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Abstract

This paper considers a production scheduling problem in a Chilean
company from the metalworking industry. This company produces steel
balls of different diameters on parallel production lines. There are two
types of production lines and each production line may have a different
speed for producing each diameter. Furthermore a setup time occurs when
changing the diameter produced on each machine. Besides these pro-
duction and setup operations, maintenance operations have to be sched-
uled. These machines are electrical and yield high energy demands. It
is therefore crucial to minimize total energy consumption, which depends
on batch/machine assignment and maximum demand on peak hours. We
consider the bach sizing and scheduling problem involving electricity costs
in a non-uniform parallel machine context. Given a demand for each fam-
ily of steel balls, the problem consists in splitting the demand in sublots
(batches) that have to be assigned and scheduled on the parallel ma-
chines together with the required maintenance operations. The goal is to
complete the schedule before a common deadline while minimizing elec-
tricity costs. We propose to tackle this problem through mixed integer
linear programming. We proposed a global formulation and a two-phase
matheuristic. Computational results on realistic instances are provided.

1 Introduction

This paper considers a production scheduling problem in a Chilean company
from the metalworking industry. The problem and the industrial context was
described in [1]. This company produces steel balls on parallel production lines.
The steel balls are obtained by roll forming or forging from a raw material con-
sisting of metal bars. The steel balls are mainly used in the copper and gold
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mining industry for mineral grinding, i.e. for reducing the size of the mineral
particles to a maximal granularity that permits to remove the major part of im-
purities from the mineral. There are several type of steel balls to produce, each
corresponding to a different ball diameter. There are two types of production
lines : roll formers for small diameters an forges for larger diameters (although
medium diameter balls can be produced by both production line types). Each
production line may have a different speed for producing each diameter. Fur-
thermore a setup time occurs when changing the diameter produced on each
machine. Besides these production and setup operations, maintenance opera-
tions have to be scheduled. These machines are electrical and the production
process results in high energy demands. As mentioned in [1], up to 50% of
the production cost in such a manufacturing process can be due to electricity
consumption. In Chile, as in many other places, different electricity rates are
applied for peak hours and off-peak hours. So it can be crucial for metalworking
companies to control the electricity demand during peak hours. Planning the
maintenance and setup operations during the peak hours can be intuitively a
policy that favors electricity cost decrease.

In this paper we consider a bach sizing and scheduling problem involving
electricity costs in a non-uniform parallel machine context. Given a demand
for each family of steel balls, the problem consists in splitting the demand in
sublots (batches) that have to be assigned and scheduled on the parallel ma-
chines together with the required maintenance operations. The goal is to com-
plete the schedule before a common deadline while minimizing electricity costs.
We propose to tackle this problem through a mixed integer linear programming
approach.

Section 2 presents the batch sizing and scheduling problem. Section 3 is
devoted to a brief presentation of the related work. Section 4 gives the pro-
posed mixed-integer linear programming formulation. Section 5 gives a simpli-
fied MILP formulation that ignores the peak costs and that serves as a basis
for a matheuristic. Section 6 presents the considered realistic problem instances
and the results obtained by our approach. Section 7 draws concluding remarks
and directions for future work.

2 The industrial scheduling problem

The problem involves a set J of n lots (jobs) to be scheduled on a set M of
m machines. There is total a production demand Dj for each job j ∈ J to be
fulfilled during the scheduling horizon given by a time interval [0, T ]. Each job
j ∈ J can be split into a maximum number of bDj/εc sublots (batches), where
ε is the minimum batch size. The machines able to produce a job j are gathered
in setMj . For a given job j ∈ J , a machine k ∈Mj has a production speed vkj .
Whenever a batch of a job j ∈ J is scheduled immediately after a batch of job
i ∈ J on a machine k ∈ M, a setup time skij ≥ 0 is necessary on the machine.
Each machine is assumed to have a constant electrical power demand wk. There
are H peak periods within the horizon, each being defined by an interval [ah, fh)
with ah < fh for h = 1, . . . ,H and fh < ah+1 for h = 1, . . . ,H − 1. Concerning
cost minimization, we considered a weighted sum problem where α denotes
the weight of the total energy consumption while β denotes the weight of the
maximum consumption during peak hours.
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A solution consists in determining:

• A set of batches Bj with |Bj | = Bj ≥ 1, for each job j ∈ J ,

• A production amount qj,b ≥ ε, for each batch b ∈ Bj .

