
HAL Id: hal-01166487
https://hal.science/hal-01166487

Submitted on 22 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mirinho: An efficient and general plant and animal
pre-miRNA predictor for genomic and deep sequencing

data
Susan Higashi, Cyril Fournier, Christian Gautier, Christine Gaspin,

Marie-France Sagot

To cite this version:
Susan Higashi, Cyril Fournier, Christian Gautier, Christine Gaspin, Marie-France Sagot. Mirinho: An
efficient and general plant and animal pre-miRNA predictor for genomic and deep sequencing data.
BMC Bioinformatics, 2015, 16 (1), pp.179. �10.1186/s12859-015-0594-0�. �hal-01166487�

https://hal.science/hal-01166487
https://hal.archives-ouvertes.fr


Higashi et al. BMC Bioinformatics  (2015) 16:179 
DOI 10.1186/s12859-015-0594-0

METHODOLOGY ARTICLE Open Access

Mirinho: An efficient and general plant and
animal pre-miRNA predictor for genomic and
deep sequencing data
Susan Higashi1,2, Cyril Fournier2, Christian Gautier1,2, Christine Gaspin3 and Marie-France Sagot1,2*

Abstract

Background: Several methods exist for the prediction of precursor miRNAs (pre-miRNAs) in genomic or sRNA-seq
(small RNA sequences) data produced by NGS (Next Generation Sequencing). One key information used for this task
is the characteristic hairpin structure adopted by pre-miRNAs, that in general are identified using RNA folders whose
complexity is cubic in the size of the input. The vast majority of pre-miRNA predictors then rely on further information
learned from previously validated miRNAs from the same or a closely related genome for the final prediction of new
miRNAs. With this paper, we wished to address three main issues. The first was methodological and aimed at
obtaining a more time-efficient predictor, however without losing in accuracy which represented a second issue. We
indeed aimed at better predicting miRNAs at a genome scale, but also from sRNAseq data where in some cases,
notably of plants, the current folding methods often infer the wrong structure. The third issue is related to the fact
that it is important to rely as little as possible on previously recorded examples of miRNAs. We therefore also sought a
method that is less dependent on previous miRNA records.

Results: As concerns the first and second issues, we present a novel alternative to a classical folder based on a
thermodynamic Nearest-Neighbour (NN) model for computing the free energy and predicting the classical hairpin
structure of a pre-miRNA. We show that the free energies thus computed correlate well with those of RNAFOLD. This
novel method, called MIRINHO, has quadratic instead of cubic complexity and is much more efficient also in practice.
When applied to sRNAseq data of plants, it gives in general better results than classical folders. On the third issue, we
show that MIRINHO, which uses as only knowledge the length of the loops and stem-arms and the free energy of the
pre-miRNA hairpin, compares well with algorithms that require more information. The results, obtained with different
datasets, are indeed similar to those of other approaches with which such a comparison was possible. These needed
to be publicly available softwares that could be used on a large input. In some cases, MIRINHO is even better in terms
of sensitivity or precision.

Conclusion: We provide a simpler and much faster method with very reasonable sensitivity and precision, which can
be applied without special adaptation to the prediction of both animal and plant pre-miRNAs, using as input either
genomic sequences or sRNA-seq data.
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Background
MicroRNAs (miRNAs) are single strand non-coding
RNAs of approximately 22nt which are known to regulate
gene expression at the post-transcriptional level. MiR-
NAs were recognised for controlling, in different organ-
isms, several basic pathways, such as those involved in
stress resistance, apoptosis during wing development inD.
melanogaster, and cell proliferation in the same organism
[1-3].
Given the ubiquity of these regulatory molecules and

their functional importance, it became crucial to develop
methods for the prediction and analysis of miRNAs. As a
consequence, in the last few years, a plethora of such soft-
ware have been developed. More details on the current
methods are available in Additional file 1: Table S1 and in
Section “Comparedmethods” . For a review of the existing
ones for (pre-)miRNA prediction, see [4,5].
Despite all the effort put in developing such meth-

