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A new bijection relating q-Eulerian polynomials

Ange Bigeni1

Institut Camille Jordan
Université Claude Bernard Lyon 1
43 boulevard du 11 novembre 1918

69622 Villeurbanne cedex
France

Abstract

On the set of permutations of a finite set, we construct a bijection which maps

the 3-vector of statistics (maj − exc, des, exc) to a 3-vector (maj2,fides2, inv2)
associated with the q-Eulerian polynomials introduced by Shareshian and Wachs

in Chromatic quasisymmetric functions, arXiv:1405.4269(2014).

Keywords: q-Eulerian polynomials, descents, ascents, major index,

exceedances, inversions.

Notations

For all pair of integers (n,m) such that n < m, the set {n, n+ 1, . . . ,m} is

indifferently denoted by [n,m],]n− 1,m],[n,m+ 1[ or ]n− 1,m+ 1[.

The set of positive integers {1, 2, 3, . . .} is denoted by N>0.

For all integer n ∈ N>0, we denote by [n] the set [1, n] and by Sn the set of5

the permutations of [n]. By abuse of notation, we assimilate every σ ∈ Sn with

the word σ(1)σ(2) . . . σ(n).

If a set S = {n1, n2, . . . , nk} of integers is such that n1 < n2 < . . . < nk, we

sometimes use the notation S = {n1 < n2 < . . . < nk}.
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1. Introduction10

Let n be a positive integer and σ ∈ Sn. A descent (respectively exceedance

point) of σ is an integer i ∈ [n − 1] such that σ(i) > σ(i + 1) (resp. σ(i) > i).

The set of descents (resp. exceedance points) of σ is denoted by DES(σ) (resp.

EXC(σ)) and its cardinal by des(σ) (resp. exc(σ)). The integers σ(i) with

i ∈ EXC(σ) are called exceedance values of σ.15

It is due to MacMahon [Mac15] and Riordan [Rio58] that∑
σ∈Sn

tdes(σ) =
∑
σ∈Sn

texc(σ) = An(t)

where An(t) is the n-th Eulerian polynomial [Eul55]. A statistic equidistributed

with des or exc is said to be Eulerian. The statistic ides defined by ides(σ) =

des(σ−1) obviously is Eulerian.

The major index of a permutation σ ∈ Sn is defined as

maj(σ) =
∑

i∈DES(σ)

i.

It is also due to MacMahon that∑
σ∈Sn

qmaj(σ) =
n∏
i=1

1− qi

1− q
.

A statistic equidistributed with maj is said to be Mahonian. Among Mahonian

statistics is the statistic inv, defined by inv(σ) = |INV(σ)| where INV(σ) is the20

set of inversions of a permutation σ ∈ Sn, i.e. the pairs of integers (i, j) ∈ [n]2

such that i < j and σ(i) > σ(j).

In [SW14], the authors consider analogous versions of the above statistics :

let σ ∈ Sn, the set of 2-descents (respectively 2-inversions) of σ is defined as

DES2(σ) = {i ∈ [n− 1], σ(i) > σ(i+ 1) + 1}

(resp.

INV2(σ) = {1 ≤ i < j ≤ n, σ(i) = σ(j) + 1})

and its cardinal is denoted by des2(σ) (resp. inv2(σ)).
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It is easy to see that inv2(σ) = ides(σ). The 2-major index of σ is defined

as

maj2(σ) =
∑

i∈DES2(σ)

i.

By using quasisymmetric function techniques, the authors of [SW14] proved

the equality ∑
σ∈Sn

xmaj2(σ)yinv2(σ) =
∑
σ∈Sn

xmaj(σ)−exc(σ)yexc(σ). (1)

Similarly, by using the same quasisymmetric function method as in [SW14],

the authors of [HL12] proved the equality∑
σ∈Sn

xamaj2(σ)yãsc2(σ)zides(σ) =
∑
σ∈Sn

xmaj(σ)−exc(σ)ydes(σ)zexc(σ) (2)

where asc2(σ) is the number of 2-ascents of a permutation σ ∈ Sn, i.e. the

elements of the set ASC2(σ) = {i ∈ [n− 1], σ(i) < σ(i+1)+ 1}, which rises the

statistic amaj2 defined by

amaj2(σ) =
∑

i∈ASC2(σ)

i,

and where fiasc2(σ) = asc2(σ) if σ(1) = 1,

asc2(σ) + 1 if σ(1) 6= 1.

Definition 1.1. Let σ ∈ Sn. We consider the smallest 2-descent d2(σ) of σ

such that σ(i) = i for all i ∈ [d2(σ)− 1] (if there is no such 2-descent, we define25

d2(σ) as 0 and σ(0) as n+ 1).

Now, let d′2(σ) > d2(σ) be the smallest 2-descent of σ greater than d2(σ) (if

there is no such 2-descent, we define d′2(σ) as n).

We define an inductive property P(d2(σ)) by :

1. σ(d2(σ)) < σ(i) for all (i, j) ∈ INV2(σ) such that d2(σ) < i < d′2(σ);30

2. if (d′2(σ), j) ∈ INV2(σ) for some j, then either σ(d2(σ)) < σ(d′2(σ)), or

d′2(σ) has the property P(d′2(σ)) (where the role of d2(σ) is played by d′2(σ)

and that of d′2(σ) by d′′2(σ) where d′′2(σ) > d′2(σ) is the smallest 2-descent

of σ greater than d′2(σ), defined as n if there is no such 2-descent).
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This property is well-defined because (n, j) 6∈ INV2(σ) for all j ∈ [n].35

Finally, we define a statistic fides2 by :fides2(σ) = des2(σ) if the property P(d2(σ)) is true,

des2(σ) + 1 otherwise.

In the present paper, we prove the following theorem.

Theorem 1.2. There exists a bijection ϕ : Sn → Sn such that

(maj2(σ),fides2(σ), inv2(σ)) = (maj(ϕ(σ))− exc(ϕ(σ)), des(ϕ(σ)), exc(ϕ(σ))).