• A number Ak of batches assigned to machine k ∈ M, defining a set of
positions Lk = {1, . . . , Ak},

• A batch (jk,l, bk,l) assigned to each pair (machine, position), for each ma-
chine k ∈M and each position l ∈ Lk.

• A start time Sj,b, for each job j ∈ J and for each batch b ∈ Bj .

Let B = ∪j∈J {(j, b)|b ∈ Bj} denote the set of pairs (job, batch index). Let
Ak = {(jk,l, bk,l)|l ∈ Lk} the set of batches assigned to machine k ∈M.

The problem constraints can be stated as follows:
One and only one machine has to be assigned to each batch.

C

(∑
k∈M

Ak = |B|

)
∧
(
∪

k∈M
Ak = B

)
(1)

A batch can only be assigned on an authorized machine.

Ck ∈Mj ∀k ∈M,∀j ∈ {i ∈ J |(i, b) ∈ Ak} (2)

The demand must be satisfied for each job.

C
∑
b∈Bj

qj,b = Dj ∀j ∈ J (3)

The duration of a batch is equal to its production divided by the speed of its
assigned machine.

Cpjk,l,bk,l
= qjk,l,bk,l

/vkjk,l
∀k ∈M,∀l ∈ Lk (4)

No batches assigned to the same machine may overlap and the setup time be-
tween two consecutive batches on the same machine must be respected.

CrSjk,l+1,bk,l+1
≥ Sjk,l,bk,l

+ pjk,l,bk,l
+ skjk,l,jk,l+1

∀k ∈M,∀l ∈ Lk \ {Lk} (5)

All production must fit in the time horizon.

CSj,b + pj,b ≤ T ∀(j, b) ∈ B (6)

We need not introduce maintenance operations in the model. We consider
that there is a subset JM of the jobs J that correspond to maintenance oper-
ations. They concern a single machine (|Mj | = 1). The maintenance duration
is given by Dj and we have vkj = 1 for k ∈ Mj . We denote by BM the set
of batches corresponding to maintenance operations. We introduce last the
constraints that each maintenance job cannot be splitted:

C|Bj | = 1 ∀j ∈ JM (7)
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We assume that there is no required setup time between a maintenance job
and a production job. However me make the realistic assumption that the
maintenance duration is such that Dj ≥ sii′ , ∀j ∈ JM , ∀i, i′ ∈ J \ JM , i 6= i′,
i.e. is larger than any other setup time. Furthermore we assume that all other
setup times satisfy the triangle inequality

Cskij ≥ skil + sklj ∀k ∈M,∀i, j, l ∈ J \ JM , i 6= j 6= l

It follows that the triangle inequality is respected.
A solution is feasible if and only if it satisfies constraints 1–7.
There are two components linked to energy consumption. As the machines

have different speeds and different power consumption, the first part of the
objective is to minimize the total electricity consumption C.

CC =
∑
k∈M

wk

∑
(j,b)∈Ak\BM

pj,b (8)

We are also interested in the maximum demand over the peak periods. Let us
define for convenience the set of batches in process at a given time point t

CB(t) = {(j, b) ∈ B|Sj , b ≤ t < Sj,b + pj,b} (9)

Then the maximum demand over peak hours is equal to

CPmax = max
h∈H

max
t∈[ah,bh)

∑
k∈M,∃(j,b)∈B(t)∩Ak\BM

wk (10)

Remark that maintenance operations are excluded in the computation of these
costs. Then the problem objective can be written

C minαC + βPmax (11)

Note that the problem is NP-hard as the problem of finding a solution has
the decision variant of the parallel machine problem as special case. The above-
defined constraints can be used to check the feasibility and cost of a solution
in polynomial time but they cannot be implemented as is in a mathematical
programming solver.

