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The irregularity of two types of trees

Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). Its order is |V (G)|, denoted by n, and its size is |E(G)|, denoted by m. For v ∈ V (G), let N G (v) (or N (v) for short) be the set of neighbors of v in G, and d G (v) = |N G (v)| (or d(v) for short) be the degree of v in G. Let ∆ 1 (G), ∆ 2 (G) and δ(G) (or ∆ 1 , ∆ 2 and δ for short) be the largest, second largest and minimum degrees of G, respectively.

A graph whose all vertices have mutually equal degrees is said to be regular, otherwise it is irregular. Albertson [START_REF] Albertson | The irregularity of a graph[END_REF] defined the imbalance of an edge uv ∈ E(G) as |d(u) -d(v)| and the irregularity of G as

irr = irr(G) = uv∈E(G) |d(u) -d(v)|, (1) 
where the summation is over all (unordered) edges uv in G.

The problem of determining the graph with maximum (or minimum) irregularity (or estimating bounds on irr(G)) among some classes of graphs is of great interest. Hansen and Mélot [START_REF] Hansen | Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a graph[END_REF] determined the maximum value for the irregularity of graphs of order n with m edges and constructed the corresponding graph which attaining this value; Henning and Rautenbach [START_REF] Henning | On the irregularity of bipartite graphs[END_REF] explored the structural properties on bipartite graphs with maximum irregularity. Various upper bounds on the irregularity of some classes of graphs, such as K r+1 -free graphs, bipartite graphs, triangle-free graphs were deduced in [START_REF] Abdo | Bounds and computation of irregularity of a graph[END_REF][START_REF] Albertson | The irregularity of a graph[END_REF][START_REF] Zhou | On irregularity of graphs[END_REF], respectively. In particular, Zhou [START_REF] Zhou | On irregularity of graphs[END_REF] established the relationship between irr(G) and Z(G), and determined the graphs with maximum irregularity among trees and unicyclic graphs with a given number of pendent vertices, where Z(G) = v∈V (G) d 2 G (v) is the first Zagreb index of G. Recently, Luo and Zhou [START_REF] Luo | On the irregularity of trees and unicyclic graphs with given matching number[END_REF] determined the graphs with maximum irregularity among trees and unicyclic graphs with given matching number, respectively. More results on imbalance, the irregularity of a graph can be found in [START_REF] Chartrand | How to define an irregularity graph[END_REF][START_REF] Tavakoli | Extremely irregular graphs[END_REF][START_REF] Abdo | The irregularity of graphs under graph operations[END_REF][START_REF] Tavakoli | Some new results on irregularity of graphs[END_REF].

A positive integer sequence

π = {d 1 , d 2 , • • • , d n } is called the degree sequence of G if d i = d(v i ) for v i ∈ V (G), i = 1, • • • , n.
Throughout this paper, we order the vertex degrees in non-increasing order, i.e., d 1 ≥ d 2 ≥ • • • ≥ d n . Also, a sequence π = {d 1 , d 2 , • • • , d n } is called a tree degree sequence if there exists a tree T having π as its degree sequence. Furthermore, the sequence π = {d 1 , d 2 , • • • , d n } is a degree sequence of a tree of order n if and only if n i=1 d i = 2(n -1). For a tree T , a vertex of degree 1 is called a leaf (or a pendent vertex); a vertex v with d(v) ≥ 3 is called a branching vertex. The branching number of T , denoted by k(T ), is the number of those vertices v ∈ V (T ) with d(v) ≥ 3. For convenience, the degree sequence of T (π(T )) is the sequence of the degrees (in descending order) of nonleaf vertices. Let T π n and T n,k be the sets of trees of order n with degree sequence π and k branching vertices, respectively. Let T π max (or T π min ) be the tree which has maximum (or minimum) irregularity among trees in T π n , and T max,k (or T min,k ) be the tree which has maximum (or minimum) irregularity among all trees in T n,k .

In the present paper, we explore some properties on T π max (or T π min ), and find the corresponding trees T π max (or T π min ), as well as T max,k (or T min,k ).

Preliminaries

We use G -uv to denote the graph obtained by deleting the edge uv ∈ E(G) from G. Similarly, G + uv is the graph obtained by adding an edge uv /

∈ E(G) to G. Consider a path v 0 v 1 v 2 • • • v t v t+1 in a tree T , where d T (v 0 ) = d T (v t+1 ) = 1, let T 0 be
a new tree obtained from T by reversing the order of the components attached to

v i , v i+1 , • • • , v k . That is T 0 = T -v i-1 v i -v k v k+1 +v i-1 v k +v i v k+1 .
Clearly, T 0 and T have the same degree sequence. This operation is denoted by Let e = uv be an edge of a graph G. Let G be the graph obtained from G by contracting the edge e into a new vertex u and adding a new pendent edge u v , where v is a new pendent vertex. We say that G is obtained from G by separating an edge uv (shown in Fig. 2). e Fig. 2: G is obtained from G by separating an edge uv Lemma 2.1 ( [START_REF] Liu | The effects on the irregularity of graphs with some transformations[END_REF]) For e = uv ∈ E(G), let G be the graph obtained from G by separating an edge uv.