As a straight corollary of Theorem 1.2, we obtain the equality

∑
σ∈Sn

xmaj2(σ)yd̃es2(σ)zinv2(σ) =
∑
σ∈Sn

xmaj(σ)−exc(σ)ydes(σ)zexc(σ) (3)

which implies Equality (1).

The rest of this paper is organised as follows.

In Section 2, we introduce two graphical representations of a given permuta-40

tion so as to highlight either the statistic (maj−exc, des, exc) or (maj2,fides2, inv2).
Practically speaking, the bijection ϕ of Theorem 1.2 will be defined by construct-

ing one of the two graphical representations of ϕ(σ) for a given permutation

σ ∈ Sn.

We define ϕ in Section 3.45

In Section 4, we prove that ϕ is bijective by constructing ϕ−1.

2. Graphical representations

2.1. Linear graph

Let σ ∈ Sn. The linear graph of σ is a graph whose vertices are (from left to

right) the integers σ(1), σ(2), . . . , σ(n) aligned in a row, where every σ(k) (for50

k ∈ DES2(σ)) is boxed, and where an arc of circle is drawn from σ(i) to σ(j)

for every (i, j) ∈ INV2(σ).

For example, the permutation σ = 34251 ∈ S5 (such that

(maj2(σ),fides2(σ), inv2(σ)) = (6, 3, 2)) has the linear graph depicted in Fig-

ure 1.55
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Figure 1: Linear graph of σ = 34251 ∈ S5.

2.2. Planar graph

Let τ ∈ Sn. The planar graph of τ is a graph whose vertices are the

integers 1, 2, ..., n, organized in ascending and descending slopes (the height of

each vertex doesn’t matter) such that the i-th vertex (from left to right) is the

integer τ(i), and where every vertex τ(i) with i ∈ EXC(τ) is encircled.60

For example, the permutation τ = 32541 ∈ S5 (such that

(maj(τ) − exc(τ), des(τ), exc(τ)) = (6, 3, 2)) has the planar graph depicted in

Figure 2.

Figure 2: Planar graph of τ = 32541 ∈ S5.

3. Definition of the map ϕ of Theorem 1.2

Let σ ∈ Sn. We set (r, s) = (des2(σ), inv2(σ)), and

DES2(σ) =
{
dk2(σ), k ∈ [r]

}
,

INV2(σ) = {(il(σ), jl(σ)), l ∈ [s]}

with dk2(σ) < dk+1
2 (σ) for all k and il(σ) < il+1(σ) for all l.65

We intend to define ϕ(σ) by constructing its planar graph. To do so, we first

construct (in Subsection 3.1) a graph G(σ) made of n circles or dots organized in

ascending or descending slopes such that two consecutive vertices are necessarily

in a same descending slope if the first vertex is a circle and the second vertex

is a dot. Then, in Subsection 3.2, we label the vertices of this graph with the70
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integers 1, 2, . . . , n in such a way that, if yi is the label of the i-th vertex vi(σ)

(from left to right) of G(σ) for all i ∈ [n], then :

1. yi < yi+1 if and only if vi and vi+1 are in a same ascending slope;

2. yi > i if and only if vi is a circle.

The permutation τ = ϕ(σ) will then be defined as y1y2 . . . yn, i.e. the75

permutation whose planar graph is the labelled graph G(σ).

With precision, we will obtain

τ (EXC(τ)) = {jk(σ), k ∈ [s]}

(in particular exc(τ) = s = inv2(σ)), and

DES(τ) =

{d
k(σ), k ∈ [1, r]} if fides2(σ) = r,

{dk(σ), k ∈ [0, r]} if fides2(σ) = r + 1

for integers 0 ≤ d0(σ) < d1(σ) < . . . < dr(σ) ≤ n (with d0(σ) = 0⇔fides2(σ) =
des2(σ)) defined by

dk(σ) = dk2(σ) + ck(σ)

(with d02(σ) := 0) where (ck(σ))k∈[0,r] is a sequence defined in Subsection 3.1

such that
∑
k ck(σ) = inv2(σ) = exc(τ). Thus, we will obtain des(τ) = fides2(σ)

and maj(τ) = maj2(σ) + exc(τ).

3.1. Construction of the unlabelled graph G(σ)80

We set
(
d02(σ), σ(d

0
2(σ))

)
= (0, n+ 1) and

(
dr+1
2 (σ), σ(n+ 1)

)
= (n, 0).

For all k ∈ [r], we define the top tk(σ) of the 2-descent dk2(σ) as

tk(σ) = min{dl2(σ), 1 ≤ l ≤ k, dl2(σ) = dk2(σ)− (k − l)}, (4)

in other words tk(σ) is the smallest 2-descent dl2(σ) such that the 2-descents

dl2(σ), d
l+1
2 (σ), . . . , dk2(σ) are consecutive integers.

The following algorithm provides a sequence (c0k(σ))k∈[0,r] of nonnegative85

integers.
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Algorithm 3.1. Let Ir(σ) = INV2(σ). For k from r = des2(σ) down to 0, we

consider the set Sk(σ) of sequences (ik1(σ), ik2(σ), . . . , ikm(σ)) such that :

1. (ikp(σ), jkp(σ)) ∈ Ik(σ) for all p ∈ [m];

2. tk(σ) ≤ ik1(σ) < ik2(σ) < . . . < ikm(σ);90

3. σ(ik1(σ)) < σ(ik2(σ)) < . . . < σ(ikm(σ)).

The length of such a sequence is defined as l =
∑m
p=1 np where np is the number

of consecutive 2-inversions whose beginning is ikp , i.e. the maximal number np

of 2-inversions (ik1p(σ), jk1p(σ)), (ik2p(σ), jk2p(σ)), . . . , (ik
np
p
(σ), jknpp (σ)) such that

k1p = kp and jkip(σ) = iki+1
p

(σ) for all i. If Ik(σ) 6= ∅, we consider the sequence95

(ikmax1
(σ), ikmax2

(σ), . . . , ikmaxm
(σ)) ∈ Ik(σ) whose length lmax =

∑m
p=1 n

max
p is

maximal and whose elements ikmax1
(σ), ikmax2

(σ), . . . , ikmaxm
(σ) also are maximal

(as integers). Then,

• if Ik(σ) 6= ∅, we set c0k(σ) = lmax and

Ik−1(σ) = Ik(σ)\
(
∪mp=1{(ikmaxi

(σ), jkmax
i

(σ)), i ∈ [nmaxp ]}
)
;

• else we set c0k(σ) = 0 and Ik−1(σ) = Ik(σ).