We present a small example and its optimal solution. Consider n = 3 jobs on
m = 2 lines with demands D1 = 10, D2 = 12, D3 = 6. There is one peak period
h = 1 with ah = 2 and bh = 4 and a common deadline of T = 6 for all jobs and
maintenance operations. There are two maintenance operations JM = {4, 5}
of duration D4 = 2 on machine 1 and D5 = 1 on machine 2 to be performed
also before the deadline. Machine power demands are w1 = w2 = 10. For each
job, authorized machines are M1 = {1, 2}, M2 = {1}, M3 = {2}, M3 = {2},
M4 = {1}, M5 = {2}. Setup and speed matrices are respectively equal to

(s1i,j)i,j∈J = (s2i,j)i,j∈J =

 0 2 1
1 0 1
1 1 0



(vkj )j∈J ,k∈M =

 2 3
6 0
0 2


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Figure 1 presents an optimal solution for this example where B1 = {1, 2} (job 1
is split into two batches), B2 = B3 = 1 (jobs 2 and 3 are scheduled in one batch).
Batch machine assignment and positions are given by A1 = {(j1,1, b1,1) =
(1, 1), (j1,2, b1,2) = (2, 1)} and A2 = {(j2,1, b2,1) = (1, 2), (j2,2, b2,2) = (3, 1)}.
Productions inside each batch are given by q1,1 = 4, q1,2 = 6, q2,1 = 12, q3,1 = 6.
According to the assigned machine speeds, the batch duration are given by
p1,1 = q1,1/v

1
1 = 2, p1,2 = q1,2/v

2
1 = 2, p2,1 = q2,1/v

1
2 = 2, p3,1 = q3,1/v

2
3 = 3.

The start times of the different batches and of the maintenance operations (in
gray) are displayed in the Gantt chart. According to the machine power de-
mand, total consumption of machine 1 is 4×w1 = 40 and total consumption of
machine 2 is 5×10 = 50. Hence we obtain a total energy consumption of 90 and
a maximal demand on peak hours of 10. We observe that batch splitting has
been necessary to meet the deadline and minimize energy consumption, while
maintenance has been used to avoid large demands during peak hours.

0 1 2 3 4 5 6 7 8

M2 (1,2) (3,1)

M1 (1,1) (2,1)

Figure 1: Optimal solution of a simple instance

Hence, after a brief presentation of the related work, we will introduce a
mixed-linear integer programming formulation.

3 Related work and modeling issues

A vast literature considers upper level lot-sizing and scheduling problems in par-
allel machine environment with setup times (such as in [2, 3]) involving, among
others, inventory costs and also using discrete time mixed-integer linear pro-
gramming formulations. First, the discrete time models do not fit our problem
as the duration of the sublot is a function of the sublot size (a continuous vari-
able) and the machine speed for the family of balls corresponding to the sublot.
Furthermore we do not have holding costs in our model. More generally, our
problem is in fact related to the (operational) production scheduling level where
it is assumed that lots of products aiming at satisfying the demand in a given
period have already been constituted at the (tactical) planning level.

Lot streaming (also called lot splitting) is a known technique to improve
the performance of production scheduling environment at the operational level
[4, 5] by allowing to split the jobs across the different production stages or lines.
In our case, the lot streaming process in simplified by the fact that we have a
single stage. This is also the reason why we rather use the “batch sizing” term
rather than lot streaming or splitting (we borrowed this term from [6]).

The possibility of splitting the jobs (lots/batches) adds another dimension
to the decisions besides assignment of the jobs to the machine and sequenc-
ing/scheduling of the job operations. Many lot streaming/batch sizing and
scheduling problems have been considered in the literature for different schedul-
ing context, including parallel machine scheduling for which efficient algorithms
are available [7, 8]. However, these first studies did not consider the presence
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of setup times that can be needed on a machine between two sublots. This fea-
ture, that occurs in our case when the ball diameter is changed, puts obviously
a limit to the interest of systematic job splitting. Several approaches can be
found for parallel machine lot streaming/batch sizing problems with setup times
[9, 10, 11]. Compared to these previous works, our study is concerned with elec-
tricity cost minimization objectives. In manufacturing, energy constraints and
costs are becoming crucial. Consequently, energy-related objectives have been
recently considered both in lot-sizing problems [12] and in production scheduling
problems [13, 14, 15]. However to our knowledge, reducing the energy consump-
tion cost by an integrated management of lot streaming/batch sizing, setup and
maintenance scheduling in a parallel machine scheduling environment is a novel
approach.

