G) \ F . Moreover, if

u ∈ V (G) \ F , then, using one firefighter, we can stop the propagation of
the fire in G− F . Therefore, the worst case is where the fire breaks out at
a (non-root) vertex of V (G) \ F . In that situation, use the following strat-
egy: at time 1, use one firefighter to protect the other vertices of G−F (by
protecting the parent of the burnt vertex), and any remaining firefighters to
protect vertices of F . At time 2, all unprotected vertices of F can then burn
(if F is complete to V (G) \ F ), but the fire will not be able to propagate
further, so 1 + |F | − (f − 1) vertices burn in this case.
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5. Firefighting in particular families of graphs

In this section, we give lower and upper bounds on
−→
β for specific families

of graphs.

5.1. Partial k-trees

A k-tree is either a complete graph on k+ 1 vertices or a graph that can
be obtained from a k-tree by adding a vertex that is adjacent to each of k
vertices forming a clique. A partial k-tree is a subgraph of a k-tree. It is well
known that a k-tree is a maximal graph (in terms of size) with treewidth
exactly k, while a partial k-tree has treewidth at most k.

Since every k-tree contains a clique on k + 1 vertices, we obtain the

following lower bound using Proposition 3.2 and the fact that
−→
β (K4, 1) = 2.

Corollary 5.1. Let G be a k-tree with k ≥ 3. Then

−→
β (G, 1) ≥ max{2, k − 2}.

We now give upper bounds on
−→
β for k-trees. The proof is based on

the existence of an orientation in which the fire can only spread towards a
k-clique located, loosely speaking, at the centre of the graph. By definition,
a k-tree can be constructed starting from some (k+ 1)-clique by repeatedly
adding a new vertex that is adjacent to each vertex of a k-clique. We require
the following lemma stating that any k-tree can be constructed in this way
starting from any of its (k + 1)-cliques. We omit the routine proof.

Lemma 5.2. Let G be a k-tree. For every (k + 1)-clique K of G, we can
construct G starting from K by repeatedly adding a vertex that is complete
to k vertices forming a clique.

For an undirected graph G, the diameter of G, denoted diam(G), is the
maximum distance between any two vertices of G.

Proposition 5.3. Let G be a k-tree. Then

(i)
−→
β
(
G, f ≤ 2k

diam(G)

)
≤ 1 +

⌊
diam(G)

2

⌋
· (k − f)− f , and

(ii)
−→
β
(
G, f > 2k

diam(G)

)
≤ 1 + k ·

(⌊
k
f

⌋
− 1
)

.
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Figure 7: The orientation of a 3-tree described in the proof of Proposition 5.3.

Proof. By Observation 2.1, it suffices to prove these bounds for a (maximal)

k-tree G. So let G be a k-tree, and consider the orientation
−→
G of G that

we now describe (as illustrated in Figure 7). Let K be a (k+ 1)-clique in G

such that every vertex of G is at distance at most
⌊

diam(G)
2

⌋
from a vertex of

K in G. By Lemma 5.2, we can construct G starting from K by repeatedly
adding a vertex that is adjacent to each vertex of a k-clique in the existing

graph. In
−→
G , first orient the arcs of K as in the proof of Proposition 3.3.

Then, for each iteration of the construction of G that consists of adding a
new vertex u and joining it to all vertices of a k-clique, say Ku, orient all

arcs in
−→
G from u towards V (Ku).

Assume the fire breaks out at some vertex u of
−→
G . The orientation−→

G of G ensures that the fire can only propagate towards the clique K. In
particular, the fire will be contained as soon as the vertices of K are reached.

Therefore, the most vertices can burn when u is at distance
⌊

diam(G)
2

⌋
from

a vertex of K, so we assume this is the case.

By the construction of G and the orientation of the arcs of
−→
G , we note

that, in
−→
G , the fire can only propagate to k new vertices at each time

unit, and the fire will not reach K until time at most
⌊

diam(G)
2

⌋
. First, if

f ≤ 2k
diam(G) , then, no matter which vertices are protected at each time unit,

the fire spreads to the vertices of K at time diam(G)
2 . In this situation, f

vertices can be saved at each of the diam(G)
2 time intervals.