Example 3.2. Consider the permutation σ = 549321867 ∈ S9, with DES2(σ) =100

{3, 7} and I2(σ) = INV2(σ) = {(1, 2), (2, 4), (3, 7), (4, 5), (5, 6), (7, 9)}. In Fig-

ure 3 are depicted the des2(σ) + 1 = 3 steps k ∈ {2, 1, 0} (at each step, the

2-inversions of the maximal sequence are drawed in red then erased at the fol-

lowing step) :

Figure 3: Computation of (c0k(σ))k∈[0,des2(σ)] for σ = 549321867 ∈ S9.
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• k = 2 : there is only one legit sequence (ik1(σ)) = (7), whose length is105

l = n1 = 1. We set c02(σ) = 1 and I1(σ) = I2(σ)\{(7, 9)}.

• k = 1 : there are three legit sequences (ik1(σ)) = (3) (whose length

is l = n1 = 1) then (ik1(σ)) = (4) (whose length is l = n1 = 2) and

(ik1(σ)) = (5) (whose length is l = n1 = 1). The maximal sequence is the

second one, hence we set c01(σ) = 2 and I0(σ) = I1(σ)\{(4, 5), (5, 6)}.110

• k = 0 : there are three legit sequences (ik1(σ), ik2(σ)) = (1, 3) (whose

length is l = n1 + n2 = 2 + 1 = 3) then (ik1(σ), ik2(σ)) = (2, 3) (whose

length is l = n1 + n2 = 1 + 1 = 2) and (ik1(σ)) = (3) (whose length is

l = n1 = 1). The maximal sequence is the first one, hence we set c00(σ) = 3

and I−1(σ) = I0(σ)\{(1, 2), (2, 4), (3, 7)} = ∅.115

Lemma 3.3. The sum
∑
k c

0
k(σ) equals inv2(σ) (i.e. I−1(σ) = ∅) and, for all

k ∈ [0, r] = [0, des2(σ)], we have c0k(σ) ≤ dk+1
2 (σ) − dk2(σ) with equality only if

c0k+1(σ) > 0 (where c0r+1(σ) is defined as 0).

Proof. With precision, we show by induction that, for all k ∈ {des2(σ), . . . , 1, 0},

the set Ik−1(σ) contains no 2-inversion (i, j) such that dk2(σ) < i. For k = 0, it120

will mean I−1(σ) = ∅ (recall that d02(σ) has been defined as 0).

? If k = des2(σ) = r, the goal is to prove that c0r(σ) < n − dr2(σ). Suppose

there exists a sequence (ik1(σ), ik2(σ), . . . , ikm(σ)) of length c0r(σ) ≥ n − dr2(σ)

with tr(σ) ≤ ik1(σ) < ik2(σ) < . . . < ikm(σ). In particular, there exist

c0r(σ) ≥ n − dr2(σ) 2-inversions (i, j) such that dr2(σ) < j, which forces c0r(σ)125

to equal n − dr2(σ) and every j > dr2(σ) to be the arrival of a 2-inversion (i, j)

such that tr(σ) ≤ i. In particular, this is true for j = dr2(σ) + 1, which is

absurd because σ(i) ≥ σ (dr2(σ)) > σ (dr2(σ) + 1) + 1 for all i ∈ [tr(σ), d
r
2(σ)].

Therefore c0r(σ) < n − dr2(σ). Also, it is easy to see that every i > dr2(σ)

that is the beginning of a 2-inversion (i, j) necessarily appears in the maximal130

sequence
(
ikmax1

(σ), ikmax2
(σ), . . . , ikmaxm

(σ)
)
whose length defines c0r(σ), hence

(i, j) 6∈ Ir−1(σ).

? Now, suppose that c0k(σ) ≤ dk+1
2 (σ) − dk2(σ) for some k ∈ [des2(σ)] with
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equality only if c0k+1(σ) > 0, and that no 2-inversion (i, j) with dk2(σ) < i belongs

to Ik−1(σ).135

If tk−1(σ) = tk(σ) (i.e., if dk−12 (σ) = dk2(σ) − 1), since Ik−1(σ) does not

contain any 2-inversion (i, j) with dk2(σ) < i, then c0k−1(σ) ≤ 1 = dk2(σ) −

dk−12 (σ). Moreover, if c0k−1(σ) = 1, then there exists a 2-inversion (i, j) ∈

Ik−1(σ) ⊂ Ik(σ) such that i ∈ [tk−1(σ), d
k
2(σ)]. Consequently (i) was a legit

sequence for the computation of c0k(σ) at the previous step (because tk(σ) =140

tk−1(σ)), which implies c0k(σ) equals at least the length of (i). In particular

c0k(σ) > 0.

Else, consider a sequence (ik1(σ), ik2(σ), . . . , ikm(σ)) that fits the three con-

ditions of Algorithm 3.1 at the step k − 1. In particular tk−1(σ) ≤ ik1(σ). Also

ikm(σ) ≤ dk2(σ) by hypothesis. Since σ(ikp(σ)) < σ(ikp+1(σ)) for all p, and since145

σ(tk−1(σ)) > σ(tk−1(σ) + 1) > . . . > σ
Ä
dk−12 (σ)

ä
> σ
Ä
dk−12 (σ) + 1

ä
, then only

one element of the set [tk−1(σ), dk−12 (σ)+ 1] may equal ikp(σ) for some p ∈ [m].

Thus, the length l of the sequence verifies l ≤ dk2(σ) − dk−12 (σ), with equality

only if ikm(σ) = dk2(σ) (which implies c0k(σ) > 0 as in the previous paragraph).

In particular, this is true for l = c0k−1(σ).150

Finally, as for k = des2(σ), every i ∈ [dk−12 (σ) + 1, dk2(σ)] that is the

beginning of a 2-inversion (i, j) necessarily appears in the maximal sequence(
ikmax1

(σ), ikmax2
(σ), . . . , ikmaxm

(σ)
)
whose length defines c0k−1(σ), hence (i, j) 6∈

Ik−2(σ).