In this paper, one of the objective is to come up with a mixed-integer lin-
ear programming formulation (MILP) of the problem. In scheduling problems,
there are standardly three categories of MILP formulations [16]: the continuous
time formulations with sequencing variables, the continuous time formulations
with positional (or event-based) variables and the discrete time formulations.
In the considered problem, the continuous lot splitting possibility and the vari-
able machine speed combined with large time horizons would render a discrete
time formulation (such as the ones generally used in the lot-sizing literature)
impractical. Therefore we need a continuous time formulation. Now looking
at the conceptual continuous time formulation (1–11), most non-linear con-
straints could be linearized in a standard way yielding a continuous time (also
called disjunctive) formulation with sequencing variables xj,b,i,b′ ∈ {0, 1} where
xj,b,i,b′ = 1 if and only if batch (i, b′) is scheduled after batch (j, b) on the same
machine. In [17], the authors consider such a formulation for a simple identical
parallel machine scheduling problem with job-splitting and sequence-dependent
setup times with the makespan criterion. In this simple case splitting a job is
only useful if all sublots are scheduled on different machines, hence the authors
consider binary sequencing variables of the type xi,j,k where xi,j,k = 1 is the
sublot of job i in machine k is sequenced before the sublot of job j in machine
k. However in our case, it can be necessary to have two batches of the same
job on the same machine, especially due to the interest of avoiding production
during the peak hours. Among many other configurations Fig. 2 shows an op-
timal solution for a 1 machine and 3 jobs example (m = 1 and n = 3) with
setup times s12 = s21 = s13 = s31 = 1, s23 = s32 = 2, unit machine speed, unit
machine power, demands D1 = 2, D2 = D3 = 1, deadline T = 8 and weights
α = 0, β = 1. Setup times are shown in gray. The optimal solution (of cost 0)
needs to split job 1 in two batches to have no production within the peak hour
(interval marked with a P).

0 1 2 3 4 5 6 7 8

1 2 3 1

O P O

Figure 2: Two batches of a job on the same machine

Another issue for modeling the problem in continuous time is the lineariza-
tion of the expressions (9, 10) defining the maximum demand over the contin-
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uous horizon. An important remark is that the electricity consumption only
changes at a batch start or end time. This clearly brings us to consider an
event-based model. These models consider a finite number of events and use an
event-indexed continuous variable to associate a start time to each event and a
binary variable to assign a batch start or end time. Consequently, we can also
associate a continuous variable representing the total electricity consumption at
a given event, that shall not change until the next event. Note that event-based
models were previously used for lot streaming and scheduling in hybrid flow-
shops [18] and are also widely used in batch scheduling in the process industry
[19]. They were also more recently introduced in resource-constrained project
scheduling problems [20] and in scheduling problems under energy constraints
[21].

4 A continuous time event-based mixed-integer
linear programming formulation

The event-based model we propose for the problem, is based on the fact that
energy consumption can only change at the beginning or at the end of each
batch. Hence we fix for each job its maximum number of batches Bj and we
consider a set E of 2

∑n
j=1Bj events. Now the start-end event-based formulation

of the problem involves the following decision variables (variables with domain
[0, 1] are continuous variables that will be set binary by the constraints involving
other binary variables).

• te ≥ 0 is the time of event e ∈ E .

• xej,b ∈ {0, 1} is equal to 1 iff batch (j, b) ∈ B starts at event e ∈ E .

• yej,b ∈ {0, 1} is equal to 1 iff batch (j, b) ∈ B ends at event e ∈ E .

• akj,b ∈ {0, 1} is equal to 1 iff batch (j, b) ∈ B is assigned to machine k ∈M.

• xe,kj,b ∈ [0, 1] auxiliary variable equal to product xej,ba
k
j,b.

• ye,kj,b ∈ [0, 1] auxiliary variable equal to product yej,ba
k
j,b.

• oe,k ∈ [0, 1] is equal to 1 iff machine k ∈M is on at event e ∈ E .

• pj,b ≥ 0 is the production of batch (j, b) ∈ B.

• Pe,h ∈ {0, 1} that models the relative positioning of intervals [te, te+1) and
peak hour interval [ah, fh) in the sense that Pe,h = 0⇒ te ≥ fh.

• Ph,e ∈ {0, 1} that models the relative positioning of intervals [te, te+1) and
peak hour interval [ah, fh) in the sense that Ph,e = 0⇒ te + 1 ≤ ah.

• P k
e ∈ [0, 1] event e is active on a peak hour on machine k (i.e. [te, te+1)

has a non-empty intersection with a peak hour interval and machine k is
on at event e).

• Wj,b ≥ 0 total electrical consumption of batch (j, b).
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The constraints can be expressed as follows. M denotes a sufficiently large
integer.

Cte ≤ te+1 ∀e ∈ E \ {|E|} (12)

Each batch (j, b) has to be scheduled at most once.