S(v i , v k ) on the path v 0 v 1 v 2 • • • v t v t+1 .
If d G (u) ≥ d G (v) for any v ∈ N G (u), then we have irr(G ) > irr(G). Lemma 2.2 For positive integer x ≤ n-2 2 , the function f (n, x) = n 2 + (1 -4x)n + 4x 2 -2 is mono- tonically decreasing on x.
Proof. Consider the derivative on x of the function f (n, x), we have

d(f (n, x)) dx = 8x -4n ≤ 8 × n -2 2 -4n = -8 < 0, as x ≤ n-2 2 .
Then f (n, x) is monotonically decreasing on x ≤ n-2 2 . This completes the proof.

3 Maximal (or minimal) irregularity of graphs in T π n

In this section, we explore some properties on T π max (or T π min ), and find the corresponding trees T π max (or T π min ).

Properties on T

π max Lemma 3.1 Each path v 0 v 1 • • • v t v t+1 with d(v 0 ) = d(v t+1 ) = 1 in T π max , has the following properties: 1. if i is odd, then d(v i ) ≥ d(v t+1-i ) ≥ d(v k ) for i ≤ k ≤ t + 1 -i; 2. if i is even, then d(v i ) ≤ d(v t+1-i ) ≤ d(v k ) for i ≤ k ≤ t + 1 -i.
Proof. We prove the result by induction on i. For i = 1, we will prove that d(v

1 ) ≥ d(v t ) ≥ d(v k ) for 2 ≤ k ≤ t -1. Suppose for contradiction that d T π max (v 1 ) < d T π max (v k ) for some 2 ≤ k ≤ t -1.
Let T 0 be a tree by applying S(v 1 , v k ) to T π max . Clearly, T 0 ∈ T π n . Note that the edges v 0 v 1 and v k v k+1 in T π max are transformed to the edges v 0 v k and v 1 v k+1 in T 0 , respectively. Hence we have

irr(T 0 ) -irr(T π max ) = |d T 0 (v 0 ) -d T 0 (v k )| + |d T 0 (v 1 ) -d T 0 (v k+1 )| -|d T π max (v 0 ) -d T π max (v 1 )| -|d T π max (v k ) -d T π max (v k+1 )| = |d T π max (v 0 ) -d T π max (v k )| + |d T π max (v 1 ) -d T π max (v k+1 )| -|d T π max (v 0 ) -d T π max (v 1 )| -|d T π max (v k ) -d T π max (v k+1 )| = d T π max (v k ) -1 + |d T π max (v 1 ) -d T π max (v k+1 )| -(d T π max (v 1 ) -1) -|d T π max (v k ) -d T π max (v k+1 )|, as d T π max (v 0 ) = 1 > d T π max (v k ) -d T π max (v 1 ) -|d T π max (v 1 ) -d T π max (v k )| = d T π max (v k ) -d T π max (v 1 ) -(d T π max (v k ) -d T π max (v 1 )) = 0. This is a contradiction. Hence d T π max (v 1 ) ≥ d T π max (v k ) for 2 ≤ k ≤ t -1.
At the same time, we have

d T π max (v 1 ) ≥ d T π max (v t ). Similarly, we can prove that d T π max (v t ) ≥ d T π max (v k ) for 2 ≤ k ≤ t -1. Hence, we conclude that d T π max (v 1 ) ≥ d T π max (v t ) ≥ d T π max (v k ) for 1 ≤ k ≤ t. Now,
assume that the result holds for other values. If i ≥ 2 is even, assume that the result holds for any

