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The irregularity of a graph G is defined as the sum of weights |d(u) − d(v)| of all edges uv of G, where d(u) and
d(v) are the degrees of the vertices u and v in G, respectively. In this paper, some structural properties on trees
with maximum (or minimum) irregularity among trees with given degree sequence and trees with given branching
number are explored, respectively. Moreover, the corresponding trees with maximum (or minimum) irregularity are
also found, respectively.
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1 Introduction
Let G be a simple connected graph with vertex set V (G) and edge set E(G). Its order is |V (G)|, denoted
by n, and its size is |E(G)|, denoted by m. For v ∈ V (G), let NG(v) (or N(v) for short) be the set
of neighbors of v in G, and dG(v) = |NG(v)| (or d(v) for short) be the degree of v in G. Let ∆1(G),
∆2(G) and δ(G) (or ∆1, ∆2 and δ for short) be the largest, second largest and minimum degrees of G,
respectively.

A graph whose all vertices have mutually equal degrees is said to be regular, otherwise it is irregular.
Albertson [2] defined the imbalance of an edge uv ∈ E(G) as |d(u)− d(v)| and the irregularity of G as

irr = irr(G) =
∑

uv∈E(G)

|d(u)− d(v)|, (1)

where the summation is over all (unordered) edges uv in G.
The problem of determining the graph with maximum (or minimum) irregularity (or estimating bounds

on irr(G)) among some classes of graphs is of great interest. Hansen and Mélot [4] determined the
maximum value for the irregularity of graphs of order n with m edges and constructed the correspond-
ing graph which attaining this value; Henning and Rautenbach [5] explored the structural properties on
bipartite graphs with maximum irregularity. Various upper bounds on the irregularity of some classes of
graphs, such asKr+1-free graphs, bipartite graphs, triangle-free graphs were deduced in [1,2,10], respec-
tively. In particular, Zhou [10] established the relationship between irr(G) and Z(G), and determined
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the graphs with maximum irregularity among trees and unicyclic graphs with a given number of pendent
vertices, where Z(G) =

∑
v∈V (G) d

2
G(v) is the first Zagreb index of G. Recently, Luo and Zhou [11]

determined the graphs with maximum irregularity among trees and unicyclic graphs with given matching
number, respectively. More results on imbalance, the irregularity of a graph can be found in [3, 6, 12, 13].

A positive integer sequence π = {d1, d2, · · · , dn} is called the degree sequence of G if di = d(vi) for
vi ∈ V (G), i = 1, · · · , n. Throughout this paper, we order the vertex degrees in non-increasing order,
i.e., d1 ≥ d2 ≥ · · · ≥ dn. Also, a sequence π = {d1, d2, · · · , dn} is called a tree degree sequence if
there exists a tree T having π as its degree sequence. Furthermore, the sequence π = {d1, d2, · · · , dn}
is a degree sequence of a tree of order n if and only if

∑n
i=1 di = 2(n − 1). For a tree T , a vertex of

degree 1 is called a leaf (or a pendent vertex); a vertex v with d(v) ≥ 3 is called a branching vertex. The
branching number of T , denoted by k(T ), is the number of those vertices v ∈ V (T ) with d(v) ≥ 3. For
convenience, the degree sequence of T (π(T )) is the sequence of the degrees (in descending order) of non-
leaf vertices. Let T π

n and Tn,k be the sets of trees of order n with degree sequence π and k branching
vertices, respectively. Let Tπmax (or Tπmin) be the tree which has maximum (or minimum) irregularity
among trees in T π

n , and Tmax,k (or Tmin,k) be the tree which has maximum (or minimum) irregularity
among all trees in Tn,k.

In the present paper, we explore some properties on Tπmax (or Tπmin), and find the corresponding trees
Tπmax (or Tπmin), as well as Tmax,k (or Tmin,k).

2 Preliminaries
We use G− uv to denote the graph obtained by deleting the edge uv ∈ E(G) from G. Similarly, G+ uv
is the graph obtained by adding an edge uv /∈ E(G) to G.

Consider a path v0v1v2 · · · vtvt+1 in a tree T , where dT (v0) = dT (vt+1) = 1, let T 0 be a new tree
obtained from T by reversing the order of the components attached to vi, vi+1, · · · , vk. That is T 0 =
T−vi−1vi−vkvk+1+vi−1vk+vivk+1. Clearly, T 0 and T have the same degree sequence. This operation
is denoted by S(vi, vk) on the path v0v1v2 · · · vtvt+1. This process are shown in Fig. 1, respectively.