ods, there remains a number of issues that need to be
addressed: (i) to predict the characteristic hairpin struc-
ture of a pre-miRNA, the vast majority of the existing
software rely on a folding algorithm of cubic time com-
plexity which is suitable when the input is small enough,
but can become impracticable when the size of the input
increases; (ii) for longer pre-miRNAs (such as in plants),
such folding methods moreover produce hairpin struc-
tures different from the ones provided in MIRBASE [6]
which uses sRNAseq data to do so; (iii) together with
folding, most methods then rely on further information
that must be learned from previously validated miR-
NAs of closely related genomes (at a minimum within
the same clade, plant or animal) for the final predic-
tion of new miRNAs in order either to set the parame-
ters of the model or to restrict the search to a limited
space.
In this paper, we address all three issues. The search

for pre-miRNAs is concentrated on regions with the same
length as the two stem-arms separated by the length of
the terminal loop (see Figure 1). The direct application to
sRNAseq data guarantees a better quality in the prediction
of the pre-miRNA structures. A quadratic time complex-
ity algorithm improves the practical efficiency of the free
energy computation. As neither of the three attributes
used (lengths of the stem-arms and terminal loop, and
free energy) are species-specific within the animal or the
plant kingdom (they differ only between these two king-
doms), the method can easily be applied for predicting
pre-miRNAs in either clade.
Importantly, while the method we provide is thus much

simpler, faster, and general to use, we also show on a
set of examples that its sensitivity, precision, and speci-
ficity are as good as those of other methods, in some
cases even better. Moreover, we show that the secondary
structures predicted by MIRINHO are much closer to the

ones available in MIRBASE than for the other compared
methods.

Methods
Dataset
To explore a variety of data types from several species,
we used six datasets. The sRNAseq data and the genomes
were obtained from the NCBI. The annotations con-
cerning the known (pre-)miRNAs were obtained from
MIRBASE release 20 [6]. The datasets are organised as
follows:

• D1: the chromosomes of six metazoan species:

– Chromosome 25 from Bos taurus (27
miRNAs)

– Chromosome I from Caenorhabditis briggsae
(14 miRNAs)

– Chromosome 2R from Drosophila simulans
(36 miRNAs)

– Chromosome 25 from Gallus gallus (6
miRNAs)

– Chromosome 22 from Gorilla gorilla (8
miRNAs)

– Chromosome 19 from Mus musculus (60
miRNAs)

• D2: the genomic sequence of length 5,000nt extracted
from the human chromosome 1 and taken from the
dataset used by [7].

• D3: the artificial dataset compiled by [8]. This dataset
is composed of 168 pseudo pre-miRNAs and 163 true
human pre-miRNAs. The pseudo pre-miRNAs are
sequences that form a hairpin structure; however,
they are not functional because they are located in
coding sequence regions (CDS). This dataset is
available at http://bioinfo.au.tsinghua.edu.cn/
mirnasvm/.

• D4: an artificial dataset compiled by us. For each of
the three chromosomes listed below:

– Chromosome III of Caenorhabditis elegans
(44 miRNAs)

– Chromosome 2R of Drosophila melanogaster
(92 miRNAs)

– Chromosome 19 of Homo sapiens (234
miRNAs)

10 miRNAs were randomly chosen together with
100nt both up and downstream. Each fragment
(miRNA + extension) was flanked by sequences of
the same length, which were generated based on the
nucleotide distribution of the given chromosome.
In the end, we obtained three different sequences
of ∼ 4,265nt that were given as input to CSHMM,

http://bioinfo.au.tsinghua.edu.cn/mirnasvm/
http://bioinfo.au.tsinghua.edu.cn/mirnasvm/
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Figure 1 Stem-loop representation and coordinates. The black lines represent the stem-arms and the stripped line represents the terminal loop.W
is the input sequence of length N and i ∈ {0..N − 2 ∗ l − n}.

MIRENA, MIRINHO, and miRPara (see Section
“Compared methods”).