l ≤ i -1. From that, if l = i -1 is odd, we have d T π max (v i-1 ) ≥ d T π max (v t+2-i ) ≥ d T π max (v k ) for i ≤ k ≤ t + 2 -i and i = 1, 2, • • • , (t + 1)/2 . If l = i is even, we should prove that d T π max (v i ) ≤ d T π max (v t+1-i ) ≤ d T π max (v k ) for (i ≤ k ≤ t + 1 -i and i = 1, 2, • • • , (t + 1)/2 ). Suppose for contradiction that d T π max (v i ) > d T π max (v k ) for some i + 1 ≤ k ≤ t + 1 -i. Let T 0 be a tree by applying S(v i , v k ) to T π max . Clearly, T 0 ∈ T π n . Note that v i-1 v i and v k v k+1 in T π max are transformed to v i-1 v k and v i v k+1 in T 0 , respectively. By the inductive hypothesis, we have d T π max (v i-1 ) ≥ d T π max (v k ) and d T π max (v i-1 ) ≥ d T π max (v i ). Then we have irr(T 0 ) -irr(T π max ) = |d T 0 (v i-1 ) -d T 0 (v k )| + |d T 0 (v i ) -d T 0 (v k+1 )| -|d T π max (v i-1 ) -d T π max (v i )| -|d T π max (v k ) -d T π max (v k+1 )| = |d T π max (v i-1 ) -d T π max (v k )| + |d T π max (v i ) -d T π max (v k+1 )| -(d T π max (v i-1 ) -d T π max (v i )) -|d T π max (v k ) -d T π max (v k+1 )| = d T π max (v i-1 ) -d T π max (v k ) + |d T π max (v i ) -d T π max (v k+1 )| -(d T π max (v i-1 ) -d T π max (v i )) -|d T π max (v k ) -d T π max (v k+1 )| > d T π max (v i ) -d T π max (v k ) -|d T π max (v k ) -d T π max (v i )| = d T π max (v i ) -d T π max (v k ) -(d T π max (v i ) -d T π max (v k )) = 0, a contradiction. Hence, d T π max (v i ) ≤ d T π max (v k ) for any i + 1 ≤ k ≤ t + 1 -i. At the same time, we have d T π max (v i ) ≤ d T π max (v t+1-i ). Now we prove that d T π max (v t+1-i ) ≤ d T π max (v k ) for i + 1 ≤ k ≤ t + 1 -i. Suppose for contradiction that d T π max (v t+1-i ) > d T π max (v k ) for i + 1 ≤ k ≤ t + 1 -i. Let T 0 be the tree obtained by applying S(v k , v t+1-i ) to T π max . Clearly, T 0 ∈ T π n . Note that v k-1 v k and v t+1-i v t+2-i in T π max are transformed to v k-1 v t+1-i and v k v t+2-i in T 0 , respectively. Moreover, by the inductive hypothesis, we have d T π max (v t+2-i ) ≥ d T π max (v k ) and d T π max (v t+2-i ) ≥ d T π max (v t+1-i ). Then we have irr(T 0 ) -irr(T π max ) = |d T 0 (v k-1 ) -d T 0 (v t+1-i )| + |d T 0 (v k ) -d T 0 (v t+2-i )| -|d T π max (v k-1 ) -d T π max (v k )| -|d T π max (v t+1-i ) -d T π max (v t+2-i )| = |d T π max (v k-1 ) -d T π max (v t+1-i )| + |d T π max (v k ) -d T π max (v t+2-i )| -|d T π max (v k-1 ) -d T π max (v k )| -|d T π max (v t+1-i ) -d T π max (v t+2-i )| = |d T π max (v k-1 ) -d T π max (v t+1-i )| + d T π max (v t+2-i ) -d T π max (v k ) -|d T π max (v k-1 ) -d T π max (v k )| -(d T π max (v t+2-i ) -d T π max (v t+1-i )) > -|d T π max (v k ) -d T π max (v t+1-i )| + d T π max (v t+1-i ) -d T π max (v k ) = (d T π max (v k ) -d T π max (v t+1-i )) + d T π max (v t+1-i ) -d T π max (v k ) = 0, a contradiction. Hence we have d T π max (v t+1-i ) ≤ d T π max (v k ) for i + 1 ≤ k ≤ t + 1 -i. Therefore, d T π max (v i ) ≤ d T π max (v t+1-i ) ≤ d T π max (v k ) for i ≤ k ≤ t + 1 -i and i = 1, 2, • • • , (t + 1)/2 .
The case for odd i is similar. The proof is completed.

Let v i,j be the vertex whose closest leaf is at distance i, and let v 0,j be a leaf in T π max . For integers i, j, k, l, by Lemma 3.1, we have the following:

Lemma 3.2 For 1 ≤ i < j, we have 1. d T π max (v i,k ) ≥ d T π max (v j,l ) for odd i; 2. d T π max (v i,k ) ≤ d T π max (v j,l
) for even i. Let P T and Q T be the sets of leaves and vertices which are adjacent to the leaves in T , respectively. Let d = min{d(v), v ∈ Q T } and P T be the set of leaves whose adjacent vertices have degree d in T . Lemma 3.3 For trees T and T * with root r * , let T and T be two trees obtained from T by identifying the root r * of T * with v and v , respectively, where v ∈ P T and v ∈ P T \ P T . Then irr(T ) > irr(T ).