On the other hand, if f > 2k
diam(G) , then there is a set S of k vertices which

will burn at the same time unit (being at least
⌊
k
f

⌋
), when unobstructed by

firefighters. If, at each time unit, we protect f unprotected vertices of S,
then all vertices of S will be protected by the time the fire neighbours S. In

this case, at most 1 + k ·
(⌊

k
f

⌋
− 1
)

vertices burn, as required.
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It is worth noting that the anticipation strategy described in the proof of
Proposition 5.3 demonstrates that, for some oriented k-trees, it is not always
best to protect vertices adjacent to the fire. As an example, consider kth
powers of paths, where the kth power P kn of the path Pn on n ≥ 1 vertices is
the graph with vertex set V (Pn) for which two vertices are adjacent if and
only if they are at distance at most k in Pn. Using the approach in the proof
of Proposition 5.3, pick a (k+1)-clique of P kn with minimum distance to any
other vertex, and then orient all the edges towards this centre clique. When
k is much greater than f and the underlying path is long, it is clear that
if the firefighters protected close to the fire, then the fire would propagate
until the fire reaches the centre clique. Hence this is a situation where it is
better for the firefighters to anticipate the spread of the fire, as in the proof
of Proposition 5.3(ii).

The following is a special case of the strategy described in the proof of
Proposition 5.3.

Proposition 5.4. Let G be a partial k-tree. Then

−→
β

(
G, f ≥

⌊
k

2

⌋)
≤ 1 +

⌈
k

2

⌉
.

Proof. By Observation 2.1, we may assume that G is a k-tree. Let
−→
G

be the orientation of G obtained as described in the proof of Proposi-

tion 5.3. Assume the fire breaks out at some vertex u of
−→
G , and denote by

v1, v2, . . . , vk its k outneighbours. By the construction of G and the way
−→
G

was obtained, note that there are
⌈
k
2

⌉
of the vi’s, say v1, v2, . . . , vd k2e, with

only
⌊
k
2

⌋
outneighbours not among vd k2e+1, vd k2e+2, . . . , vk. Then protect

vd k2e+1, vd k2e+2, . . . , vk at time 1. The fire will then propagate to v1, v2, . . . , vd k2e
at time 2, but it then suffices to protect vd k2e+1, vd k2e+2, . . . , vk at time 2 to

stop the fire propagation. Note that this strategy remains applicable if u
belongs to the root clique since, by its orientation, its vertices have “small”

outdegree. Hence, with that strategy, at most 1 +
⌈
k
2

⌉
vertices of

−→
G will

burn.

We note that Proposition 5.4 is particularly interesting when k = 2:
the edges of every partial 2-tree can be oriented so that, firefighting with
only one firefighter, at most two vertices burn. This applies to well-known
families of partial 2-trees, such as series-parallel or outerplanar graphs.
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5.2. Subcubic graphs

We now focus on subcubic graphs: that is, graphs with maximum de-
gree 3. Recall that for these graphs, Proposition 4.2 implies that at most six
vertices burn when firefighting with one firefighter. We reduce this upper
bound to 2, which is best possible.

Theorem 5.5. Let G be a subcubic graph. Then
−→
β (G, 1) ≤ 2.

Proof. We will describe an orientation
−→
G of G and a firefighting strategy

on
−→
G for which at most two vertices burn. Let B ⊆ E(G) be the set of

all bridges of G. We first describe the orientation on this set of edges.
Note that B induces a forest. Moreover, the graph G/(E(G) \B), obtained
by contracting the edges not in B, is a tree. This tree has an orientation
where each edge has outdegree at most 1, by Lemma 2.2. Let this be the

orientation of the edges of B in
−→
G , and call any such arc in

−→
G a bridge arc.

After orienting the remaining edges, such an orientation has the property
that for each connected (and 2-connected) component X of G\B, there is

at most one arc
−→
bz in B for which the tail b is in V (X).