• D5: genomic data of three insects that are of special
interest for our group:

– Acyrthosiphon pisum genome assembly
version 2 (123 miRNAs)

– Culex quinquefasciatus genome assembly
version 1 (120 miRNAs)

– Heliconius melpomene genome assembly
version 1.1 (101 miRNAs)

• D6: genomic and sRNAseq data of plants. We used
the sequence of chromosome 4 of Arabidopsis
thaliana (version 2.0) and the whole genome of
Arabidopsis lyrata (version 1.0), as well as the
high-throughput small RNA sequencing data from
the same species with, respectively, NCBI GEO
accession number GPL3968 and
GSE18077/GSE20442. The chromosome 4 from A.
thaliana and the genome of A. lyrata contain,
respectively, 57 miRNAs and 384 miRNAs.

Pre-processing input sequences with small RNA
sequencing data
When sRNAseq data are available, they may be used to
pre-process the input sequence, focusing the search only
on transcribed regions. We implemented this functional-
ity in a separate module, called PROCIN, that is optionally
performed before the core algorithm for the prediction of
pre-miRNAs.

First, the small RNA reads are mapped against the
genome using BOWTIE [9]. The genome sequence and
the respective mapping file (extension .sam) produced
by BOWTIE are then given to PROCIN. Using the SAM
file, the regions with at least one read are extracted from
the genome sequence. If the region is smaller than 70nt
(approximate length of a pre-miRNA), we extend it by
70nt up and downstream to guarantee that the whole pre-
miRNA sequence will be covered. Both values – number
of reads covering the region and length of this region –
may be given as parameters to this module.
For each (extended) pre-miRNA sequence, the lengths

of the stem-arm and of the terminal loop are set as follows
(see Figure 2 for an example). The highest read stack is
identified, either on the 5’ or on the 3’ arm. If this stack is
on the 5’-arm, the end position i of the right-most aligned
read is considered and the length of the stem-arm is set
to l = i + 1. If the stack is on the 3’-arm, p is the length
of the pre-miRNA, and j is the start position of the left-
most aligned read, the length of the stem-arm is set to l =
p− j+1. The stem-arm is then “mirrored” to the opposite
stem-arm and the distance between the two arms is the
maximum length of the terminal loop. One should notice
that reads aligning to the terminal loop could mislead
this procedure. We solved this problem when establish-
ing the lengths by disregarding all the reads that aligned
to the middle coordinate of the putative pre-miRNA, in an
attempt to focus only on the reads aligning to the arms.
One should notice that other molecules, such as rRNAs

and tRNAs that may have a read stack similar to the
one of a miRNA, can be recovered by MIRINHO if they

Figure 2 Using sRNAseq data to set the parameters of MIRINHO. The solid lines are the reads that align to the pre-miRNA sequence represented by
the dotted line (the dots are the coordinates of the pre-miRNA sequence). The point in red is the middle coordinate of the pre-miRNA that serves to
eliminate reads that align to the terminal loop and may mislead the procedure of determining the parameters. l is the length of the stem-arm and t
is the maximum length of the terminal loop.
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fold themselves into stable stem-loops. Since rRNAs and
tRNAs are molecules that are usually well annotated,
a simple solution is to mask these regions before run-
ning MIRINHO, for example with MASKFASTA from the
BEDTOOLS package [10].

Screening the genome to identify potential pre-miRNAs
The algorithm of MIRINHO begins with a pre-treatment
of the data in order to identify the input for the alignment
step. This is done without loss of information at this step,
meaning that all the positions in the genome are verified to
determine whether they may contain a pre-miRNA. This
is done by screening the genome as follows.
As one may see in Figure 1, we set a sliding window

of length l = 25, which represents the length of the
stem. For each stem-arm represented by st1 =[wi, ...,
wi+l−1], we look for its putative stem-arm pair st2 =
[wi+l+n−1, ...,wi+2∗l+n−1] n nucleotides away from the
first one, with n between 5 and 20. In order to set the
length of the stem, we consider the mean length of a
miRNA (i.e., 22nt), and to ensure that the whole miRNA
is considered in the alignment, an offset of 3nt, equivalent
to the standard deviation (i.e., σ = 3.33) of the lengths of
the miRNAs in MIRBASE (release 20), was added. Using
this strategy, we guarantee that all the miRNAs that are
smaller than 25nt will be considered. The lengths of the
terminal loop are set on the basis of the distribution of the
loop lengths for metazoan pre-miRNAs (MIRBASE release
20) as one may see in Additional file 1: Figure S11. Each
pair (l, n) will be an input for the alignment algorithm.