T

0
T

Fig. 1: A new path in T 0 obtained from T by S(vi, vk) on the path v0v1v2 · · · vtvt+1
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Let e = uv be an edge of a graph G. Let G′ be the graph obtained from G by contracting the edge e
into a new vertex u′ and adding a new pendent edge u′v′, where v′ is a new pendent vertex. We say that
G′ is obtained from G by separating an edge uv (shown in Fig. 2).

e

Fig. 2: G′ is obtained from G by separating an edge uv

Lemma 2.1 ( [9]) For e = uv ∈ E(G), let G′ be the graph obtained from G by separating an edge uv.
If dG(u) ≥ dG(v) for any v ∈ NG(u), then we have irr(G′) > irr(G).

Lemma 2.2 For positive integer x ≤ n−2
2 , the function f(n, x) = n2 + (1 − 4x)n + 4x2 − 2 is mono-

tonically decreasing on x.

Proof. Consider the derivative on x of the function f(n, x), we have

d(f(n, x))

dx
= 8x− 4n ≤ 8× n− 2

2
− 4n = −8 < 0, as x ≤ n−2

2 .

Then f(n, x) is monotonically decreasing on x ≤ n−2
2 . This completes the proof. �

3 Maximal (or minimal) irregularity of graphs in T π
n

In this section, we explore some properties on Tπmax (or Tπmin), and find the corresponding trees Tπmax (or
Tπmin).

3.1 Properties on T π
max

Lemma 3.1 Each path v0v1 · · · vtvt+1 with d(v0) = d(vt+1) = 1 in Tπmax, has the following properties:

1. if i is odd, then d(vi) ≥ d(vt+1−i) ≥ d(vk) for i ≤ k ≤ t+ 1− i;

2. if i is even, then d(vi) ≤ d(vt+1−i) ≤ d(vk) for i ≤ k ≤ t+ 1− i.

Proof. We prove the result by induction on i. For i = 1, we will prove that d(v1) ≥ d(vt) ≥ d(vk) for
2 ≤ k ≤ t − 1. Suppose for contradiction that dTπmax(v1) < dTπmax(vk) for some 2 ≤ k ≤ t − 1. Let
T 0 be a tree by applying S(v1, vk) to Tπmax. Clearly, T 0 ∈ T π

n . Note that the edges v0v1 and vkvk+1 in
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Tπmax are transformed to the edges v0vk and v1vk+1 in T 0, respectively. Hence we have

irr(T 0)− irr(Tπmax) = |dT 0(v0)− dT 0(vk)|+ |dT 0(v1)− dT 0(vk+1)|
−|dTπmax(v0)− dTπmax(v1)| − |dTπmax(vk)− dTπmax(vk+1)|

= |dTπmax(v0)− dTπmax(vk)|+ |dTπmax(v1)− dTπmax(vk+1)|
−|dTπmax(v0)− dTπmax(v1)| − |dTπmax(vk)− dTπmax(vk+1)|

= dTπmax(vk)− 1 + |dTπmax(v1)− dTπmax(vk+1)|
−(dTπmax(v1)− 1)− |dTπmax(vk)− dTπmax(vk+1)|, as dTπmax(v0) = 1

> dTπmax(vk)− dTπmax(v1)− |dTπmax(v1)− dTπmax(vk)|
= dTπmax(vk)− dTπmax(v1)− (dTπmax(vk)− dTπmax(v1))

= 0.

This is a contradiction. Hence dTπmax(v1) ≥ dTπmax(vk) for 2 ≤ k ≤ t − 1. At the same time, we have
dTπmax(v1) ≥ dTπmax(vt). Similarly, we can prove that dTπmax(vt) ≥ dTπmax(vk) for 2 ≤ k ≤ t− 1. Hence,
we conclude that dTπmax(v1) ≥ dTπmax(vt) ≥ dTπmax(vk) for 1 ≤ k ≤ t.

Now, assume that the result holds for other values. If i ≥ 2 is even, assume that the result holds for
any l ≤ i − 1. From that, if l = i − 1 is odd, we have dTπmax(vi−1) ≥ dTπmax(vt+2−i) ≥ dTπmax(vk) for
i ≤ k ≤ t + 2 − i and i = 1, 2, · · · , d(t + 1)/2e. If l = i is even, we should prove that dTπmax(vi) ≤
dTπmax(vt+1−i) ≤ dTπmax(vk) for (i ≤ k ≤ t + 1 − i and i = 1, 2, · · · , d(t + 1)/2e). Suppose for
contradiction that dTπmax(vi) > dTπmax(vk) for some i+ 1 ≤ k ≤ t+ 1− i. Let T 0 be a tree by applying
S(vi, vk) to Tπmax. Clearly, T 0 ∈ T π

n . Note that vi−1vi and vkvk+1 in Tπmax are transformed to vi−1vk
and vivk+1 in T 0, respectively. By the inductive hypothesis, we have dTπmax(vi−1) ≥ dTπmax(vk) and
dTπmax(vi−1) ≥ dTπmax(vi). Then we have

irr(T 0)− irr(Tπmax) = |dT 0(vi−1)− dT 0(vk)|+ |dT 0(vi)− dT 0(vk+1)|
−|dTπmax(vi−1)− dTπmax(vi)| − |dTπmax(vk)− dTπmax(vk+1)|