We now consider the orientation of a connected component X of G\B
in
−→
G . Each vertex of X has degree 2 or 3 (if there was a vertex of degree 1,

the incident edge would be a bridge in G). If X consists only of degree-2
vertices, then X is a cycle, and we orient the edges such that each edge has
indegree 1 and outdegree 1. Now we may assume that there are at least
two vertices of degree 3 in X. We will construct a cubic multigraph X ′, and
describe an orientation on X ′ that extends to X. We obtain X ′ by replacing
each maximal path vv1v2 · · · vpv′ for which each internal vertex has degree 2
with an edge vv′ (see Figure 8). Note that if there is a vertex b ∈ V (X) for

which B has an arc
−→
bz, then b is contained in some maximal cc′-path (say)

in X for which each internal vertex has degree 2. Clearly, X ′ is cubic and
remains 2-connected. Thus, according to Petersen’s Theorem there exists
a partition (P ′, C ′) of the edges of X ′ such that C ′ induces a collection of
cycles (a 2-factor), while P ′ induces a perfect matching. Moreover, it is
well-known that there is such a partition for which P ′ contains any given
edge of X ′. If X ′ has an edge cc′ corresponding to a path containing b, then
we pick a partition (P ′, C ′) such that P ′ contains any edge adjacent to cc′;
that is, C ′ contains cc′.

We orient the edges of X ′ such that each cycle of C ′ is 1-regular (each
vertex in C ′ has indegree 1 and outdegree 1), and each edge of P ′ is oriented
arbitrarily. This orientation extends to an orientation of the edges in X,
in the obvious way. Let (P,C) be the partition of edges of X for which P
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v v′

X

v v′

X ′

Figure 8: An example of a subcubic component X of G\B, and the corresponding cubic
multigraph X ′, as described in the proof of Theorem 5.5. A dotted edge represents a
bridge in B.

(respectively, C) contains each edge in the path vv1 · · · vpv′ corresponding
to an edge vv′ of P ′ (respectively, C ′). We call an arc in C a cycle arc,
and an arc in P a path arc. Note that P induces a disjoint union of paths,
each oriented from one end to the other. Moreover, each vertex v ∈ V (X) is
incident to at most two outgoing arcs, and, when v has outdegree precisely 2,
it has one outgoing path arc, one outgoing cycle arc, and one incoming cycle
arc.

Now consider the orientation
−→
G obtained by combining the described

orientations on B and each component X of G\B (see Figure 9). A vertex
may be incident to at most one outgoing bridge arc. However, by the fore-
going, such a vertex is either incident to two cycle arcs (one outgoing, one

incoming) or other bridge arcs (each incoming). Thus, the orientation
−→
G

has the property that every vertex has outdegree at most 2, and each vertex
with outdegree 2 is incident to two cycle arcs.

Finally, we show that, regardless of where the fire breaks out in
−→
G , there

is a strategy, using one firefighter at each step, for which at most two vertices

burn. Say the fire breaks out at some vertex u of
−→
G . If u has outdegree 1,

then containing the fire is trivial. Otherwise, u has outdegree 2, and hence
is incident to cycle arcs

−→
tu and −→uv, and a bridge arc or path arc −→uw, say.

The firefighter blocks v at time 1, so, at time 2, the fire spreads to w. Now
we prove that w has outdegree 1, so the fire can be completely contained.
Evidently this is the case if w is incident to cycle arcs. If there is a path
arc −→wx, the presence of adjacent path arcs implies that w has degree 2,
and hence outdegree 1. Finally, if w is incident only to bridge arcs, then
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X ′

1 1′

2′

2

X

Figure 9: An example of how the orientation
−→
G is obtained, and an application of the

firefighting strategy on
−→
G described in the proof of Theorem 5.5. Thin arcs (respectively,

edges) represent path arcs (respectively, edges in the perfect matching P ′), thick arcs
(respectively, edges) represent cycle arcs (respectively, edges in the 2-factor C′), and dotted
arcs represent bridge arcs.

it has outdegree 1, by the choice of orientation of the edges B in
−→
X . This

completes the proof.

Theorem 5.5 is best possible, since there are subcubic graphs, such as
K4 or the Petersen graph, for which at least two vertices will necessarily
burn, by Corollary 2.7.

5.3. Graphs with bounded maximum degree

Recall that, so far, the best upper bound on
−→
β we have seen when

firefighting with one firefighter in a graph with maximum degree d is roughly

2(d− 1)d−1. When d ≤ 3, however,
−→
β is at most 2. In this section, we start

by considering the case where d = 4, and show that, for such graphs,
−→
β is

at most 5. We then use a similar strategy to improve the upper bound in
general, for d ≥ 5. Here we are interested in the case where f = 1, although
a similar approach could also be used to obtain bounds when f ≥ 2. We
define the following for legibility:

−→
βd = max

{−→
β (G, 1) : G is a graph with maximum degree d

}
.
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So, for example,
−→
β3 = 2, by Theorem 5.5.