Assessing the potential pre-miRNAs
Each pair of putative stem-arms screened in the step
described in the previous section is given to an align-
ment algorithm in order to evaluate whether it can form a
stable stem-loop structure. For that, we implemented the
Needleman & Wunsch global alignment algorithm [11]
with a scoring strategy based on the Nearest-Neighbour
energy model. Instead of using the sum of the integer
penalties for gaps, matches and mismatches, the align-
ment is assessed according to the free energy of each
two consecutive nucleotides in the alignment. This is
explained in more detail next.

Nearest-neighbour model
To model the free energy change for the folding of
these RNAs, one can use the thermodynamic Nearest-
Neighbour (NN) energy associated to each type of motif
in the structure. By summing up the energy increment of
each motif, it is possible to obtain a reasonable approxi-
mation of the free energy change for folding an RNA or,
in other words, to obtain a measure of the stability of an
RNA molecule [12,13].

The motifs forming an RNA structure are determined
by the base-pairs AU, GC and GU. The arrangement of
these base pairs can shape into the different types of
motifs, such as helices, bulge loops, and internal loops.
The stabilising motifs are: the Watson-Crick helix rep-
resented by the stacking of at least two base pairs; and
a dangling end which is a single base at the end of a
helix. The destabilising motifs are of three types: the hair-
pin loop which is composed of non-canonical base pairs
closed by one canonical base pair; the bulge loop which
is an arrangement of unpaired nucleotides in one of the
strands of a helix; and finally, the internal loop which
includes unpaired nucleotides in both strands of a helix.
There exist three more types of destabilising motifs: exte-
rior loop, pseudoknot, and multibranch. The first two are
not present in a pre-miRNA stem-loop structure and will
therefore not be explored in detail here [13,14]. The third
one (multibranch loops) may occur in the terminal loop
of longer hairpin sequences (such as plant pre-miRNAs).
Pre-miRNAs with such a kind of motif will be recognised
if the hairpin is stable enough. However, it will not be con-
sidered in the computation of the free energy because our
method only uses the stem-arms to calculate such energy
and the terminal loop to separate these two arms.
As mentioned before, to compute the free energy of

an RNA structure, it is necessary to sum the increments
according to the type of the motif. The equations pre-
sented hereafter describe how to compute the free energy
associated to each such type.
The energy of a dangling end depends only on the base-

pair before the dangling nucleotide and on this latter. For
all the other types of motifs, the equations are given below.
The energy of an internal loop is computed by means of
Equation 1:

�GInternal = �Gi(n) + (�Ga ∗ |n1 − n2|) + �Gm1

+�Gm2 + (�Gru ∗ λ) (1)

where �Gi(n) is the initiation energy to form an internal
loop of n ≤ 30 unpaired nucleotides; �Ga = 0.6 is the
asymmetry penalty multiplied by the absolute value of the
difference between the number of unpaired nucleotides in
each strand; �Gm1 and �Gm2 are the energy of the first
and the last mismatches in the internal loop; and �Gru =
0.7 is the penalty for an RU closure, where R = {A,G}
and λ is the lambda function which returns 0 or 1, cor-
responding, respectively, to the presence or absence of, in
this case, the RU closure.
For the bulge loops, one should use Equation 2:

�GBulge(n=1) = �Gi(1) + �GC + �Gs − RTln(t)
+ (�Gru ∗ λ)�GBulge(n>1) = �Gi(n)