= |dTπmax(vi−1)− dTπmax(vk)|+ |dTπmax(vi)− dTπmax(vk+1)|
−(dTπmax(vi−1)− dTπmax(vi))− |dTπmax(vk)− dTπmax(vk+1)|

= dTπmax(vi−1)− dTπmax(vk) + |dTπmax(vi)− dTπmax(vk+1)|
−(dTπmax(vi−1)− dTπmax(vi))− |dTπmax(vk)− dTπmax(vk+1)|

> dTπmax(vi)− dTπmax(vk)− |dTπmax(vk)− dTπmax(vi)|
= dTπmax(vi)− dTπmax(vk)− (dTπmax(vi)− dTπmax(vk))

= 0,

a contradiction. Hence, dTπmax(vi) ≤ dTπmax(vk) for any i+ 1 ≤ k ≤ t+ 1− i. At the same time, we have
dTπmax(vi) ≤ dTπmax(vt+1−i). Now we prove that dTπmax(vt+1−i) ≤ dTπmax(vk) for i+ 1 ≤ k ≤ t+ 1− i.
Suppose for contradiction that dTπmax(vt+1−i) > dTπmax(vk) for i+ 1 ≤ k ≤ t+ 1− i. Let T 0 be the tree
obtained by applying S(vk, vt+1−i) to Tπmax. Clearly, T 0 ∈ T π

n . Note that vk−1vk and vt+1−ivt+2−i
in Tπmax are transformed to vk−1vt+1−i and vkvt+2−i in T 0, respectively. Moreover, by the inductive
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hypothesis, we have dTπmax(vt+2−i) ≥ dTπmax(vk) and dTπmax(vt+2−i) ≥ dTπmax(vt+1−i). Then we have

irr(T 0)− irr(Tπmax) = |dT 0(vk−1)− dT 0(vt+1−i)|+ |dT 0(vk)− dT 0(vt+2−i)|
−|dTπmax(vk−1)− dTπmax(vk)| − |dTπmax(vt+1−i)− dTπmax(vt+2−i)|

= |dTπmax(vk−1)− dTπmax(vt+1−i)|+ |dTπmax(vk)− dTπmax(vt+2−i)|
−|dTπmax(vk−1)− dTπmax(vk)| − |dTπmax(vt+1−i)− dTπmax(vt+2−i)|

= |dTπmax(vk−1)− dTπmax(vt+1−i)|+ dTπmax(vt+2−i)− dTπmax(vk)

−|dTπmax(vk−1)− dTπmax(vk)| − (dTπmax(vt+2−i)− dTπmax(vt+1−i))

> −|dTπmax(vk)− dTπmax(vt+1−i)|+ dTπmax(vt+1−i)− dTπmax(vk)

= (dTπmax(vk)− dTπmax(vt+1−i)) + dTπmax(vt+1−i)− dTπmax(vk)

= 0,

a contradiction. Hence we have dTπmax(vt+1−i) ≤ dTπmax(vk) for i + 1 ≤ k ≤ t + 1 − i. Therefore,
dTπmax(vi) ≤ dTπmax(vt+1−i) ≤ dTπmax(vk) for i ≤ k ≤ t+ 1− i and i = 1, 2, · · · , d(t+ 1)/2e.

The case for odd i is similar. The proof is completed. �

Let vi,j be the vertex whose closest leaf is at distance i, and let v0,j be a leaf in Tπmax. For integers
i, j, k, l, by Lemma 3.1, we have the following:

Lemma 3.2 For 1 ≤ i < j, we have

1. dTπmax(vi,k) ≥ dTπmax(vj,l) for odd i;

2. dTπmax(vi,k) ≤ dTπmax(vj,l) for even i.

Let PT and QT be the sets of leaves and vertices which are adjacent to the leaves in T , respectively.
Let d′ = min{d(v), v ∈ QT } and P ′

T be the set of leaves whose adjacent vertices have degree d′ in T .

Lemma 3.3 For trees T and T ∗ with root r∗, let T ′ and T ′′ be two trees obtained from T by identifying the
root r∗ of T ∗ with v′ and v′′, respectively, where v′ ∈P ′

T and v′′ ∈PT \P ′
T . Then irr(T ′) > irr(T ′′).