So the lemma is true by induction.155

Definition 3.4. We define a graph G0(σ) made of circles and dots organised in

ascending or descending slopes, by plotting :

• for all k ∈ [0, r], an ascending slope of c0k(σ) circles such that the first

circle has abscissa dk2(σ) + 1 and the last circle has abscissa dk2(σ) + c0k(σ)

(if c0k(σ) = 0, we plot nothing). All the abscissas are distinct because

d02(σ) + c0 < d12(σ) + c1 < . . . < dr2(σ) + cr

in view of Lemma 3.3;
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• dots at the remaining n−s = n−inv2(σ) abscissas from 1 to n, in ascending

and descending slopes with respect to the descents and ascents of the word

ω(σ) defined by

ω(σ) = σ(u1(σ))σ(u2(σ)) . . . σ(un−s(σ)) (5)

where

{u1(σ) < u2(σ) < . . . < un−s(σ)} := Sn\{i1(σ) < i2(σ) < . . . < is(σ)}.

Example 3.5. The permutation σ0 = 425736981 ∈ S9 (with DES2(σ0) =

{1, 4, 8} and INV2(σ0) = {(1, 5), (2, 9), (4, 6), (7, 8)}), which yields the sequence160

(c0k(σ0))k∈[0,3] = (1, 1, 2, 0) (see Figure 4 where all the 2-inversions involved in

the computation of a same c0k(σ0) are drawed in a same color) and the word

ω(σ0) = 53681, provides the unlabelled graph G0(σ0) depicted in Figure 5.

Figure 4: (c0k(σ0))k∈[0,3] = (1, 1, 2, 0).

Figure 5: Graph G0(σ0).

The following lemma is easy.

Lemma 3.6. For all i ∈ [n], if the i-th vertex (from left to right) v0i (σ) of G0(σ)

is a dot and if i is a descent of G0(σ) (i.e., if v0i (σ) and v0i+1(σ) are two dots in

a same descending slope) whereas i 6∈ DES2(σ), let ki such that

dki2 (σ) + c0ki(σ) < i < dki+1
2 (σ)

10



and let p ∈ [n− s] such that v0i (σ) is the p-th dot (from left to right) of G0(σ).165

Then :

1. up(σ) is the greatest integer u < dki+1
2 (σ) that is not the beginning of a

2-inversion of σ;

2. up+1(σ) is the smallest integer u > dki+1
2 (σ) that is not a 2-descent or the

beginning of a 2-inversion of σ;170

3. c0k(σ) > 0 for all k such that dki+1
2 (σ) ≤ dk2(σ) ≤ up+1(σ).

In particular c0ki+1(σ) > 0.

Lemma 3.6 motivates the following definition.

Definition 3.7. For i from 1 to n− 1, let ki ∈ [0, r] such that

dki2 (σ) + c0ki(σ) < i < dki+1
2 (σ).

If i fits the conditions of Lemma 3.6, then we define a sequence (cik(σ))k∈[0,r] by

ciki(σ) = ci−1ki
(σ) + 1,

ciki+1(σ) = ci−1ki+1(σ)− 1,

cik(σ) = ci−1k (σ) for all k 6∈ {ki, ki + 1}.

Else, we define (cik(σ))k∈[0,r] as (c
i−1
k (σ))k∈[0,r].

The final sequence (cnk (σ))k∈[0,r] is denoted by

(ck(σ))k∈[0,r].

By construction, and from Lemma 3.3, the sequence (ck(σ))k∈[0,r] has the175

same properties as (c0k(σ))k∈[0,r] detailed in Lemma 3.3.

Consequently, we may define an unlabelled graph

G(σ)

by replacing (c0k(σ))k∈[0,r] with (ck(σ))k∈[0,r] in Definition 3.4.

11



Figure 6: Graph G(σ0).

Example 3.8. In the graph G0(σ) depicted in Figure 5 where σ0 = 425736981 ∈

S9, we can see that the dot v03(σ0) is a descent whereas 3 6∈ DES2(σ0), hence,

from the sequence (c0k(σ0))k∈[0,3] = (1, 1, 2, 0), we compute (ck(σ0))k∈[0,3] =180

(1, 2, 1, 0) and we obtain the graph G(σ0) depicted in Figure 6.

Let v1(σ), v2(σ), . . . , vn(σ) be the n vertices of G(σ) from left to right.

By construction, the descents of the unlabelled graph G(σ) (i.e., the integers

i ∈ [n− 1] such that vi(σ) and vi+1(σ) are in a same descending slope) are the

integers

dk(σ) = dk2(σ) + ck(σ)

for all k ∈ [0, r].

3.2. Labelling of the graph G(σ)

3.2.1. Labelling of the circles185

We intend to label the circles of G(σ) with the integers

j1(σ), j2(σ), . . . , js(σ).

Algorithm 3.9. For all i ∈ [n], if the vertex vi(σ) is a circle (hence i < n), we

label it first with the set

[i+ 1, n] ∩ {j1(σ), j2(σ), . . . , js(σ)}.

Afterwards, if a circle vi(σ) is found in a descending slope such that there

exists a quantity of a circles above vi(σ), and in an ascending slope such that

there exists a quantity of b circles above vi(σ), then we remove the a+b greatest

integers from the current label of vi(σ) (this set necessarily had at least a+b+1

12



elements) and the smallest integer from every of the a + b labels of the a + b190

circles above vi(σ) in the two related slopes. At the end of this step, if an integer

jk(σ) appears in only one label of a circle vi(σ), then we replace the label of

vi(σ) with jk(σ).

Finally, we replace every label that is still a set by the unique integer it may

contain with respect to the order of the elements in the sequence

(j1(σ), j2(σ), . . . , js(σ))

(from left to right).

Example 3.10. For σ0 = 425736981 (see Figure 4) whose graph G(σ0) is de-195

picted in Figure 6, we have s = inv2(σ) = 4 and {j1(σ0), j2(σ0), j3(σ0), j4(σ0)} =

{5, 6, 8, 9}, which provides first the graph labelled by sets depicted in Figure 7.