C
∑
e∈E

xej,b ≤ 1 ∀(j, b) ∈ B (13)

C
∑
e∈E

yej,b ≤ 1 ∀(j, b) ∈ B (14)

A started batch must be ended, and reciprocally.

C
∑
e∈E

yej,b =
∑
e∈E

xej,b ∀(j, b) ∈ B (15)

The end event of a batch cannot be lower than its start event.

C
∑

f∈E,f≥e

xfj,b ≥
∑

f∈E,f≥e

yfj,b ∀(j, b) ∈ B,∀e ∈ E (16)

A batch has to be assigned to a machine to have a non-zero production (as
Bj is the maximum number of batch for job j, there can be some unassigned
batches).

Cpj,b ≤
∑

k∈Mj

akj,bDj ∀(j, b) ∈ B (17)

A batch assigned to a machine must have a minimum size.

Cpj,b ≥
∑

k∈Mj

akj,bε ∀(j, b) ∈ B (18)

A batch has to be assigned to at most one machine among the candidate
machines.

C
∑

k∈Mj

akj,b ≤ 1 ∀(j, b) ∈ B (19)

The following constraints are set on auxiliary variables xe,kj,b and ye,kj,b to linearize

products xei,ba
k
j,b and yei,ba

k
j,b.

Cxe,kj,b ≥ x
e
j,b + akj,b − 1 ∀(j, b) ∈ B,∀e ∈ E ,∀k ∈M (20)

Cxe,kj,b ≤ x
e
j,b ∀(j, b) ∈ B,∀e ∈ E ,∀k ∈M (21)

Cxe,kj,b ≤ a
k
j,b ∀(j, b) ∈ B,∀e ∈ E ,∀k ∈M (22)
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Cye,kj,b ≥ y
e
j,b + akj,b − 1 ∀(j, b) ∈ B,∀e ∈ E ,∀k ∈M (23)

Cye,kj,b ≤ x
e
j,b ∀(j, b) ∈ B,∀e ∈ E ,∀k ∈M (24)

Cye,kj,b ≤ a
k
j,b ∀(j, b) ∈ B,∀e ∈ E ,∀k ∈M (25)

A machine is on at an event e depending on its status at the preceding event
and/or start or completion of a task on this machine (we define also o0,k =∑

(j,b)∈B x
0,k
j,b , ∀k ∈M).

Croe,k = oe−1,k −
∑

(j,b)∈B

ye,kj,b

+
∑

(j,b)∈B

xe,kj,b ∀e ∈ E ,∀k ∈M (26)

The common deadline must be satisfied.

Ct|E| ≤ T (27)

Setup times must be satisfied between two consecutive batches.

Ctf ≥ te + skij(x
f,k
j,b + ye,ki,b′ − 1) ∀e, f ∈ E , f ≥ e,

∀(j, b), (i, b′) ∈ B, (j, b) 6= (i; b′),∀k ∈M (28)

Batches can be assigned only on authorized machines.

Cakj,b = 0 ∀(j, b) ∈ B,∀k ∈M \Mj (29)

End and start time events of a batch have to be spaced according to the batch
duration on the assigned machine.

Ctf ≥ te + pj,b/vj,k −M(2− xe,kj,b − y
f,k
j,b )

∀e, f ∈ E , f ≥ e,∀(j, b) ∈ B,∀k ∈M (30)

Ctf ≤ te + pj,b/vj,k +M(2− xe,kj,b − y
f,k
j,b )

∀e, f ∈ E , f ≥ e,∀(j, b) ∈ B,∀k ∈M (31)

The demand of each job must be satisfied.

C
∑
b∈Bj

pj,b = Dj ∀j ∈ J (32)

The following constraints set the relative positioning of event e and peak hour
period h, in the sense that if Pe,h = 0, intersection of [te, te + 1) and peak hour
interval [ah, fh) is empty because te ≥ fh)

Cte ≥ fh(1− Pe,h) ∀e ∈ E ,∀h ∈ H (33)
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The following constraints set the relative positioning of event e and peak hour
period h, in the sense that if Ph,e = 0, intersection of [te, te + 1) and peak hour
interval [ah, fh) is empty because te + 1 ≤ ah)

Cte+1 − ah ≤ TPh,e ∀e ∈ E ,∀h ∈ H (34)

Machine k is marked as active during peak hour at event e whenever machine
k is on at event e and interval [te, te+1) intersects peak hour interval [ah, fh).