Proof. Let v 1 , v 2 ∈ V (T ) such that v 1 v ∈ E(T ) and v 2 v ∈ E(T ). Note that d T (v 1 ) = d < d T (v 2 ). Then we have irr(T ) -irr(T ) = |d T (v 1 ) -d T (r * )| + |d T (v 2 ) -d T (v )| -|d T (v 2 ) -d T (r * )| -|d T (v 1 ) -d T (v )| = |d T (v 1 ) -(d T * (r * ) + 1)| + |d T (v 2 ) -d T (v )| -|d T (v 2 ) -(d T * (r * ) + 1)| -|d T (v 1 ) -d T (v )| = |d T (v 1 ) -(d T * (r * ) + 1)| + (d T (v 2 ) -1) -|d T (v 2 ) -(d T * (r * ) + 1)| -(d T (v 1 ) -1), as d T (v ) = d T (v ) = 1 > -|d T (v 2 ) -d T (v 1 )| + d T (v 2 ) -d T (v 1 ) = -(d T (v 2 ) -d T (v 1 )) + d T (v 2 ) -d T (v 1 ) = 0.
This completes the proof.

The following recursive algorithm can be used to construct the tree

T π max with π = {d 1 , d 2 , • • • , d m }.
(1) If m -1 ≤ d m , then by Lemma 3.1, it is easy to get a tree T π max : Rooted at r with d m children with degrees (3) Now the only problem is how to attach T 1 to S (by identifying the root of T 1 with a leaf of S). By Lemma 3.3, we should identify the root of T 1 with a vertex v in P T of S. We now give an example which is a tree T π max has degree sequence π = {7, 6, 5, 5, 4, 4, 3, 3, 3, 2} to illustrate above mentioned process.

d 1 , • • • , d m-1 and 1, • • • , 1 dm-m+1 ; (2) If m -1 ≥ d m
Firstly, by [START_REF] Albertson | The irregularity of a graph[END_REF] we have the subtree T 1 and new degree sequence{6, 5, 5, 4, 4, 3, 3, 3}. Then, we can find a tree with this new degree sequence has the maximum irregularity. Similarly, we also have the subtree T 2 and T 3 by (2). The remaining degree sequence {4, 3} satisfies (1), producing the tree S with maximum irregularity, where T 1 , T 2 , T 3 and S are shown in Fig. 3;

Secondly, attaching T 3 to S (according to (3)) yields a tree with degree sequence{5, 4, 4, 3, 3} has maximum irregularity. Now attaching T 2 to this new tree (according to (3)) yields a tree with degree sequence {6, 5, 5, 4, 4, 3, 3, 3} has the maximum irregularity. We then have a new S (see Fig. 4);

Lastly, finding a leaf in the new S (Fig. 4) whose neighbor has the smallest degree, attaching T 1 to the new S as described above in (3) yields T π max . However, T π max is not necessarily unique, two of them are shown in Fig. 5, both are achieved through our algorithm. where i

Properties on T

π min Lemma 3.4 Each path v 0 v 1 v 2 • • • v t v t+1 with d(v 0 ) = d(v t+1 ) = 1 in T π min , has the following proper- ties: d(v i ) ≤ d(v t+1-i ) ≤ d(v k ),
+ 1 ≤ k ≤ t + 1 -i and i = 1, 2, • • • , (t + 1)/2 .
Proof. We prove the result by induction on i.

For i = 1, suppose for contradiction that d T π min (v k ) < d T π min (v 1 ) for 2 ≤ k ≤ t -1.
Let T 0 be the tree obtained by operating S(v 1 , v k ) to T π min . Clearly, T 0 ∈ T π n . Note that the edges v 0 v 1 and v k v k+1 in T π min are transformed to the edges v 0 v k and v 1 v k+1 in T 0 , respectively. Then we have

irr(T 0 ) -irr(T π min ) = |d T 0 (v 0 ) -d T 0 (v k )| + |d T 0 (v 1 ) -d T 0 (v k+1 )| -|d T π min (v 0 ) -d T π min (v 1 )| -|d T π min (v k ) -d T π min (v k+1 )| = |d T π min (v 0 ) -d T π min (v k )| + |d T π min (v 1 ) -d T π min (v k+1 )| -|d T π min (v 0 ) -d T π min (v 1 )| -|d T π min (v k ) -d T π min (v k+1 )| = d T π min (v k ) -1 + |d T π min (v 1 ) -d T π min (v k+1 )| -(d T π min (v 1 ) -1) -|d T π min (v k ) -d T π min (v k+1 )|, as d T π min (v 0 ) = 1 < d T π min (v k ) -d T π min (v 1 ) + |d T π min (v 1 ) -d(v k )| = d T π min (v k ) -d T π min (v 1 ) + d T π min (v 1 ) -d T π min (v k ) = 0. This is a contradiction. Hence we have d T π min (v 1 ) ≤ d T π min (v k ) for 2 ≤ k ≤ t -1. At the same time, we have d T π min (v 1 ) ≤ d T π min (v t )
. Similarly, we also can verify

d T π min (v t ) ≤ d T π min (v k ) for 2 ≤ k ≤ t -1. Hence we have d T π min (v 1 ) ≤ d T π min (v t ) ≤ d T π min (v k ) for 2 ≤ k ≤ t.