First, we observe that when studying upper bounds on
−→
β for the class of

graphs with maximum degree ∆, we can restrict our attention to ∆-regular
graphs.

Lemma 5.6. If there exists an integer x such that
−→
β (G, f) ≤ x for every

∆-regular graph G, then
−→
β (G, f) ≤ x for every graph G with maximum

degree ∆.

Proof. We will show that for every graph G with maximum degree ∆, there
exists a ∆-regular graph containing G as a subgraph; the lemma follows
from this claim. Let G be a graph with minimum degree d and maximum
degree ∆. Clearly the lemma holds if d = ∆, so assume that G is not
∆-regular. Take two copies G1 and G2 of G, and, for every vertex v of
G with degree strictly less than ∆, add an edge between the two vertices
corresponding to v in G1 and G2. We obtain a graph with minimum degree
strictly greater than d, maximum degree ∆, and containing G as a subgraph.
By repeating this process, for ∆ − d iterations, we eventually obtain a ∆-
regular graph as desired.

Proposition 5.7.
−→
β4 ≤ 5.

Proof. Let G be a graph with maximum degree 4. Let X be the subset of
V (G) obtained by the following iterative procedure: starting with X = ∅,
while G−X has a degree-4 vertex x, add x to X and remove x from G. Note
that when this procedure terminates, X contains no two adjacent vertices of
G, and G−X has maximum degree at most 3. Let G′ = G−X. Recall that,

by Theorem 5.5,
−→
β (G′, 1) ≤ 2. Let

−→
G′ be the orientation of G′ described

in the proof of Theorem 5.5. Let
−→
G be the orientation of G′ such that

−→
G −X =

−→
G′, and all edges incident to a vertex x in X are oriented towards

x.
If the fire starts at a vertex in X, it cannot propagate any further due to

the orientation of
−→
G . So suppose the fire starts at a vertex of G′. We then

employ the same firefighting strategy on G′ as in the proof of Theorem 5.5.
Whenever the fire spreads to a vertex of X, the orientation ensures that it
will not spread further from this vertex. So we only need to consider how
many vertices burn in G′, and how many vertices of X are adjacent to these
burnt vertices in G. Observe that at most two vertices of G′ burn. If the two
vertices of G′ that burn have degree 3 in G′, then these two vertices each
have at most one neighbour in X, so at most four vertices burn in total. If,
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instead, the fire starts at a vertex that has degree at most 2 in G′, then this

vertex has one inneighbour and one outneighbour in
−→
G′. So only one vertex

of G′ burns, and hence at most four vertices burn in total. Finally, suppose
the fire starts a vertex v1 with degree 3 in G′, then spreads to a vertex v2 at
time 2 that has degree 2 in G′. Then v1 is adjacent to at most one vertex
of X in G, and v2 is adjacent to at most two vertices of X in G. So at most
five vertices burn in total. This completes the proof.

Since K4,4 is 4-regular and
−→
β (K4,4, 1) = 3, by Proposition 3.7, we have

−→
β4 ≥ 3. However, finding its precise value remains an open problem.

Question 5.8. What is the value of
−→
β4?

We now focus on improving the upper bound on
−→
βd for any d ≥ 5.

The next lemma is key to our approach. The proof is similar to that for
Proposition 5.7, but does not rely on properties of the optimal orientation
for subcubic graphs.

Lemma 5.9. Let d ≥ 2. Then

−→
βd ≤ max

{
d,
−−→
βd−1 · (d− 2) + 2

}
.

Proof. Let d ≥ 2 be fixed, and assume
−−→
βd−1 ≤ k for some k ≥ 1. Let G be a

graph with maximum degree d. We will describe an orientation
−→
G of G on

which we can firefight with only one firefighter in such a way that at most

max
{
d,
−−→
βd−1 · (d− 2) + 2

}
vertices burn.