Afterwards, since the circle v2(σ0) is in a descending slope with a = 1 cir-

cle above it (the vertex v1(σ0)) and in an ascending slope with also b = 1

circle above it (the vertex v3(σ0)), then we remove the a + b = 2 integers200

8 and 9 from its label, which becomes {5, 6}, and we remove 5 from the la-

bels of v1(σ0) and v3(σ0). Also, since the label of v2(σ0) is the only set that

contains 5, then we label v2(σ0) with 5 (see Figure 8). Finally, the sequence

(j1(σ0), j2(σ0), j3(σ0), j4(σ0)) = (5, 9, 6, 8) gives the order (from left to right) of

apparition of the remaining integers 6, 8, 9 (see Figure 9).205

Figure 7 Figure 8 Figure 9

3.2.2. Labelling of the dots

Let

{p1(σ) < p2(σ) < . . . < pn−s(σ)} = [n]\
r⊔

k=0

]dk2(σ), d
k(σ)].
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We intend to label the dots {vpi(σ)(σ), i ∈ [n− s]} of G(σ) with the elements

of

{1 = e1(σ) < e2(σ) < . . . < en−s(σ)} = [n]\{j1(σ), j2(σ), . . . , js(σ)}.

Algorithm 3.11. 1. For all k ∈ [n− s], we label first the dot vpk(σ)(σ) with

the set

[min(pk(σ), uk(σ))] ∩ ([n]\{j1(σ), j2(σ), . . . , js(σ)})

where u1(σ), u2(σ), . . . , un−s(σ) are the integers introduced in (5).

2. Afterwards, similarly as for the labelling of the circles, if a dot vi(σ) is

found in a descending slope such that a dots are above vi(σ), and in an

ascending slope such that b dots are above vi(σ), then we remove the a+b210

greatest integers from the current label of vi(σ) and the smallest integer

from every of the a + b labels of the dots above vi(σ) in the two related

slopes. At the end of this step, if an integer l appears in only one label of

a dot vi(σ), then we replace the label of vi(σ) with l.

3. Finally, for k from 1 to n− s, let

wk1 (σ) < wk2 (σ) < . . . < wkqk(σ)(σ) (6)

such that

{pwk
i
(σ)(σ), i} = {pi(σ), ek(σ) appear in the label of pi(σ)} ,

and let i(k) ∈ [qk(σ)] such that

σ
(
uwk

i(k)
(σ)(σ)

)
= min{σ

Ä
uwk

i
(σ)(σ)

ä
, i ∈ [qk(σ)]}.

Then, we replace the label of the dot pwk
i(k)

(σ)(σ) with the integer ek(σ)215

and we erase ek(σ) from any other label (and if an integer l appears in

only one label of a dot vi(σ), then we replace the label of vi(σ) with l).

Example 3.12. For σ0 = 425736981 whose graph G(σ0) has its circles labelled

in Figure 9, the sequence (u1(σ0), u2(σ0), u3(σ0), u4(σ0), u5(σ0)) = (3, 5, 6, 8, 9)

provides first the graph labelled by sets depicted in Figure 10. The rest of the220

algorithm goes from k = 1 to n− s = 9− 4 = 5.
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Figure 10 Figure 11

Figure 12: Labelled graph G(σ0).

• k = 1 : in Figure 10, the integer e1(σ0) = 1 appears in the labels of the

dots vp1(σ0)(σ0) = v4(σ0), vp2(σ0)(σ0) = v6(σ0) and vp5(σ0)(σ0) = v9(σ0),

so, from

(σ0(u1(σ0)), σ0(u2(σ0)), σ0(u5(σ0)) = (5, 3, 1),

we label the dot vp5(σ0)(σ0) = v9(σ0) with the integer e1(σ0) = 1 and we

erase 1 from any other label, and since the integer 4 now only appears in

the label of the dot v7(σ0), then we label v7(σ0) with 4 (see Figure 11).

• k = 2: in Figure 11, the integer e2(σ0) = 2 appears in the labels of the

dots vp1(σ0)(σ0) = v4(σ0) and vp2(σ0)(σ0) = v6(σ0) so, from

(σ0(u1(σ0)), σ0(u2(σ0))) = (5, 3),

we label the dot vp2(σ0)(σ0) = v6(σ0) with the integer e2(σ0) = 2 and we225

erase 2 from any other label, which provides the graph labelled by integers

depicted in Figure 12.

• The three steps k = 3, 4, 5 change nothing because every dot of G(σ0) is

already labelled by an integer at the end of the previous step.

So the final version of the labelled graph G(σ0) is the one depicted in Figure 12.230

15



3.3. Definition of ϕ(σ)

By construction of the labelled graph G(σ), the word y1y2 . . . yn (where the

integer yi is the label of the vertex vi(σ) for all i) obviously is a permutation of

the set [n], whose planar graph is G(σ).

We define ϕ(σ) ∈ Sn as this permutation.235

For the example σ0 = 425736981 ∈ S9 whose labelled graph G(σ0) is de-

picted in Figure 12, we obtain ϕ(σ0) = 956382471 ∈ S9.

In general, by construction of τ = ϕ(σ) ∈ Sn, we have

τ (EXC(τ)) = {jk(σ), k ∈ [inv2(σ)]} (7)

and

DES(τ) =

{d
k(σ), k ∈ [1, des2(σ)]} if c0(σ) = 0(⇔ d0(σ) = 0),

{dk(σ), k ∈ [0, des2(σ)]} otherwise.
(8)

Equality (7) provides

exc(τ) = inv2(σ).

By dk(σ) = dk2(σ) + ck(σ) for all k, Equality (8) provides

maj(τ) = maj2(σ) +
∑
k≥0

ck(σ),

and by definition of (ck(σ))k and Lemma 3.3 we have
∑
k≥0 ck(σ) =

∑
k≥0 c

0
k(σ) =

inv2(σ) = exc(τ) hence

maj(τ)− exc(τ) = maj2(σ).