CP k
e ≥ Pe,h + Ph,e + oe,k − 2

∀e ∈ E ,∀h ∈ H,∀k ∈M (35)

The maximum demand objective is defined by the following constraints.

CPmax ≥
∑
k∈M

wkP
k
e ∀e ∈ E (36)

The consumption of a batch depends on its duration and on the power of its
assigned machine.

CWj,b ≥ wkpj,b/vj,k −M(1− akj,b)
∀(j, b) ∈ B \ BM ,∀k ∈M (37)

The objective function aims at minimizing the total consumption and the
maximum demand on peak hours.

C minα
∑

(j,b)∈B\BM

Wj,b + βPmax (38)

The MILP model made of constraints (12-38) is denoted as (MILP1). We
now present an alternative model that contains more binary variables but less
constraints. Product variables xe,kj,b and ye,kj,b can be considered as binary and

assignment variables akj,b, as well as start and end variables xej,b and yej,b can be
eliminated by setting:

akj,b =
∑
e∈E

xe,kj,b ∀(j, b) ∈ B,∀k ∈M

xej,b =
∑
k∈M

xe,kj,b ∀(j, b) ∈ B,∀e ∈ E

yej,b =
∑
k∈M

ye,kj,b ∀(j, b) ∈ B,∀e ∈ E

The obtained model is denoted by (MILP2).
If we come back to Figure 1 example. We can use 5 global events with

t1 = 0, t2 = 2, t3 = 3, t4 = 4 and t5 = 6. For MILP2, we have x1,11,1 = y2,11,1 = 1,

x1,21,2 = y2,21,2 = 1, x4,12,1 = y5,12,1 = 1, x3,23,1 = y5,23,1 = 1 and for maintenance operations

x2,14,1 = y4,14,1 = 1 and x3,25,1 = y5,25,1 = 1. For peak computation the only concerned

event is e = 3 and we have P 2
3 = 1 because P3,1 + P1,3 + o3,2 = 1 (the event is

inside the peak and the machine is on).
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5 A simplified model and a matheuristic

The models (MILP1) and (MILP2) proposed in Section 4 have several draw-
backs. First they have a large number of binary variables and constraints,
especially constraints involving big-M coefficient that significantly weaken the
LP relaxation. Second, finding a solution that ends before the common deadline
can be difficult and even impossible in practice.

If we ignore the maximum consumption during peak hours, we can simplify
the model, transforming the event-based model into a positional model. We
consider a set Ek of maximum

∑n
j=1Bj positions on each machine k and the

following reduced set of variables, including a tardiness variable for each job
aiming at relaxing the hard common deadline and including it into the objective
function.

• te,k ≥ 0 is the start time of batch scheduled at position e ∈ Ek on machine
k ∈M.

• xe,kj,b ∈ {0, 1} is equal to 1 if batch (j, b) ∈ B is assigned to position e on
machine k

• pe,kj,b ≥ 0 is the production of batch (j, b) ∈ B is scheduled at position e on
machine k.

• Tk ≥ 0 is the tardiness of machine k ∈ M in the case it finishes its
production after the common deadline.

The problem constraints can then be expressed as follows. The start times of
tasks at each position are ordered.

Cte,k ≤ te+1,k ∀k ∈M,∀e ∈ Ek \ {|Ek|} (39)

Each batch (j, b) has to be scheduled at most once.

C
∑

k∈Mj

∑
e∈Ek

xe,kj,b ≤ 1 ∀(j, b) ∈ B (40)

Each event on each machine (e, k) corresponds to at most one batch.

C
∑

(j,b)∈B

xe,kj,b ≤ 1 ∀k ∈Mj , ∀e ∈ Ek (41)

The production of a batch (j, b) at a position of a machine is 0 if the batch is
not assigned at this position on this machine.

Cpe,kj,b ≤ Djx
e,k
j,b ∀(j, b) ∈ B,∀k ∈Mj ,∀e ∈ Ek (42)

A batch assigned to a position on a machine must have a minimum size of ε.

Cpe,kj,b ≥ εx
e,k
j,b ∀(j, b) ∈ B,∀k ∈Mj ,∀e ∈ Ek (43)

The demand of each job must be satisfied.