As in the proof of Proposition 5.7, there is a subset X of V (G) that
contains no two adjacent vertices of G, and G − X has maximum degree
at most d − 1. Let G′ = G − X. By the initial assumption, there is an

orientation
−→
G′ of G′ with β(

−→
G′, 1) ≤ k. Now, for each edge in G′, we give

the same orientation to the edge in
−→
G as in

−→
G′; whereas each edge incident

to a vertex x of X is oriented towards x.
We now consider a strategy for firefighting on

−→
G . Assume the fire breaks

out at some vertex u. If u is in X, then it has outdegree 0, and the fire cannot
propagate to the other vertices. Now assume u is not in X. Due to the way

the edges of G′ have been oriented in
−→
G , there is a certain strategy that the

firefighter can apply so that at most
−→
βd vertices of G′ burn. So apply this

strategy. Then x ≤
−→
βd vertices u1, u2, . . . , ux in G′ burn, where u1 = u.
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−−−→
βd−1 − 1

−−−→
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−−−→
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−−−→
βd−1

−→
G′

d− 2 d− 3 d− 3 d− 3 d− 2

Figure 10: The worst-case situation described in the proof of Lemma 5.9.

Whenever a vertex ui burns at some time unit, then, at the next time

unit, the fire will also propagate in
−→
G −

−→
G′, that is to some vertices in X.

There are exactly

dG(ui)−
(
d−−→
G′

(ui) + d+
−→
G′

(ui)
)

such vertices. It is easy to check that the worst case, where the number of

burnt vertices is at a maximum, occurs when, for x =
−→
βd, the path u1u2 · · ·ux

is a directed path in
−→
G′, and we have d+

−→
G′

(ux) = 1 and d+
−→
G′

(ui) = 2 for every

i ∈ {1, 2, . . . , x− 1}. This last condition maximises the quantity

x∑
i=1

dG(ui)−
(
d−−→
G′

(ui) + d+
−→
G′

(ui)
)
,

and ensures that the firefighter cannot prevent the fire from reaching ux. In
particular, at each time unit i, the firefighter protects a vertex vi which is an

outneighbour of ui in
−→
G′. See Figure 10 for an illustration of this situation.

Then, for each ui with i ∈ {2, 3, . . . , x − 1}, at most d− 3 other vertices of
−→
G −

−→
G′ will burn, and at most d − 2 for u1 and ux. The total number of

vertices which will burn is hence

−−→
βd−1 + 2 · (d− 2) +

(−−→
βd−1 − 2

)
· (d− 3),

as claimed.

Using the upper bound from Theorem 5.5, we obtain the following:

Corollary 5.10. Let d ≥ 4. Then

−→
βd ≤ (d− 1)!.
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5.4. Planar graphs

In this section we study the parameter
−→
β for planar graphs. First of

all, it is well known that planar graphs have arboricity at most 3 (due to
Schnyder [9]), so, by Corollaries 2.5 and 4.4, for every such graph G:

•
−→
β (G, f ≥ 3) = 1, and

•
−→
β (G, 2) ≤ |V (G)|+2

3 .

For this reason, we focus, in this section, on the problem of firefighting with
only one firefighter in a planar graph.

As in previous sections, our first question of interest is whether or not,

for this family, the parameter
−→
β is bounded above by an absolute constant.

Question 5.11. Is there a constant c ≥ 1 such that
−→
β (G, 1) ≤ c for every

planar graph G?

Answering Question 5.11 does not seem straightforward. Experiments
on families of planar graphs suggest that such a constant c could exist,
though we are not aware of an orientation scheme and strategy that work
for any planar graph. In particular, “denser” planar graphs are problematic.
Consider the following example. Fix a large value of ∆ and let G be the
planar graph obtained as follows. Starting from a single vertex v, add a first
layer of ∆ new vertices around v, i.e., join v to all these vertices, and add
edges between the vertices of the first layer so that they induce a cycle. Now
add a second layer of vertices around the first layer, and add edges between
the first and second layers so that all vertices of the first layer have degree ∆.
Repeat this procedure until a large number of vertices with degree ∆ are
obtained. Assuming ∆ and the number of layers are sufficiently large, there
is no obvious way to orient the edges of the resulting graph to prevent fire
propagation.

However, a simple counting argument shows that if the constant c men-
tioned in Question 5.11 does exist, then c ≥ 3. A planar graph is maximal
if any graph obtained by adding an edge on the same vertex set results in a
non-planar graph. It is well known that any maximal planar graph G with
more than two vertices has 3|V (G)| − 6 edges. Consequently, by applying
Corollary 2.7, we observe the following:

Observation 5.12. Let G be a maximal planar graph on at least seven

vertices. Then
−→
β (G, 1) ≥ 3.
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Figure 11: Firefighting in an infinite rectangular grid.