Proof. Let v1, v2 ∈ V (T ) such that v1v
′ ∈ E(T ) and v2v

′′ ∈ E(T ). Note that dT (v1) = d′ < dT (v2).
Then we have

irr(T ′)− irr(T ′′) = |dT ′(v1)− dT ′(r∗)|+ |dT ′(v2)− dT ′(v′′)|
−|dT ′′(v2)− dT ′′(r∗)| − |dT ′′(v1)− dT ′′(v′)|

= |dT (v1)− (dT∗(r
∗) + 1)|+ |dT (v2)− dT (v′′)|

−|dT (v2)− (dT∗(r
∗) + 1)| − |dT (v1)− dT (v′)|

= |dT (v1)− (dT∗(r
∗) + 1)|+ (dT (v2)− 1)

−|dT (v2)− (dT∗(r
∗) + 1)| − (dT (v1)− 1), as dT (v′) = dT (v′′) = 1

> −|dT (v2)− dT (v1)|+ dT (v2)− dT (v1)

= −(dT (v2)− dT (v1)) + dT (v2)− dT (v1)

= 0.

This completes the proof. �

The following recursive algorithm can be used to construct the tree Tπmax with π = {d1, d2, · · · , dm}.
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(1) If m− 1 ≤ dm, then by Lemma 3.1, it is easy to get a tree Tπmax:

Rooted at r with dm children with degrees d1, · · · , dm−1 and 1, · · · , 1︸ ︷︷ ︸
dm−m+1

;

(2) If m − 1 ≥ dm + 1, then by Lemma 3.2, we see that the vertices in {v1,j |j = 1, 2, · · · } take
the largest degrees and they are adjacent to the vertices (in {v2,k|k = 1, 2, · · · }) with the smallest
degrees. Construct the subtrees that contain vertices in {v0,i|i = 1, 2, · · · }, {v1,j |j = 1, 2, · · · } and
{v2,k|k = 1, 2, · · · } first. Note that by Lemma 3.1, we will let the larger degree vertex be adjacent to
the smaller degree vertex whenever possible. Thus, we produce the following subtree T1:

Rooted at r with dm − 1 children with degrees d1, · · · , ddm−1, where r ∈ {v2,k|k = 1, 2, · · · } with
degree dm in Tπmax, the children of r are vertices in {v1,j |j = 1, 2, · · · }.
Note that removing T1 (except the root) from Tπmax results in a new tree S with degree sequence
{ddm , · · · , dm−1}, in which Lemmas 3.1 and 3.2 still hold. Thus S is a tree with the new degree
sequence has the maximum irregularity.

(3) Now the only problem is how to attach T1 to S (by identifying the root of T1 with a leaf of S). By
Lemma 3.3, we should identify the root of T1 with a vertex v in P ′

T of S.

We now give an example which is a tree Tπmax has degree sequence π = {7, 6, 5, 5, 4, 4, 3, 3, 3, 2} to
illustrate above mentioned process.

Firstly, by (2) we have the subtree T1 and new degree sequence{6, 5, 5, 4, 4, 3, 3, 3}. Then, we can find
a tree with this new degree sequence has the maximum irregularity. Similarly, we also have the subtree T2

and T3 by (2). The remaining degree sequence {4, 3} satisfies (1), producing the tree S with maximum
irregularity, where T1, T2, T3 and S are shown in Fig. 3;

Secondly, attaching T3 to S (according to (3)) yields a tree with degree sequence{5, 4, 4, 3, 3} has
maximum irregularity. Now attaching T2 to this new tree (according to (3)) yields a tree with degree
sequence {6, 5, 5, 4, 4, 3, 3, 3} has the maximum irregularity. We then have a new S (see Fig. 4);

Lastly, finding a leaf in the new S (Fig. 4) whose neighbor has the smallest degree, attaching T1 to the
new S as described above in (3) yields Tπmax. However, Tπmax is not necessarily unique, two of them are
shown in Fig. 5, both are achieved through our algorithm.

1
T

2
T

3
T S

Fig. 3: Construction of subtrees.

3.2 Properties on T π
min

Lemma 3.4 Each path v0v1v2 · · · vtvt+1 with d(v0) = d(vt+1) = 1 in Tπmin, has the following proper-
ties:

d(vi) ≤ d(vt+1−i) ≤ d(vk),
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Fig. 4: Attaching subtrees to S.

Fig. 5: Two trees Tπmax with the same degree sequence.

where i+ 1 ≤ k ≤ t+ 1− i and i = 1, 2, · · · , d(t+ 1)/2e.

Proof. We prove the result by induction on i. For i = 1, suppose for contradiction that dTπmin(vk) <
dTπmin(v1) for 2 ≤ k ≤ t − 1. Let T 0 be the tree obtained by operating S(v1, vk) to Tπmin. Clearly,
T 0 ∈ T π

n . Note that the edges v0v1 and vkvk+1 in Tπmin are transformed to the edges v0vk and v1vk+1

in T 0, respectively. Then we have

irr(T 0)− irr(Tπmin) = |dT 0(v0)− dT 0(vk)|+ |dT 0(v1)− dT 0(vk+1)|
−|dTπmin(v0)− dTπmin(v1)| − |dTπmin(vk)− dTπmin(vk+1)|

= |dTπmin(v0)− dTπmin(vk)|+ |dTπmin(v1)− dTπmin(vk+1)|
−|dTπmin(v0)− dTπmin(v1)| − |dTπmin(vk)− dTπmin(vk+1)|

= dTπmin(vk)− 1 + |dTπmin(v1)− dTπmin(vk+1)|
−(dTπmin(v1)− 1)− |dTπmin(vk)− dTπmin(vk+1)|, as dTπmin(v0) = 1

< dTπmin(vk)− dTπmin(v1) + |dTπmin(v1)− d(vk)|
= dTπmin(vk)− dTπmin(v1) + dTπmin(v1)− dTπmin(vk)

= 0.