C
∑
b∈Bj

∑
k∈Mj

∑
e∈Ek

pe,kj,b = Dj ∀j ∈ J (44)
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Setup times must be satisfied between two consecutive batches.

Cte+1,k ≥ te,k +
∑

(j,b)∈B

pe,ki,b /vi,k + skij(

Bi∑
b=1

xe,ki,b +

Bj∑
b′=1

xe+1,k
j,b′ − 1)

∀e ∈ Ek \ |Ek|,∀i, j ∈ J , i 6= j,∀k ∈M (45)

The following constraint computes the violation of the deadline (tardiness) on
machine k (in case a job is assigned to the last event, its duration must be
added).

CTk ≥ t|Ek| +
∑

(j,b)∈B

pe,kj,b − T ∀k ∈M (46)

The objective function aims at minimizing a weighted sum of the total tar-
diness and the total consumption.

C min γ
∑
k∈M

Tk +
∑

(j,b)∈B

∑
k∈Mj

∑
e∈Ek

wkp
e,k
j,b /vj,k (47)

where γ is a coefficient large enough to ensure that the total tardiness will be
minimized in priority.

This model, denoted as (MILP3) is greatly simplified, however the solution
ignores peak hours. Consequently in a second phase, The solution of (MILP3)
can serve as a basis of a matheuristic for further improvement of the computed
peak cost. To that purpose we compute a global event set E ′ = ∪k∈MEk and we
sort the events according to their time te. Then we can accelerate the solution
time of (MILP1) or (MILP2) by preassigning the start and end times of activities
to the event set according to the solution found by (MILP3).

6 Computational experiments

The experiments are conducted on an Intel Core i7-4770 processor with 4 cores
and 8 gigabytes of RAM under the 64-bit Ubuntu 12.04 operating system. We
use CPLEX 12.6 with 1 thread for solving the models. The total time limit of
550 seconds for solving both (MILP2) and (MILP3) models: 500 seconds for
(MILP3) and 50 seconds for (MILP2).

The instances are extracted from the real instances of [1] and are as follows.
For these instances, the number of machines is equal to 3, the time horizon is
equal to the number of hours in each month (e.g. in January, this number is
31× 24 = 744) and the machine consumption is constant and equal to 10MW
for each machine.

Each instance have 10 different lots and the setup time and the speed of
each machine is as described by Table 1 and Table 2 respectively. In Table 2,
whenever the speed of the machine is equal to zero then the lots can not be
scheduled on this machine.

For each instance, the maintenance duration is equal to 120 for each machine.
As in Chile, peak hours occurs from 6pm to 11pm, we set the peak hours to
these values in our instances.

To solve the problem, we use first the (MILP3) and we use the solution to
help the (MILP2) to improve the maximum consumption during peak hours. At
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H
HHHHi

j
1 2 3 4 5 6 7 8 9 10

1 0 4 5 6 7 8 1 1 0 1
2 4 0 4 5 6 7 1 1 0 1
3 5 4 0 4 5 6 1 1 1 1
4 6 5 4 0 4 5 0 2 2 2
5 7 6 5 4 0 4 0 3 3 3
6 8 7 6 5 4 0 0 4 4 4
7 4 4 5 0 0 0 0 5 0 5
8 4 4 5 6 7 8 5 0 0 5
9 4 4 5 6 7 8 0 0 0 3
10 4 4 5 6 7 8 5 5 3 0

Table 1: setup times between batches

PPPPPPPPlot
line

1 2 3

1 0 4 0
2 0 5.1 0
3 0 6 0
4 8.1 8.9 0
5 9.5 9 0
6 11 8.8 0
7 10.6 0 4
8 0 0 5.4
9 0 0 8.5
10 0 0 8.1

Table 2: machine speeds for each lot

the beginning of the procedure, i.e. before using the (MILP3), we use a simple
heuristic to help the model find a solution. This heuristic considers only one
batch for each different lot and schedule this batch on the least loaded machine.
This heuristic is described by 1. Maintenance operations are arbitraliry set in
a way such that, on each machine, half of the batches are scheduled before this
operation and the other half are scheduled after. After the resolution of the
(MILP3), we use the solution found as a basis solution of the (MILP2).

Experiments have been done on 10 instances and for different numbers of
batches, i.e. the number of sublots for each lot: 2, 3 and 4. Results are displayed
in Table 3. The first row displayed the percentage of instances solved optimally
by (MILP3). The second row describes the percentage of instances solved by
both model for each number of batches. The third row presents the average
CPU time in seconds needed to solve the instances. The fourth ad fifth rows
shows the total consumption and the maximum peak of consumption during
peak hours.