Finally, it is easy to see that fides2(σ) = des2(σ) if and only if c0(σ) = 0, so

Equality (8) also provides

des(τ) =fides2(σ).
As a conclusion, we obtain

(maj(τ)− exc(τ),des(τ), exc(τ)) = (maj2(σ),fides2(σ), inv2(σ))
as required by Theorem 1.2.
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4. Construction of ϕ−1

To end the proof of Theorem 1.2, it remains to show that ϕ : Sn → Sn is

surjective. Let τ ∈ Sn. We introduce integers r ≥ 0, s = exc(τ), and

0 ≤ d0,τ < d1,τ < . . . < dr,τ < n

such that

DES(τ) = {dk,τ , k ∈ [0, r]} ∩ N>0,

d0,τ = 0⇔ τ(1) = 1.

In particular des(τ) =

r if τ(1) = 1,

r + 1 otherwise.
240

For all k ∈ [0, r], we define

cτk = EXC(τ)∩]dk−1,τ , dk,τ ] (with d−1,τ := 0),

dk,τ2 = dk,τ − cτk.

We have

0 = d0,τ2 < d1,τ2 < . . . < dr,τ2 < n

and similarly as Formula 4, we define

tτk = min{dl,τ2 , 1 ≤ l ≤ k, dl,τ2 = dk,τ2 − (k − l)} (9)

for all k ∈ [r].

We intend to construct a graphH(τ) which is the linear graph of permutation

σ ∈ Sn such that ϕ(σ) = τ .

4.1. Skeleton of the graph H(τ)

We consider a graph H(τ) whose vertices vτ1 , vτ2 , . . . , vτn (from left to right)245

are n dots, aligned in a row, among which we box the dk,τ2 -th vertex vτ
dk,τ2

for

all k ∈ [r]. We also draw the end of an arc of circle above every vertex vτj such

that j = τ(i) for some i ∈ EXC(τ).

17



For the example τ0 = 956382471 ∈ S9 (whose planar graph is depicted in

Figure 12), we have r = des(τ0)− 1 = 3 and

(cτ0k )k∈[0,3] = (1, 2, 1, 0),

(dk,τ02 )k∈[0,3] = (1− 1, 3− 2, 5− 1, 8− 0) = (0, 1, 4, 8),

τ0(EXC(τ0)) = {5, 6, 8, 9},

and we obtain the graph H(τ0) depicted in Figure 13.

Figure 13: Incomplete graph H(τ0).

In general, by definition of ϕ(σ) for all σ ∈ Sn, if ϕ(σ) = τ , then r = des2(σ)250

and dk2(σ) (respectively ck(σ), dk(σ), tk(σ)) equals d
k,τ
2 (resp. cτk, d

k,τ , tτk) for all

k ∈ [0, r] and {jl(σ), l ∈ [inv2(σ)]} = τ(EXC(τ)). Consequently, the linear

graph of σ necessarily have the same skeleton as that of H(τ).

The following lemma is easy.

Lemma 4.1. If τ = ϕ(σ) for some σ ∈ Sn, then :255

1. If j = τ(l) with l ∈ EXC(τ) such that l ∈]dk,τ2 , dk,τ ], and if (i, j) ∈

INV2(σ), then tτk ≤ i.

2. A pair (i, i + 1) cannot be a 2-inversion of σ if i ∈ DES2(σ) (⇔ if the

vertex vτi of H(τ) is boxed).

3. For all pair (l, l′) ∈ EXC(τ)2, if the labels of the two circles vl(σ) and260

vl′(σ) can be exchanged without modifying the skeleton of G(σ), let i and

i′ such that (i, l) ∈ INV2(σ) and (i′, l′) ∈ INV2(σ), then i < i′ ⇔ l < l′.

Consequently, in order to construct the linear graph of a permutation σ ∈ Sn

such that τ = ϕ(σ) from H(τ), it is necessary to extend the arcs of circles of

H(τ) to reflect the three facts of Lemma 4.1. When a vertex is necessarily the265

beginning of an arc of circle, we draw the beginning of an arc of circle above it.
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When there is only one vertex vτi that can be the beginning of an arc of circle,

we complete the latter by making it start from vτi .

Example 4.2. For τ0 = 956382471 ∈ S9, the graph H(τ0) becomes as depicted

in Figure 14. Note that the arc of circle ending at vτ06 cannot begin at vτ05 because

Figure 14: Incomplete graph H(τ0).
270

otherwise, from the third point of Lemma 4.1, and since (6, 8) = (τ0(l), τ0(l
′))

with 3 = l < l′ = 5, it would force the arc of circle ending at vτ08 to begin at

vτ0i′ with 6 ≤ i′, which is absurd because a permutation σ ∈ S9 whose linear

graph would be of the kind H(τ0) would have c2(σ) = 2 6= 1 = cτ02 . Also, still

in view of the third point of Lemma 4.1, and since τ−10 (9) < τ−1(6), the arc of275

circle ending at vτ09 must start before the arc of circle ending at vτ06 , hence the

configuration of H(τ0) in Figure 14.

The following two facts are obvious.

Facts 4.3. If τ = ϕ(σ) for some σ ∈ Sn, then :

1. A vertex vτi of H(τ) is boxed if and only if i ∈ DES2(σ). In that case, in280

particular i is a descent of σ.

2. If a pair (i, i+ 1) is not a 2-descent of σ and if vτi is not boxed, then i is

an ascent of σ, i.e. σ(i) < σ(i+ 1).

To reflect Facts 4.3, we draw an ascending arrow (respectively a descending

arrow) between the vertices vτi and vτi+1 of H(τ) whenever it is known that285

σ(i) < σ(i+ 1) (resp. σ(i) > σ(i+ 1)) for all σ ∈ Sn such that ϕ(σ) = τ .

For the example τ0 = 956382471 ∈ S9, the graph H(τ0) becomes as depicted

in Figure 15. Note that it is not known yet if there is an ascending or descending

arrow between vτ07 and vτ08 .
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Figure 15: Incomplete graph H(τ0).

4.2. Completion and labelling of H(τ)290

The following lemma is analogous to the third point of Lemma 4.1 for the

dots instead of the circles and follows straightly from the definition of ϕ(σ) for

all σ ∈ Sn.