This is a contradiction. Hence we have dTπmin(v1) ≤ dTπmin(vk) for 2 ≤ k ≤ t− 1. At the same time, we
have dTπmin(v1) ≤ dTπmin(vt). Similarly, we also can verify dTπmin(vt) ≤ dTπmin(vk) for 2 ≤ k ≤ t − 1.
Hence we have dTπmin(v1) ≤ dTπmin(vt) ≤ dTπmin(vk) for 2 ≤ k ≤ t.

Now, assume that the result holds for any l ≤ i − 1. That is, we have dTπmin(vl) ≤ dTπmin(vt+1−l) ≤
dTπmin(vk) for l + 1 ≤ k ≤ t + 1 − l, l = 1, 2, · · · , d(t + 1)/2e. For l = i, we have to prove that
dTπmin(vi) ≤ dTπmin(vt+1−i) ≤ dTπmin(vk) for i + 1 ≤ k ≤ t + 1 − i and i = 1, 2, · · · , d(t + 1)/2e.
Suppose for contradiction that dTπmin(vi) > dTπmin(vk) for some i + 1 ≤ k ≤ t + 1 − i. Let T 0 be the



8 Yang Liu, Jianxi Li, Wai Chee Shiu

tree obtained by applying S(vi, vk) to Tπmin. Clearly, T 0 ∈ T π
n . Note that the edges vi−1vi and vkvk+1

in Tπmin are transformed to the edges vi−1vk and vivk+1 in T 0, respectively. Moreover, by the inductive
hypothesis, we have dTπmin(vi−1) ≤ dTπmin(vk) and dTπmin(vi−1) ≤ dTπmin(vi). Then we have

irr(T 0)− irr(Tπmin) = |dT 0(vi−1)− dT 0(vk)|+ |dT 0(vi)− dT 0(vk+1)|
−|dTπmin(vi−1)− dTπmin(vi)| − |dTπmin(vk)− dTπmin(vk+1)|

= |dTπmin(vi−1)− dTπmin(vk)|+ |dTπmin(vi)− dTπmin(vk+1)|
−(dTπmin(vi)− dTπmin(vi−1))− |dTπmin(vk)− dTπmin(vk+1)|

= dTπmin(vk)− dTπmin(vi−1) + |dTπmin(vi)− dTπmin(vk+1)|
−(dTπmin(vi)− dTπmin(vi−1))− |dTπmin(vk)− dTπmin(vk+1)|

< dTπmin(vk)− dTπmin(vi) + |dTπmin(vi)− dTπmin(vk)|
= dTπmin(vk)− dTπmin(vi) + dTπmin(vi)− dTπmin(vk)

= 0.

This is a contradiction. Hence we have dTπmin(vi) ≤ dTπmin(vk) for i + 1 ≤ k ≤ t + 1 − i. At the same
time, we have dTπmin(vi) ≤ dTπmin(vt+1−i). By the same argument as above, we have dTπmin(vt+1−i) ≤
dTπmin(vk) for i + 1 ≤ k ≤ t + 1 − i. Hence we have dTπmin(vi) ≤ dTπmin(vt+1−i) ≤ dTπmin(vk) for
i+ 1 ≤ k ≤ t+ 1− i, i = 1, 2, · · · , d(t+ 1)/2e. This completes the proof. �

Lemma 3.5 For any T ∈ T π
n with uv, xy ∈ E(T ) and uy, xv /∈ E(T ), let T 0 = T −uv−xy+uy+xv.

If dT (u) ≥ dT (x) ≥ dT (y) ≥ dT (v), then irr(T 0) = irr(T ).

Proof. Note that d(u) ≥ d(x) ≥ d(y) ≥ d(v). Then we have

irr(T 0)− irr(T ) = |dT 0(u)− dT 0(y)|+ |dT 0(x)− dT 0(v)|
−|dT (u)− dT (v)| − |dT (x)− dT (y)|

= (dT (u)− dT (y)) + (dT (x)− dT (v))

−(dT (u)− dT (v))− (dT (x)− dT (y))

= 0.