Now, assume that the result holds for any l

≤ i -1. That is, we have d T π min (v l ) ≤ d T π min (v t+1-l ) ≤ d T π min (v k ) for l + 1 ≤ k ≤ t + 1 -l, l = 1, 2, • • • , (t + 1)/2 . For l = i, we have to prove that d T π min (v i ) ≤ d T π min (v t+1-i ) ≤ d T π min (v k ) for i + 1 ≤ k ≤ t + 1 -i and i = 1, 2, • • • , (t + 1)/2 . Suppose for contradiction that d T π min (v i ) > d T π min (v k ) for some i + 1 ≤ k ≤ t + 1 -i.
Let T 0 be the tree obtained by applying S(v i , v k ) to T π min . Clearly, T 0 ∈ T π n . Note that the edges v i-1 v i and v k v k+1 in T π min are transformed to the edges v i-1 v k and v i v k+1 in T 0 , respectively. Moreover, by the inductive hypothesis, we have

d T π min (v i-1 ) ≤ d T π min (v k ) and d T π min (v i-1 ) ≤ d T π min (v i ). Then we have irr(T 0 ) -irr(T π min ) = |d T 0 (v i-1 ) -d T 0 (v k )| + |d T 0 (v i ) -d T 0 (v k+1 )| -|d T π min (v i-1 ) -d T π min (v i )| -|d T π min (v k ) -d T π min (v k+1 )| = |d T π min (v i-1 ) -d T π min (v k )| + |d T π min (v i ) -d T π min (v k+1 )| -(d T π min (v i ) -d T π min (v i-1 )) -|d T π min (v k ) -d T π min (v k+1 )| = d T π min (v k ) -d T π min (v i-1 ) + |d T π min (v i ) -d T π min (v k+1 )| -(d T π min (v i ) -d T π min (v i-1 )) -|d T π min (v k ) -d T π min (v k+1 )| < d T π min (v k ) -d T π min (v i ) + |d T π min (v i ) -d T π min (v k )| = d T π min (v k ) -d T π min (v i ) + d T π min (v i ) -d T π min (v k ) = 0.
This is a contradiction. Hence we have d

T π min (v i ) ≤ d T π min (v k ) for i + 1 ≤ k ≤ t + 1 -i. At the same time, we have d T π min (v i ) ≤ d T π min (v t+1-i ).
By the same argument as above, we have

d T π min (v t+1-i ) ≤ d T π min (v k ) for i + 1 ≤ k ≤ t + 1 -i. Hence we have d T π min (v i ) ≤ d T π min (v t+1-i ) ≤ d T π min (v k ) for i + 1 ≤ k ≤ t + 1 -i, i = 1, 2, • • • , (t + 1)/2
. This completes the proof. 

∈ E(T ), let T 0 = T -uv -xy + uy + xv. If d T (u) ≥ d T (x) ≥ d T (y) ≥ d T (v), then irr(T 0 ) = irr(T ). Proof. Note that d(u) ≥ d(x) ≥ d(y) ≥ d(v). Then we have irr(T 0 ) -irr(T ) = |d T 0 (u) -d T 0 (y)| + |d T 0 (x) -d T 0 (v)| -|d T (u) -d T (v)| -|d T (x) -d T (y)| = (d T (u) -d T (y)) + (d T (x) -d T (v)) -(d T (u) -d T (v)) -(d T (x) -d T (y)) = 0.
This completes the proof.

Suppose that the degrees of the non-leaf vertices are given. The greedy tree is achieved by the following "greedy algorithm" [START_REF] Wang | Extremal trees with given degree sequence for the Randić index[END_REF][START_REF] Xing | Extremal trees with fixed degree sequence for atom-bond connectivity index[END_REF]:

(i) label the vertex with the largest degree as v 0,1 (the root); (iv) repeat (iii) for all the newly labelled vertices, always start with the neighbors of the labelled vertex with largest degree whose neighbors are not labelled yet.

(ii) label the neighbors of v 0,1 as v 1,1 , v 1,2 , • • • , assign the largest degrees available to them such that d(v 1,1 ) ≥ d(v 1,2 ) ≥ • • • ; (iii) label the neighbors of v 1,1 (except v 0,1 ) as v 2,1 , v 2,2
Theorem 3.1 Among trees in T π n , there exists a greedy tree with minimum irregularity. Proof. Firstly, by the definition on the greedy tree with a given degree sequence, we easily to see that the greedy tree satisfies the conditions in Lemma 3.4. However, there are many trees for which these conditions hold. Then by Lemma 3.5, the greedy trees with minimum irregularity are constructed among these trees. This completes the proof. Remark 3.1 In fact, there are many trees different from the greedy tree with a given degree sequence minimize irr(T ). Following is an example which are two T π min . One is obtained by the greedy algorithm with degree sequence π = {4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2}, also it is a greedy tree. The other one is not a greedy tree with the same degree sequence, which are shown in Fig. 6.