In fact, we will show, in Observation 5.16, that such a c must be at least 4.

Although we have no concrete evidence that Question 5.11 has a negative
answer, we suspect the following direction might be more promising.

Conjecture 5.13. Let G be a planar graph with maximum degree ∆. Then−→
β (G, 1) is linear in ∆.

Since every planar graph is 4-colourable, by the Four-Colour Theorem,

it follows from Proposition 4.2 that
−→
β (G, 1) ≤ 2(∆ − 1)3 for every planar

graph G. For some subclasses of planar graphs, this can be further improved
using the wide range of results in the literature regarding these graphs. For
example, since every triangle-free planar graph is 3-colourable by Grötzsch’s

Theorem, Proposition 4.1 implies that
−→
β (G, 1) ≤ 2(∆− 1)2 whenever G is

planar and triangle-free. Moreover, since triangle-free planar graphs have

arboricity 2, we have, by Corollary 4.4, that
−→
β (G, 1) ≤ |V (G)|+1

2 .
Towards Conjecture 5.13, we now consider infinite planar grids, which

received some attention for both the directed and undirected versions of
the Firefighter Problem [1, 8]. In particular, the strategies described below
could be useful for dealing with the general case.

We start by confirming Conjecture 5.13 for infinite rectangular grids
(refer to Figure 11 for an illustration), showing that ∆ is an upper bound

for
−→
β for these grids.

Proposition 5.14. Let G be an infinite rectangular grid with maximum
degree ∆. Then −→

β (G, 1) = 3 < 4 = ∆.
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Figure 12: Firefighting in an infinite triangular grid.

Proof. Let
−→
G be the orientation of G (depicted in Figure 11) obtained as

follows. Orient all “rows” of G from, say, “right to left”. Now, orient all
“even columns” of G from, say, bottom to top, and conversely for all “odd

columns”. Then
−→
G is 2-outregular, and has the property that, for every

vertex u, one of its two outneighbours is in the third outneighbourhood of
u. Then, when the fire starts at u, protecting the vertices as in Figure 11 we
can marshall the fire towards the first protected vertex, hence ensuring that
at most three vertices burn. Since for at most three vertices to burn, we
must have a 2-outregular orientation, it is easy to check that this strategy
is optimal.

We now focus on infinite triangular grids (see Figure 12 for an illustra-
tion). This case is of interest since, in order to resolve Conjecture 5.13, one
can restrict attention to maximal planar graphs, by Observation 2.1. Here

again, we confirm that ∆ is an upper bound for
−→
β .

Proposition 5.15. Let G be an infinite triangular grid with maximum de-
gree ∆. Then −→

β (G, 1) ≤ 6 = ∆.

Proof. Let
−→
G be an orientation of G as depicted in Figure 12. Namely,

the vertices of G are decomposed into several layers, i.e., “parallel chains”
of consecutive adjacent vertices. All these layers are oriented in the same
direction. Finally, the edges between two consecutive layers are oriented
so that all “even layers” are, say, sinks (i.e., have all their incident arcs
incoming) while all “odd layers” are sources (i.e., have all their incident
arcs outgoing).

Assume the fire starts at some vertex u. If u belongs to a sink layer, then
u has outdegree 1 so the firefighter can just contain the fire by protecting
the outneighbour of u at time 1. Now, if u belongs to a source layer, then
just apply the strategy described in Figure 12, consisting in first protecting
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Figure 13: (Part of) an infinite hexagonal grid.

the layer of u, and then successively protecting the two adjacent sink layers.
From this, we deduce that we can ensure that at most six vertices have burnt
by the time the fire is contained.

Observation 5.16. There exist planar graphs G with
−→
β (G, 1) ≥ 4.

Proof. We show that at least four vertices burn no matter how we orient
a sufficiently large triangulated grid. For such a graph, assume, towards

a contradiction, there is an orientation
−→
G by which at most three vertices

can burn when firefighting with only one firefighter. Then the maximum

outdegree of
−→
G is at most 3 and

−→
G is locally 3-outregular. Assuming the

fire starts at some vertex u, we can protect one of the three outneighbours
of u at time 1 before the fire propagates to two new vertices v1 and v2.
Now the outneighbourhood of v1 and v2 must be of size at most 1, which

is impossible due to the structure of
−→
G and the fact that v1 and v2 have

outdegree 3; a contradiction. So a fourth vertex must burn.