This completes the proof. �

Suppose that the degrees of the non-leaf vertices are given. The greedy tree is achieved by the following
”greedy algorithm” [7, 8]:

(i) label the vertex with the largest degree as v0,1 (the root);

(ii) label the neighbors of v0,1 as v1,1, v1,2, · · · , assign the largest degrees available to them such that
d(v1,1) ≥ d(v1,2) ≥ · · · ;

(iii) label the neighbors of v1,1 (except v0,1) as v2,1, v2,2, · · · , such that they take all the largest degrees
available and that d(v2,1) ≥ d(v2,2) ≥ · · · , then do the same for v1,2, v1,3, · · · ;

(iv) repeat (iii) for all the newly labelled vertices, always start with the neighbors of the labelled vertex
with largest degree whose neighbors are not labelled yet.
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Theorem 3.1 Among trees in T π
n , there exists a greedy tree with minimum irregularity.

Proof. Firstly, by the definition on the greedy tree with a given degree sequence, we easily to see that
the greedy tree satisfies the conditions in Lemma 3.4. However, there are many trees for which these
conditions hold. Then by Lemma 3.5, the greedy trees with minimum irregularity are constructed among
these trees. This completes the proof. �

Remark 3.1 In fact, there are many trees different from the greedy tree with a given degree sequence
minimize irr(T ). Following is an example which are two Tπmin. One is obtained by the greedy algorithm
with degree sequence π = {4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2}, also it is a greedy tree. The other one is not a
greedy tree with the same degree sequence, which are shown in Fig. 6.
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a greedy tree a non greedy tree�

Fig. 6: A greedy tree and a non-greedy tree with degree sequence π = {4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2}.

4 Maximal (or minimal) irregularity of graphs in Tn,k

In this section, we explore some properties on Tmax,k (or Tmin,k), and construct the corresponding trees
Tmax,k (or Tmin,k).

We now explore some properties for trees in Tn,k. For T ∈ Tn,k, let ni be the number of vertices of
degree i in T for i = 1, 2, · · · ,∆1. Then we have

∆1∑
i=1

ni = n and
∆1∑
i=1

ini = 2(n− 1).

Note that

2(n− 1) =

∆1∑
i=1

ini = n1 + 2n2 +

∆1∑
i=3

ini ≥ n1 + n2 + 3k = n− k + 3k = n+ 2k.

This implies that

Proposition 4.1 For any tree T ∈ Tn,k, k(T ) ≤ n−2
2 .
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Moreover, note that

2(n− 1) =

∆1∑
i=1

ini = n1 + 2n2 +

∆1∑
i=3

ini

≥ n1 + n2 + 3(k − n∆1
) + ∆1n∆1

= n− k + 3(k − n∆1
) + ∆1n∆1

= n+ 2k + (∆1 − 3)n∆1
≥ n+ 2k + (∆1 − 3).

This leads to the following conclusion.

Proposition 4.2 For any tree T ∈ Tn,k, ∆1(T ) ≤ n− 2k + 1.

4.1 Properties on Tmax,k

Lemma 4.1 For 1 < k ≤ n−2
2 , Tmax,k has the following properties:

1. Tmax,k contains no vertex with degree 2;

2. Tmax,k contains at most one vertex of degree larger than 3.

Proof. (1) Assume that there exists v ∈ V (Tmax,k) such that dTmax,k(v) = 2. Let NTmax,k(v) =
{w1, w2}. Then dTmax,k(w1) ≥ 2 or dTmax,k(w2) ≥ 2. Let u ∈ V (Tmax,k) with dTmax,k(u) =
∆1(Tmax,k). Let NTmax,k(u) = {u1, u2, · · · , u∆1

}. If u ∈ NTmax,k(v), let T ′ be the tree obtained
from Tmax,k by Separating an edge uv. Clearly, T ′ ∈ Tn,k. Then Lemma 2.1 implies that irr(T ′) >
irr(Tmax,k), a contradiction. If u /∈ NTmax,k(v), then there exists a path contains u and v in Tmax,k. Let
v be the vertex connected to u via w1 with dTmax,k(w1) ≥ 2. Let T ′ = Tmax,k − vw2 + uw2. Clearly,
T ′ ∈ Tn,k. Hence we have

irr(T ′)− irr(Tmax,k)

= |dT ′(u)− dT ′(w2)|+ dTmax,k(u) + |dT ′(v)− dT ′(w1)|
−|dTmax,k(v)− dTmax,k(w1)| − |dTmax,k(v)− dTmax,k(w2)|

= |dTmax,k(u) + 1− dTmax,k(w2)|+ dTmax,k(u)

+|dTmax,k(v)− 1− dTmax,k(w1)| − |dTmax,k(v)− dTmax,k(w1)|
−|dTmax,k(v)− dTmax,k(w2)|

= dTmax,k(u) + 1− dTmax,k(w2) + dTmax,k(u)