0,1 v 1,1 v 1,2 v 1,3 v 1,4 v 2,3 v 2,2 v 2,1 v 2,4 v 2,5 v 2,6 v 0,1 v 1,1 v 1,2 v 1,3 v 1,4 v 2,3 v 2,2 v 2,1 v 2,4 v 2,5 v 2,6
v a greedy tree a non greedy tree -Fig. 6: A greedy tree and a non-greedy tree with degree sequence π = {4,

4 Maximal (or minimal) irregularity of graphs in T n,k

In this section, we explore some properties on T max,k (or T min,k ), and construct the corresponding trees T max,k (or T min,k ). We now explore some properties for trees in T n,k . For T ∈ T n,k , let n i be the number of vertices of degree i in

T for i = 1, 2, • • • , ∆ 1 . Then we have ∆1 i=1 n i = n and ∆1 i=1 in i = 2(n -1). Note that 2(n -1) = ∆1 i=1 in i = n 1 + 2n 2 + ∆1 i=3 in i ≥ n 1 + n 2 + 3k = n -k + 3k = n + 2k.
This implies that Proposition 4.1 For any tree

T ∈ T n,k , k(T ) ≤ n-2 2 .
Moreover, note that

2(n -1) = ∆1 i=1 in i = n 1 + 2n 2 + ∆1 i=3 in i ≥ n 1 + n 2 + 3(k -n ∆1 ) + ∆ 1 n ∆1 = n -k + 3(k -n ∆1 ) + ∆ 1 n ∆1 = n + 2k + (∆ 1 -3)n ∆1 ≥ n + 2k + (∆ 1 -3).
This leads to the following conclusion.

Proposition 4.2 For any tree

T ∈ T n,k , ∆ 1 (T ) ≤ n -2k + 1.

Properties on T max,k

Lemma 4.1 For 1 < k ≤ n-2 2 , T max,k has the following properties:

1. T max,k contains no vertex with degree 2;

2. T max,k contains at most one vertex of degree larger than 3.

Proof.

(1) Assume that there exists

v ∈ V (T max,k ) such that d T max,k (v) = 2. Let N T max,k (v) = {w 1 , w 2 }. Then d T max,k (w 1 ) ≥ 2 or d T max,k (w 2 ) ≥ 2. Let u ∈ V (T max,k ) with d T max,k (u) = ∆ 1 (T max,k ). Let N T max,k (u) = {u 1 , u 2 , • • • , u ∆1 }. If u ∈ N T max,k (v) 
, let T be the tree obtained from T max,k by Separating an edge uv. Clearly, T ∈ T n,k . Then Lemma 2.1 implies that irr(T ) > irr(T max,k ), a contradiction. If u / ∈ N T max,k (v), then there exists a path contains u and v in T max,k . Let v be the vertex connected to u via w 1 with d T max,k (w 1 ) ≥ 2. Let T = T max,k -vw 2 + uw 2 . Clearly, T ∈ T n,k . Hence we have

irr(T ) -irr(T max,k ) = |d T (u) -d T (w 2 )| + d T max,k (u) + |d T (v) -d T (w 1 )| -|d T max,k (v) -d T max,k (w 1 )| -|d T max,k (v) -d T max,k (w 2 )| = |d T max,k (u) + 1 -d T max,k (w 2 )| + d T max,k (u) +|d T max,k (v) -1 -d T max,k (w 1 )| -|d T max,k (v) -d T max,k (w 1 )| -|d T max,k (v) -d T max,k (w 2 )| = d T max,k (u) + 1 -d T max,k (w 2 ) + d T max,k (u) +|2 -1 -d T max,k (w 1 )| -(d T max,k (w 1 ) -2) -|d T max,k (w 2 ) -2|, as d T max,k (v) = 2 = 2d T max,k (u) + 2 -d T max,k (w 2 )-|d T max,k (w 2 ) -2| > 0,
a contradiction. Hence the result follows.

(2) Assume that there exists two vertices

u, v ∈ V (T max,k ) such that d T max,k (u) = ∆ 1 (T max,k ) > 3 and d T max,k (v) > 3. Let d T max,k (v) = s and N T max,k (v) = {v 1 , v 2 , • • • , v s }. If u ∈ N T max,k (v),
without loss of generality, we assume that u