Lemma 4.4. Let σ ∈ Sn such that ϕ(σ) = τ . For all pair (l, l′) ∈ ([n]\EXC(τ))2,

if the labels of the two dots vl(σ) and vl′(σ) can be exchanged without modifying295

the skeleton of G(σ), let k and k′ such that l = pk(σ) and l′ = pk′(σ), then

τ(l) < τ(l′)⇔ σ(uk(σ)) < σ(uk′(σ)).

Now, the ascending and descending arrows between the vertices of H(τ)

introduced earlier, and Lemma 4.4, induce a partial order on the set {vτi , i ∈ [n]}:

Definition 4.5. We define a partial order � on {vτi , i ∈ [n]} by :300

• vτi ≺ vτi+1 (resp. vτi � vτi+1) if there exists an ascending (resp. descending)

arrow between vτi and vτi+1;

• vτi � vτj (with i < j) if there exists an arc of circle from vτi to vτj ;

• if two vertices vτi and vτj are known to be respectively the k-th and k′-th

vertices of H(τ) that cannot be the beginning of a complete arc of circle,305

let l and l′ be respectively the k-th and k′-th non-exceedance point of τ

(from left to right), if (l, l′) fits the conditions of Lemma 4.4, then we set

vτi ≺ vτj (resp. vτi � vτj ) if τ(l) < τ(l′) (resp. τ(l) > τ(l′)).

Example 4.6. For the example τ0 = 956382471, according to the first point of

Definition 4.5, the arrows of Figure 15 provide

vτ01 � v
τ0
2 ≺ v

τ0
3 ≺ v

τ0
4 � v

τ0
5 ≺ v

τ0
6 ≺ v

τ0
7
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and

vτ08 � v
τ0
9 .

Definition 4.7. A vertex vτi of H(τ) is said to be minimal on a subset S ⊂ [n]

if vτi 6� vτj for all j ∈ S.310

Let

1 = eτ1 < eτ2 < . . . < eτn−s

be the non-exceedance values of τ (i.e., the labels of the dots of the planar graph

of τ).

Algorithm 4.8. Let S = [n] and l = 1. While the vertices {vτi , i ∈ [n]} have

not all been labelled with the elements of [n], apply the following algorithm.

1. If there exists a unique minimal vertex vτi of τ on S, we label it with l,315

then we set l := l + 1 and S := S\{vτi }. Afterwards,

(a) If vτi is the ending of an arc of circle starting from a vertex vτj , then

we label vτj with the integer l and we set l := l+1 and S := S\{vτj }.

(b) If vτi is the arrival of an incomplete arc of circle (in particular i = τ(l)

for some l ∈ EXC(τ)), we intend to complete the arc by making320

it start from a vertex vτj for some integer j ∈ [tτk, j[ (where l ∈

]dk,τ2 , dk,τ ]) in view of the first point of Lemma 4.1. We choose vτj
as the rightest minimal vertex on [tτk, j[∩S from which it may start

in view of the third point of Lemma 4.1, and we label this vertex vτj
with the integer l. Then we set l := l + 1 and S := S\{vτj }.325

Now, if there exists an arc of circle from vτj (for some j) to vτi , we apply

steps (a),(b) and (c) to the vertex vτj in place of vτi .

2. Otherwise, let k ≥ 0 be the number of vertices vτi that have already been

labelled and that are not the beginning of an arc of circles. Let

l1 < l2 < . . . < lq

be the integers l ∈ [n] such that l ≥ τ(j) ≥ eτk+1 and such that we can

exchange the labels of dots τ(l) and eτk+1 in the planar graph of τ without
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modifying the skeleton of the graph. It is easy to see that q is precisely330

the number of minimal vertices of τ on S. Let lik+1
= τ−1(eτk+1) and let

vτj be the ik+1-th minimal vertex (from left to right) on S. We label vτj
with l, then we set l := l + 1 and S := S\{vτj }, and we apply steps 1.(a),

(b) and (c) to vτj instead of vτi .

By construction, the labelled graphH(τ) is the linear graph of a permutation

σ ∈ Sn such that

DES2(σ) = {dk,τ2 , k ∈ [r]}

and

{jl(σ), l ∈ [inv2(σ)]} = τ(EXC(τ)).

Example 4.9. Consider τ0 = 956382471 ∈ S9 whose unlabelled and incomplete335

graph H(τ0) is depicted in Figure 15.

• As stated in Example 4.6, the minimal vertices of τ0 on S = [9] are

(vτ02 , v
τ0
5 , v

τ0
9 ). Following step 2 of Algorithm 4.8, k = 0 and the inte-

gers l ∈ [9] such that τ0(l) ≥ eτ0k+1 = 1 and such that the labels of dots

τ0(l) can be exchanged with 1 in the planar graph of τ0 (see Figure 12)340

are (l1, l2, l3) = (4, 6, 9). By τ−10 (1) = 9 = l3, we label the third minimal

vertex on [9], i.e. the vertex vτ09 , with the integer l = 1.

Afterwards, following step 1.(b), since vτ09 is the arrival of an incomplete

arc of circle starting from a vertex vτ0j with 1 = tτ01 ≤ j, and with j < 5

because that arc of circle must begin before the arc of circle ending at vτ06345

in view of Fact 3 of Lemma 4.1, we complete that arc of circle by making

it start from the unique minimal vertex vτ0j on [1, 5[, i.e. j = 2, and we

label vτ02 with the integer l = 2 (see Figure 16). Note that as from now

we know that the arc of circle ending at vτ05 necessarily begins at vτ01 ,

because otherwise vτ01 , being the beginning of an arc of circle, would be350

the beginning of the arc of circle ending at vτ06 , which is absurd in view of

Fact 3 of Lemma 4.1 because τ−10 (9) < τ−1(6), so we complete that arc of

circle by making it start from vτ01 , which has been depicted in Figure 16.

22



Figure 16: Beginning of the labelling of H(τ0).

We now have S = [9]\{2, 9} and l = 3.