As we can see, the model solves most of the instances if the number of sublots
is set to 2 or 3. However, when 4 sublots are authorized, the number of solved
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Algorithm 1 Simple heuristic for finding a simple solution

machLoadk = 0, ∀k ∈M
affj = −1, ∀j ∈ J
for every lot j do

minLoad←∞
LeastLoadedMach← −1
for all machine k do

if k ∈Mj and machLoadk < minLoad then
minLoad← machLoadk
LeastLoadedMach← k

end if
end for
affj = LeastLoadedMach
machLoadedk = Dj/v

k
j

end for

number of sublots
2 3 4

% solved opt. by MILP3 50 50 50
% solved (MILP2+MILP3) 37.5 37.5 25

CPU time (s) 37.6 46.8 63.2
Total consumption (MW) 16022.8 16013.9 15892.9

Peak (MW) 30 30 30

Table 3: Results of experiments for (MILP2+MILP3)

instances decreases. This is because of the size of the model which grows with
respect to the number of sublots. Another remark can be made about the results
of the experiments. Indeed, the peak of consumption is very high. Again, this
is mostly due to the large size of the second model.

Table 4 presents the results of experiments on one particular instance. The
first and fifth rows show the statut of (MILP3) and (MILP2) respectively. The
second and sixth rows present the CPU time needed for solving (MILP3) and
(MILP2) respectively and the total CPU time is described in the ninth row.
Finally, the total consumption is dispayed in the third and seventh rows and
the validity of the instance, i.e. the deadline is respected, is described by rows
fourth and eigth.

In this table (Table 4), we see that the first model solve the instance opti-
mally but the deadline is not respected for 3 and 4 sublots. The second model
does not find an optimal solution but the solution returned is valid, i.e. the
deadline is respected, and then the total consumption decreases. Therefore,
even if improving the solution of (MILP3) with (MILP2) does not reduce the
maximum consumption, this reduces the total consumption and gives a valid
solution.
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number of sublots
2 3 4

MILP3

Statut MILP3 Optimal Optimal Optimal
CPU time (s) MILP3 0.61 0.91 12.6

Total consumption 1 (MW) 15186.9 15171.3 15149.8
Deadline respected yes no no

MILP2

Statut MILP2 Feasible Feasible Feasible
CPU time (s) MILP2 50 50 50

Total consumption 2 (MW) 15186.9 15161.6 15145.8
Deadline respected yes yes yes

Total CPU Time (s) 51 52.1 65.7

Table 4: Results of experiments on one instance

7 Conclusion

In this paper, we consider a real industrial problem. For this problem, we present
three different models. Both of them solve exactly the problem (MILP1 and
MILP2) whereas the last one only minimizes the total consumption (MILP3).
To solve the problem, we use first the (MILP3) and we use the solution to help
the (MILP1) to improve the maximum consumption during peak hours.

The third model is very efficient as it solved very quickly the model but
the second model does not improve the maximum consumption within the time
limit allowed. Therefore, an important amount of work is left to be done.
There are multiple research direction to pursue. Indeed, an efficient solution
method minimizing the maximum consumption during peak hours needs to be
developed. For this purpose, several heuristics can be tested in order to improve
the quality of the solution in the beginning of the resolution or between the two
MILP models.

Another development can be made by improving the modeling of the problem
with a Mixed Integer Linear Program in order to decrease the number of con-
straints and/or variables to simplify the solution procedure. Finally, we aim at
designing extended formulations and to develop column generation procedures.
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[17] G. Riotteau, O.Scaloni, and E. Néron, “Ordonnancement sur des machines
identiques avec splitting et temps de prparation dpendant de la sequence,”
in MOSIM ’01 : conference francophone de modlisation et simulation, 2001.

[18] F. M. Defersha and M. Chen, “Mathematical model and parallel genetic
algorithm for hybrid flexible flowshop lot streaming problem,” The Inter-
national Journal of Advanced Manufacturing Technology, vol. 62, no. 1-4,
pp. 249–265, 2012.

[19] C. A. Floudas and X. Lin, “Mixed integer linear programming in process
scheduling: Modeling, algorithms, and applications,” Annals of Operations
Research, vol. 139, no. 1, pp. 131–162, 2005.
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