= v s . Let T = T max,k -{vv 1 , vv 2 , • • • , vv s-3 } + {uv 1 , uv 2 , • • • , uv s-3 }. Clearly, T ∈ T n,k . Hence we have irr(T ) -irr(T max,k ) = s-3 i=1 |d T (u) -d T (v i )| -|d T max,k (v) -d T max,k (v i )| +2(s -3) + (s -3) d T max,k (u) -1 + s-1 i=s-2 |d T (v) -d T (v i )| -|d T max,k (v) -d T max,k (v i )| = s-3 i=1 |d T max,k (u) + s -3 -d T max,k (v i )| -|d T max,k (v) -d T max,k (v i )| +2(s -3) + (s -3) d T max,k (u) -1 + s-1 i=s-2 |d T max,k (v) -(s -3) -d T max,k (v i )| -|d T max,k (v) -d T max,k (v i )| > -(s -3) d T max,k (v) -d T max,k (u) -(s -3) +(s -3) d T max,k (u) + 1 -2(s -3) = -(s -3) d T max,k (u) -3 + (s -3) d T max,k (u) -1 , as d T max,k (v) = s = 2(s -3) > 0, a contradiction. If u / ∈ N T max,k (v), let T = T max,k -{vv 1 , vv 2 , • • • , vv s-3 } + {uv 1 , uv 2 , • • • , uv s-3 }. Clearly, T ∈ T n,k
. By the same argument as above, we have irr(T ) > irr(T max,k ). This is also a contradiction. Hence the result follows.

Combing Proposition 4.1 and Lemma 4.1, we then have the following.

Theorem 4.1 For 1 ≤ k ≤ n-2 2 , T max,k has the degree sequence π = {n -2k + 1, 3, • • • , 3 k-1 }. Lemma 4.2 For any tree T ∈ T π n with degree sequence π = {∆ 1 , ∆ 2 , • • • , ∆ 2 k-1 }, where k ≤ n-2 2 , then irr(T ) = ∆ 2 1 + ∆ 1 (1 -2∆ 2 ) + [2n -2 + (1 -k)∆ 2 ](∆ 2 -1). Proof. Note that T with degree sequence π = {∆ 1 , ∆ 2 , • • • , ∆ 2 k-1 }. Then T has t = 2(n -1) -∆ 1 - (k -1)∆ 2 leaves. Assume that u 1 ∈ V (T ) with d(u 1 ) = ∆ 1 .
Note that for any tree T ∈ T π n , there are ∆ 1 disjoint pendent paths which begin with the vertex u 1 . If one of them is

P 1 = u 1 u 2 • • • u i v j , where d(u i ) = ∆ 2 for 2 ≤ i ≤ k, and d(v j ) = 1 for 1 ≤ j ≤ t. Then we have irr(P 1 ) = xy∈E(P1) |d(x) -d(y)| = |d(u 1 ) -d(u 2 )| + |d(u 2 ) -d(u 3 )| + • • • + |d(u i-1 ) -d(u i )| + |d(u i ) -d(v j )| = d(u 1 ) -d(u 2 ) + d(u 2 ) -d(u 3 ) + • • • + d(u i-1 ) -d(u i ) + d(u i ) -d(v j ) = d(u 1 ) -d(v j ) = ∆ 1 -1; if one of them is P 2 = u 1 v j , where d(v j ) = 1. Then we have irr(P 2 ) = |d(u 1 ) -d(v j )| = ∆ 1 -1.
Obviously, there is ∆ 1 (∆ 1 -1) contributes to irr(T ), by the ∆ 1 disjoint pendent paths which begin with the vertex u 1 . By the construction of trees, there are leaving t -∆ 1 pendent vertices which just adjacent to the vertices with degree ∆ 2 , then they have (t -∆ 1 )(∆ 2 -1) contributes to irr(T ). No matter how to construct the tree T , there are some edges as the edge u i u j with d(u i ) = d(u j ) = ∆ 2 , and their balance is 0 as |d(u i ) -d(u j )| = 0. Therefore, we have

irr(T ) = ∆ 1 (∆ 1 -1) + (t -∆ 1 )(∆ 2 -1) + 0 = ∆ 2 1 -∆ 1 ∆ 2 + t(∆ 2 -1) = ∆ 2 1 -∆ 1 ∆ 2 + [2(n -1) -∆ 1 -(k -1)∆ 2 ](∆ 2 -1) = ∆ 2 1 + ∆ 1 (1 -2∆ 2 ) + [2n -2 + (1 -k)∆ 2 ](∆ 2 -1).
This completes the proof. Proof. Suppose that there exists u ∈ V (T min,k ) such that d T min,k (u) = ∆ 1 (T min,k

) ≥ 4. Let N (u) = {u 1 , u 2 , • • • , u ∆1-2 , v i-1 , v i+1 }. Let P = v 0 v 1 , • • • , v i-1 u(= v i )v i+1 ,
• • • , v l be the longest path in T min,k that contains u. Let w 1 be a pendent vertex connected to u via u 1 (it is possible that w 1 ≡ u 1 )(Fig. 7). Let Hence the result follows.

From the proof of Theorem 4.4, we know that irr(T * ) is monotonically increasing on k. Then we have ).

  This process are shown in Fig.1, respectively.