+|2− 1− dTmax,k(w1)| − (dTmax,k(w1)− 2)− |dTmax,k(w2)− 2|, as dTmax,k(v) = 2

= 2dTmax,k(u) + 2− dTmax,k(w2)−|dTmax,k(w2)− 2|
> 0,

a contradiction. Hence the result follows.
(2) Assume that there exists two vertices u, v ∈ V (Tmax,k) such that dTmax,k(u) = ∆1(Tmax,k) > 3

and dTmax,k(v) > 3. Let dTmax,k(v) = s and NTmax,k(v) = {v1, v2, · · · , vs}. If u ∈ NTmax,k(v),
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without loss of generality, we assume that u = vs. Let T ′ = Tmax,k − {vv1, vv2, · · · , vvs−3} +
{uv1, uv2, · · · , uvs−3}. Clearly, T ′ ∈ Tn,k. Hence we have

irr(T ′)− irr(Tmax,k)

=

s−3∑
i=1

[
|dT ′(u)− dT ′(vi)| − |dTmax,k(v)− dTmax,k(vi)|

]
+2(s− 3) + (s− 3)

(
dTmax,k(u)− 1

)
+

s−1∑
i=s−2

[
|dT ′(v)− dT ′(vi)| − |dTmax,k(v)− dTmax,k(vi)|

]
=

s−3∑
i=1

[
|dTmax,k(u) + s− 3− dTmax,k(vi)| − |dTmax,k(v)− dTmax,k(vi)|

]
+2(s− 3) + (s− 3)

(
dTmax,k(u)− 1

)
+

s−1∑
i=s−2

[
|dTmax,k(v)− (s− 3)− dTmax,k(vi)| − |dTmax,k(v)− dTmax,k(vi)|

]
> −(s− 3)

∣∣dTmax,k(v)− dTmax,k(u)− (s− 3)
∣∣

+(s− 3)
(
dTmax,k(u) + 1

)
− 2(s− 3)

= −(s− 3)
(
dTmax,k(u)− 3

)
+ (s− 3)

(
dTmax,k(u)− 1

)
, as dTmax,k(v) = s

= 2(s− 3)

> 0,

a contradiction. If u /∈ NTmax,k(v), let T ′ = Tmax,k −{vv1, vv2, · · · , vvs−3}+ {uv1, uv2, · · · , uvs−3}.
Clearly, T ′ ∈ Tn,k. By the same argument as above, we have irr(T ′) > irr(Tmax,k). This is also a
contradiction. Hence the result follows. �

Combing Proposition 4.1 and Lemma 4.1, we then have the following.

Theorem 4.1 For 1 ≤ k ≤ n−2
2 , Tmax,k has the degree sequence π = {n− 2k + 1, 3, · · · , 3︸ ︷︷ ︸

k−1

}.

Lemma 4.2 For any tree T ∈ T π
n with degree sequence π = {∆1,∆2, · · · ,∆2︸ ︷︷ ︸

k−1

}, where k ≤ n−2
2 , then

irr(T ) = ∆2
1 + ∆1(1− 2∆2) + [2n− 2 + (1− k)∆2](∆2 − 1).

Proof. Note that T with degree sequence π = {∆1,∆2, · · · ,∆2︸ ︷︷ ︸
k−1

}. Then T has t = 2(n − 1) − ∆1 −

(k − 1)∆2 leaves. Assume that u1 ∈ V (T ) with d(u1) = ∆1. Note that for any tree T ∈ T π
n , there are

∆1 disjoint pendent paths which begin with the vertex u1. If one of them is P1 = u1u2 · · ·uivj , where
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d(ui) = ∆2 for 2 ≤ i ≤ k, and d(vj) = 1 for 1 ≤ j ≤ t. Then we have

irr(P1) =
∑

xy∈E(P1)

|d(x)− d(y)|

= |d(u1)− d(u2)|+ |d(u2)− d(u3)|+ · · ·+ |d(ui−1)− d(ui)|+ |d(ui)− d(vj)|
= d(u1)− d(u2) + d(u2)− d(u3) + · · ·+ d(ui−1)− d(ui) + d(ui)− d(vj)

= d(u1)− d(vj)

= ∆1 − 1;

if one of them is P2 = u1vj , where d(vj) = 1. Then we have irr(P2) = |d(u1) − d(vj)| = ∆1 − 1.
Obviously, there is ∆1(∆1− 1) contributes to irr(T ), by the ∆1 disjoint pendent paths which begin with
the vertex u1. By the construction of trees, there are leaving t−∆1 pendent vertices which just adjacent
to the vertices with degree ∆2, then they have (t−∆1)(∆2− 1) contributes to irr(T ). No matter how to
construct the tree T , there are some edges as the edge uiuj with d(ui) = d(uj) = ∆2, and their balance
is 0 as |d(ui)− d(uj)| = 0. Therefore, we have

irr(T ) = ∆1(∆1 − 1) + (t−∆1)(∆2 − 1) + 0

= ∆2
1 −∆1∆2 + t(∆2 − 1)

= ∆2
1 −∆1∆2 + [2(n− 1)−∆1 − (k − 1)∆2](∆2 − 1)

= ∆2
1 + ∆1(1− 2∆2) + [2n− 2 + (1− k)∆2](∆2 − 1).