• From Figure 16, the minimal vertices on S = [9]\{2, 9} are (vτ03 , v
τ0
5 ).355

Following step 2 of Algorithm 4.8, k = 1 and the integers l ∈ [9] such that

lτ0(l) ≥ eτ0k+1 = 2 and such that the labels of dots τ0(l) can be exchanged

with 2 in the planar graph of τ0 (see Figure 12) are (l1, l2) = (4, 6). By

τ−10 (2) = 6 = l2, we label the second minimal vertex on S, i.e. the vertex

vτ05 , with the integer l = 3.360

Afterwards, following step 1.(a), since vτ05 is the arrival of the arc of circle

starting from the vertex vτ01 , we label vτ01 with the integer l = 4 (see Figure

17).

Figure 17: Beginning of the labelling of H(τ0).

We now have S = [9]\{1, 2, 5, 9} and l = 5.

• From Figure 17, the minimal vertices on S = {3, 4, 6, 7, 8} are (vτ03 , v
τ0
6 ).365

Following step 2 of Algorithm 4.8, k = 2 and the integers l ∈ [9] such that

lτ0(l) ≥ eτ0k+1 = 3 and such that the labels of dots τ0(l) can be exchanged

with 3 in the planar graph of τ0 (see Figure 12) are (l1, l2) = (4, 7). By

τ−10 (3) = 4 = l1, we label the first minimal vertex on S, i.e. the vertex

vτ03 , with the integer l = 5 (see Figure 18). Note that as from now we370

know that the arc of circle ending at vτ06 necessarily begins at vτ04 since
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it it is the only vertex left it may start from. Consequently, the arc of

circle ending at vτ08 necessarily starts from vτ07 (otherwise it would start

from vτ06 , which is prevented by Definition 4.5 because we cannot have

vτ08 ≺ vτ06 ≺ vτ07 ≺ vτ08 ). The two latter remarks are taken into account in375

Figure 18.

Figure 18: Beginning of the labelling of H(τ0).

We now have S = {4, 6, 7, 8} and l = 6.

• From Figure 18, there is only one minimal vertex on S = {4, 6, 7, 8}, i.e.

the vertex vτ06 . Following step 1 of Algorithm 4.8, we label vτ06 with l = 6.

Afterwards, following step 1.(a), since vτ06 is the arrival of the arc of circle380

starting from the vertex vτ04 , we label vτ04 with the integer l = 7 (see Figure

19).

Figure 19: Beginning of the labelling of H(τ0).

We now have S = {7, 8} and l = 8.

• From Figure 19, there is only one minimal vertex on S = {7, 8}, i.e. the

vertex vτ06 . Following step 1 of Algorithm 4.8, we label vτ06 with l = 8.385

Afterwards, following step 1.(a), since vτ08 is the arrival of the arc of circle

starting from the vertex vτ07 , we label vτ07 with the integer l = 9 (see Figure

20).
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Figure 20: Labelled graph H(τ0).

As a conclusion, the graph H(τ0) is the linear graph of the permutation

σ0 = 425736981 ∈ S9, which is mapped to τ0 by ϕ.390

Proposition 4.10. We have ϕ(σ) = τ , hence ϕ is bijective.

Proof. By construction , for all k ∈ [0, des2(σ)] = [0, r],

dk2(σ) = dk,τ − cτk,

ck(σ) = cτk,

dk(σ) = dk2(σ) + ck(σ) = dk,τ2 + cτk = dk,τ ,

so G(σ) has the same skeleton as the planar graph of τ , i.e. DES(ϕ(σ)) =

DES(τ) and EXC(ϕ(σ)) = EXC(τ).

The labels of the circles of G(σ) are the elements of

{jl(σ), l ∈ [s]} = τ(EXC(τ)),

and by construction of σ, every pair (l, l′) ∈ EXC(τ)2 such that we can exchange

the labels τ(l) and τ(l′) in the planar graph of τ is such that

i < i′ ⇔ l < l′

where (i, τ(l)) and (i, τ(l′)) are the two corresponding 2-inversions of σ. Conse-

quently, by definition of ϕ(σ), the labels of the circles of G(σ) appear in the same395

order as in the planar graph of τ (i.e. ϕ(σ)(i) = τ(i) for all i ∈ EXC(ϕ(σ)) =

EXC(τ)).

As a consequence, the dots of G(σ) and the planar graph of τ are labelled

by the elements

1 = e1(σ) = eτ1 < e2(σ) = eτ2 < . . . < en−s(σ) = eτn−s.
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As for the labels of the circles, to show that the above integers appear in the

same order among the labels of G(σ) and the planar graph of τ , it suffices to

prove that

ϕ(σ)−1(eτi ) < ϕ(σ)−1(eτj )⇔ τ−1(eτi ) < τ−1(eτj )

for all pair (i, j) such that we can exchange the labels eτi and eτj in the planar

graph of τ (hence in G(σ) since the two graphs have the same skeleton). This is

guaranteed by Definition 4.5 because the vertices vτi that are not the beginning400

of an arc of circle correspond with the labels of the dots of the planar graph of

τ .

As a conclusion, the planar graph of τ is in fact G(σ), i.e. τ = ϕ(σ).

5. Open problem

In view of Formula (2) and Theorem 1.2, it is natural to look for a bijection405

Sn → Sn that maps (maj2,fides2, inv2) to (amaj2,fiasc2, ides).
Recall that ides = des2 and that for a permutation σ ∈ Sn, the equalityfides2(σ) = des2(σ) is equivalent to ϕ(σ)(1) = 1, which is similar to the equiva-

lence fiasc2(τ) = asc2(τ)⇔ τ(1) = 1 for all τ ∈ Sn.

Note that if DES2(σ) =
⊔r
p=1[ip, jp] with jp +1 < ip+1 for all p, the permu-

tation π = ρ1 ◦ ρ2 ◦ . . . ◦ ρr ◦ σ, where ρp is the (jp − ip + 2)-cycleÑ
ip ip + 1 ip + 2 . . . jp jp + 1

σ(jp + 1) σ(jp) σ(jp − 1) . . . σ(ip + 1) σ(ip)

é
for all p, is such that DES2(σ) ⊂ ASC2(π) and INV2(σ) = INV2(π). One can410

try to get rid of the eventual unwanted 2-ascents i ∈ ASC2(π)\DES2(σ) by

composing π with adequate permutations.
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