T 0 TFig. 1 :

 01 Fig. 1: A new path in T 0 obtained from T by S(vi, v k ) on the path v0v1v2 • • • vtvt+1

+ 1 ,

 1 then by Lemma 3.2, we see that the vertices in {v 1,j |j = 1, 2, • • • } take the largest degrees and they are adjacent to the vertices (in {v 2,k |k = 1, 2, • • • }) with the smallest degrees. Construct the subtrees that contain vertices in {v 0,i |i = 1, 2, • • • }, {v 1,j |j = 1, 2, • • • } and {v 2,k |k = 1, 2, • • • } first.Note that by Lemma 3.1, we will let the larger degree vertex be adjacent to the smaller degree vertex whenever possible. Thus, we produce the following subtree T 1 :Rooted at r with d m -1 children with degrees d 1 , • • • , d dm-1 , where r ∈ {v 2,k |k = 1, 2, • • • } with degree d m in T π max , the children of r are vertices in {v 1,j |j = 1, 2, • • • }. Note that removing T 1 (except the root) from T πmax results in a new tree S with degree sequence {d dm , • • • , d m-1 }, in which Lemmas 3.1 and 3.2 still hold. Thus S is a tree with the new degree sequence has the maximum irregularity.

Fig. 3 :

 3 Fig. 3: Construction of subtrees.

Fig. 4 :

 4 Fig. 4: Attaching subtrees to S.

Fig. 5 :

 5 Fig. 5: Two trees T π max with the same degree sequence.

Lemma 3 . 5

 35 For any T ∈ T π n with uv, xy ∈ E(T ) and uy, xv /

Remark 4 . 1 Theorem 4 . 2

 4142 Lemma 4.2 also holds for ∆ 1 = ∆ 2 . That is, for any tree T ∈ T π n with degree sequence{∆ 1 , • • • , ∆ 1 k }, where k ≤ n-2 2 , then irr(T ) = -k∆ 2 1 + (2n + k -2)∆ 1 -2n + 2.By Theorem 4.1 and Lemma 4.2, we then have the following. For any tree T ∈ T n,k , where 1 ≤ k ≤ n-2 2 , we haveirr(T ) ≤ n 2 + (1 -4k)n + 4k 2 -2,and the equality holds if and only if T has degree sequence π = {n -2k + 1, 3, • • • , 3 Theorem 4.2 and Lemma 2.2, we have Corollary 4.1 irr(T max,1 ) > irr(T max,2 ) > • • • > irr(T max,

4. 2 Lemma 4 . 3

 243 Properties on T min,k For 1 ≤ k ≤ n-2 2 , ∆ 1 (T min,k ) < 4.

Fig. 7 :

 7 Fig. 7: Trees T min,k and T 1 in Lemma 4.3.

T 1 =

 1 T min,k -uu 2 + u 2 w 1 . Clearly, T 1 ∈ T n,k . Then we have irr(T 1 ) -irr(T min,k ) = |d T (w 1 ) -d T (u 2 )| -1 -(d T min,k (u) -1) -|d T min,k (u) -d T min,k (u 2 )| = |d T min,k (w 1 ) + 1 -d T min,k (u 2 )| -d T min,k (u) -(d T min,k (u) -d T min,k (u 2 )) = |2 -d T min,k (u 2 )| -2d T min,k (u) + d T min,k (u 2 ), as d T π max (w 1 ) = 1 < 0,a contradiction. This completes the proof.

Theorem 4 . 3 3 k, 2 , • • • , 2 n 3 k, 2 , • • • , 2 x, 1 ,

 433223221 For 1 ≤ k ≤ n-2 2 , T min,k has the degree sequence π = {3, • • • , By Lemma 4.3, we assume that T min,k has degree sequence {3, • • • , • • • , 1 y }, where x, y are integers. Note that k + x + y = n and 3k + 2x + y = 2(n -1). Those yield that x = n -2k -2 and y = k + 2. Hence the result holds.

Theorem 4 . 4 2 , 3 k, 2 , • • • , 2 n 3 k, 2 , 2 n-2k- 2 }. 3 k, 2 , 2 n-2k- 2 } 3 k, 2 , • • • , 2 n

 44232232223222322 For any T ∈ T n,k , where k ≤ n-2 then we have irr(T ) ≥ 2k + 4, and the equality holds if and only if T ∼ = T π min with π = {3, • • • , By Theorem 4.3, for any T ∈ T n,k , we have irr(T ) ≥ irr(T min,k ) = irr(T π min ) with π = {3, • • • , • • • , Moreover, by Theorem 3.1, for π = {3, • • • , • • • , , there exists a greedy tree T * such that irr(T * ) = irr(T π min ). By the construct of the greedy tree T * with π = {3, • • • ,

Corollary 4 .2 6 =

 46 irr(T min,1 ) < irr(T min,2 ) < • • • < irr(T min, n-2 2

  , • • • , such that they take all the largest degrees available and that d(v 2,1 ) ≥ d(v 2,2 ) ≥ • • • , then do the same for v 1,2 , v 1,3 , • • • ;
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