This completes the proof. �

Remark 4.1 Lemma 4.2 also holds for ∆1 = ∆2. That is, for any tree T ∈ T π
n with degree sequence

{∆1, · · · ,∆1︸ ︷︷ ︸
k

}, where k ≤ n−2
2 , then irr(T ) = −k∆2

1 + (2n+ k − 2)∆1 − 2n+ 2.

By Theorem 4.1 and Lemma 4.2, we then have the following.

Theorem 4.2 For any tree T ∈ Tn,k, where 1 ≤ k ≤ n−2
2 , we have

irr(T ) ≤ n2 + (1− 4k)n+ 4k2 − 2,

and the equality holds if and only if T has degree sequence π = {n− 2k + 1, 3, · · · , 3︸ ︷︷ ︸
k−1

}.

Moreover, by Theorem 4.2 and Lemma 2.2, we have

Corollary 4.1 irr(Tmax,1) > irr(Tmax,2) > · · · > irr(Tmax,bn−2
2 c

).

4.2 Properties on Tmin,k

Lemma 4.3 For 1 ≤ k ≤ n−2
2 , ∆1(Tmin,k) < 4.
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Fig. 7: Trees Tmin,k and T 1 in Lemma 4.3.

Proof. Suppose that there exists u ∈ V (Tmin,k) such that dTmin,k(u) = ∆1(Tmin,k) ≥ 4. Let N(u) =
{u1, u2, · · · , u∆1−2, vi−1, vi+1}. Let P = v0v1, · · · , vi−1u(= vi)vi+1, · · · , vl be the longest path in
Tmin,k that contains u. Let w1 be a pendent vertex connected to u via u1 (it is possible that w1 ≡
u1)(Fig. 7). Let T 1 = Tmin,k − uu2 + u2w1. Clearly, T 1 ∈ Tn,k.

Then we have

irr(T 1)− irr(Tmin,k) = |dT ′(w1)− dT ′(u2)| − 1− (dTmin,k(u)− 1)

−|dTmin,k(u)− dTmin,k(u2)|
= |dTmin,k(w1) + 1− dTmin,k(u2)| − dTmin,k(u)

−(dTmin,k(u)− dTmin,k(u2))

= |2− dTmin,k(u2)| − 2dTmin,k(u) + dTmin,k(u2), as dTπmax(w1) = 1

< 0,

a contradiction. This completes the proof. �

Theorem 4.3 For 1 ≤ k ≤ n−2
2 , Tmin,k has the degree sequence π = {3, · · · , 3︸ ︷︷ ︸

k

, 2, · · · , 2︸ ︷︷ ︸
n−2k−2

}.

Proof. By Lemma 4.3, we assume that Tmin,k has degree sequence {3, · · · , 3︸ ︷︷ ︸
k

, 2, · · · , 2︸ ︷︷ ︸
x

, 1, · · · , 1︸ ︷︷ ︸
y

}, where

x, y are integers. Note that k+ x+ y = n and 3k+ 2x+ y = 2(n− 1). Those yield that x = n− 2k− 2
and y = k + 2. Hence the result holds. �

Theorem 4.4 For any T ∈ Tn,k, where k ≤ n−2
2 , then we have

irr(T ) ≥ 2k + 4,

and the equality holds if and only if T ∼= Tπmin with π = {3, · · · , 3︸ ︷︷ ︸
k

, 2, · · · , 2︸ ︷︷ ︸
n−2k−2

}.

Proof. By Theorem 4.3, for any T ∈ Tn,k, we have irr(T ) ≥ irr(Tmin,k) = irr(Tπmin) with π =
{3, · · · , 3︸ ︷︷ ︸

k

, 2, · · · , 2︸ ︷︷ ︸
n−2k−2

}. Moreover, by Theorem 3.1, for π = {3, · · · , 3︸ ︷︷ ︸
k

, 2, · · · , 2︸ ︷︷ ︸
n−2k−2

}, there exists a greedy tree
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T ∗ such that irr(T ∗) = irr(Tπmin). By the construct of the greedy tree T ∗ with π = {3, · · · , 3︸ ︷︷ ︸
k

, 2, · · · , 2︸ ︷︷ ︸
n−2k−2

},

we have

irr(T ∗) =
∑

uv∈E(T∗)

|d(u)− d(v)|

= 3(3− 1) + (k − 1)(3− 2)(3− 1) + 0

= 2k + 4.

Hence the result follows. �

From the proof of Theorem 4.4, we know that irr(T ∗) is monotonically increasing on k. Then we have

Corollary 4.2 6 = irr(Tmin,1) < irr(Tmin,2) < · · · < irr(Tmin,bn−2
2 c

).
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