(2)
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where �Gi(n) is the energy required to form a bulge with
n ≤ 30 unpaired nucleotides; if the bulge is comprised of
the nucleotide C only, and there is at least one more C not
in the bulge (meaning, it is paired with a G), one should
add the C bulge penalty �GC = −0.9 kcal/mol; �Gs is
the base pair stacking around the bulge; t is the number of
possible loop conformations with identical sequence; R =
8.3144621 J/mol K is the gas constant and T = 310.15
K is the temperature in kelvin. Notice that for bulges and
helices, �Gru = 0.45 and is referred to as the penalty for
an RU end (and not closure as for internal loops).
For bulges and internal loops larger than 30 nucleotides

(n > 30), Equation 3 should be applied instead:

�Gn>30 = �Gi(30) + 1.75 × RT × ln(n/30) (3)

Finally, for a helix, one should apply Equation 4:

�Ghelix =
∑

�Gstck + �Gsym + (�Gru ∗ λ) (4)

where �Gstck is the stacking energy of each two consec-
utive base pairs; �Gsym is the symmetry correction for
self complementary duplexes; and �Gru = 0.45 is, as
mentioned before, the RU end penalty.
All the thermodynamic NN energies used in this work,

as well as the equations described above, were obtained in
the NEAREST NEIGHBOR DATABASE (NNDB) [14,15].

Algorithm
We implemented a global alignment algorithm (see the
Section “Needleman-Wunsch algorithm” below) and an
alignment assessment approach based on the NN energy
model to measure the stability of pre-miRNA candidates,
that is explained below.
We define the alphabet � = {Mxy, Sxy, Ixy,Dxy}, where

the symbols correspond, respectively, to Match, Mis-
match, Insertion and Deletion, and x, y ∈ {A,U ,C,G,−}.
The definition of an alignment of two putative stem-arms,
st1 and st2, is a vector comprised by the symbols in �,
such that align(st1, st2) = v and v = [ vi, vi+1, ..., vn], where
vi ∈ �.
To determine the stability of a pre-miRNA stem-loop,

we go through vector v and sum up the free energy of
each pair (vi, vi+1) according to the type t of the motif in
which it is inserted. For that, we use Equation 5 below to
compute the energy of each motif in the structure:

ε(t) = k(t, n) +
n−1∑
i
e(vi, vi+1) (5)

where t is the motif type that can be an internal loop, a
bulge loop or a helix. The value k(t, n) accounts for penal-
ties associated to the motif t, which appears n times in
the structure. For example, for a motif of type t = helix,
one should consider the symmetry correction for self-
complementary duplexes �Gsym (see Equation 4). Finally,

the function e returns the energy associated to the pair
(vi, vi+1).
We then sum all the energies related to the different

types of motifs to obtain the total free energy E of the
structure using Equation 6:

E =
∑

ε(t) (6)

where t is again the different types of motifs a given
structure can have.

Needleman-Wunsch algorithm
Since the aligned sequences are similar in length,
we implemented the DP global alignment algorithm
described by Needleman and Wunsch, which will try to
align every nucleotide in the sequences. The recurrence
for this algorithm is presented in Equation 7:

W (i, j) = max

⎧⎨
⎩
W (i − 1, j − 1) + f (si, sj)
W (i, j − 1) + γ

W (i − 1, j) + γ

(7)

where f (si, sj) is the function returning the score or
penalty for, respectively, a match or a mismatch, and γ is
the penalty for a gap. Using this recurrence one should
take, in the worst case,O(n2) time to align two sequences
of length n [11].
Considering that a stable hairpin structure should not

contain very large bulges nor internal loops, an ideal align-
ment should be concentrated around the main diagonal of
the dynamic programming (DP) matrix. Instead of using
the whole matrix, the user can therefore constrain the
alignment to this diagonal and prune parts of the bottom-
left and top-right corners of the matrix, thus saving time
in the computation of the free energies with a small loss.
A parameter dw (diagonal width) is established that

depends on the length of the aligned sequences and on a
compromise between sensitivity and precision in relation
to the version that uses the full matrix (see the Section
“Computing time” to determine how to set an appropri-
ate value for this parameter). This parameter is associated
to the number of consecutive gaps (i.e., the length of the
bulges) the alignment may have.