We finish this section by remarking that for infinite hexagonal grids (as
depicted in Figure 13), even more vertices can be saved: namely all but at
most two. This follows from Theorem 5.5, since hexagonal grids are subcubic
graphs.

6. Characterising graphs by the number of vertices that burn

In this section we consider the problem of characterising the class of
graphs for which at most k vertices burn using an optimal firefighting strat-
egy. That is, we wish to determine the class of graphs

Bk =
{
G :
−→
β (G, 1) ≤ k

}
,
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Figure 14: A 4-regular graph contained in B2, and an optimal orientation.

for a positive integer k ≥ 1. Note that, by definition, we have B1 ⊆ B2 ⊆
· · · ⊆ B∞, where B∞ is the class of all graphs. Although such a character-
isation may be difficult in general, we give an explicit characterisation of
B1, discuss what we know about B2, and give some necessary conditions for
membership in Bk.

Theorem 6.1. Let G be a connected graph. Then G ∈ B1 if and only if G
contains at most one cycle.

Proof. (⇐) If G has no cycles, it is a tree, so
−→
β (G, 1) = 1 by Proposition 3.1.

Now, if G is unicyclic, we can start by orienting its unique cycle C such that
each of its vertices has outdegree 1 in C. Then, for every component T of
G−E(C), orient its edges from the leaves towards C. Then the outdegree of
every vertex in V (T )\V (C) is exactly 1, while the outdegrees of the vertices
in C have not changed. The resulting orientation is therefore 1-outregular,
so the fire can be immediately blocked at time 1.

(⇒) Suppose G has distinct cycles C1 and C2. After removing an edge in
E(C1)\E(C2) from G, the resulting graph contains the cycle C2, so is not a

tree. Hence G has more than |V (G)| edges. By Corollary 2.7,
−→
β (G, 1) > 1,

so G is not in B1.

Now we consider B2. By earlier results, this class contains all cubic
graphs, K5, complete bipartite graphs of the form K2,n, all partial 2-trees
(thus, series-parallel graphs and outerplanar graphs), and all subgraphs
thereof. On the other hand, it does not contain the entire class of planar
graphs; in particular, it does not contain any maximal planar graph with
at least seven vertices. It also does not contain all graphs with maximum
degree 4 (for example K4,4).
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The class B2, however, does contain arbitrarily large 4-regular planar
graphs. The following is a construction of such a class: consider two cycles
with the same length ` ≥ 3, whose vertices are successively denoted by
u0, . . . , u`−1 and v0, . . . , v`−1, respectively, and, for every i ∈ {0, 1, . . . , `−1},
add the two edges uivi and uivi+1 (mod `). Figure 14 illustrates how to orient
such a graph and firefight in it, so that at most two vertices burn, no matter
where the fire breaks out.

Concerning structural properties, it can be shown that, in every 4-regular
graph of B2, every vertex has to belong to a diamond (a graph that can be
obtained by removing an edge from K4).

For a graph G to be a member of the class, it is necessary that, for every
subgraph G′ of G, we have |E(G′)| ≤ 2|V (G′)|, by Corollary 2.7 and Ob-
servation 2.1. This is not a sufficient condition, however; for example, K4,4

satisfies the condition but
−→
β (K4,4, 1) ≥ 3 by Proposition 3.7.

We can also deduce a necessary condition in terms of the minimum
degree of G. If G has minimum degree δ, then, by the handshaking lemma,

|E(G)| ≥ δ
2 |V (G)|. Hence, by Corollary 2.7, we have

−→
β (G, 1) ≥ δ

2 . Thus,
another necessary condition for membership in B2 is that the graph has
minimum degree at most 4. By Observation 2.1, any subgraph must also
have this property, which implies that, moreover, it is necessary that the
graph is 4-degenerate. Again, K4,4 is an example that demonstrates these
conditions are not sufficient.

In general, however, we leave the following problem open.

Problem 6.2. Characterise B2.

More generally, we can deduce necessary conditions for a graph G to
be in Bk. Namely, if G is a member of Bk, then every subgraph G′ of G
satisfies |E(G′)| ≤ k|V (G′)|. Moreover, it is necessary that a graph G in Bk
is 2k-degenerate and, in particular, has minimum degree at most 2k.
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