RNA secondary structure prediction algorithm
To facilitate the comparison of the complexity of each
algorithm, we present here a description of the method
for predicting an RNA secondary structure. The first such
method is the one that was described by Nussinov [16].
The algorithm proposes a maximisation of the number of
base pairs to find the best structure. For each position i in
the sequence, one should verify all the possible cases: (a)
i, j base pair; (b) i is unpaired; (c) j is unpaired; (d) i, j base
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pair with, respectively, k and k+1. The recurrence for this
algorithm is presented in Equation 8 [17]:

E(i, j) = max

⎧⎪⎪⎨
⎪⎪⎩

E(i + 1, j − 1)if i and j base pair
E(i + 1, j)
E(i, j − 1)
maxi<k<j[E(i, k) + E(k + 1, j)]

(8)

Clearly, filling each cell in the DP matrix takes O(n)

time, and since there are O(n2) cells, the complexity for
the whole procedure is in O(n3). However, maximising
the number of base pairs is a naïve approach; a more real-
istic one is to minimise the free energy of the structure, for
example as proposed byMathews [12]. The recurrence for
the latter algorithm is presented in Equation 9:

E(i, j) = min

⎧⎪⎪⎨
⎪⎪⎩

E(i + 1, j)
E(i, j − 1)
mini<k<j[E(i, k) + E(k + 1, j)]
P(i, j)if i and j base pair

(9)

To minimise the free energy, one more table P is
required to store the different types of motifs a struc-
ture can have, although the complexity in the worst case
remains the same, namely inO(n3) [12,13].

Setting the energy threshold
To determine an appropriate energy threshold for the
prediction of pre-miRNAs, three approaches were tested.
The first two were ROC (Receiver Operating Character-
istic) curves, one using the insect genomes from dataset
D5 (Additional file 1: Figure S3) and the other the pre-
miRNA dataset D3 (see Additional file 1: Figure S4). In
the third approach, we used a set of random genomes gen-
erated according to a multinomial distribution and com-
pared the pre-miRNAs predicted in such genomes against
those predicted in the original metazoan genomes from
dataset D1. The reasoning behind this strategy is that,
if the energy model is robust enough, there should exist
an energy threshold that is able to differentiate the stable
hairpin structures from the randomly generated ones in
which the base pairs would be established by chance.
The nucleotide frequency distribution in the original

metazoan genomes was used to generate the respective
random genomes. After that, the prediction of the pre-
miRNAs was performed on both versions (original and
random) of each genome. We then chose as threshold
the biggest energy for which the number of true miRNAs
remains zero in the random genome, as can be seen in
Figure 3 and Additional file 1: Figures S5, S6, S7, S8 and
S9. To define a “true” miRNA in the random genome, we
considered only if its coordinates were the same as those
of a true miRNA in the original genome from which the
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Figure 3 Setting energy threshold. Number of TP pre-miRNAs predicted when using the original and the random genomes ofM.musculus. The
vertical line represents the energy (−19 kcal/mol) that better distinguishes true from false pre-miRNAs.
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random one was created. Using this approach, the selected
genomes had the thresholds presented in Table 1.
In the first approach, the best operating point was pro-

viding an acceptable sensitivity and a higher specificity,
which was being overestimated due to the inability to
define a true negative pre-miRNA at a genomic scale (see
Section “D5: insect genomes”). Moreover, the threshold
(e = −16.3) established with this approach was lead-
ing to a very weak precision. We then proceeded to use
the second and third approaches which produced more
reasonable results, meaning having good sensitivity and
precision. The thresholds set with the latter approaches
are very similar, e = −21 kcal/mol for the second and
e = −20.6 kcal/mol for the third. The default energy
threshold is set to −20.6 kcal/mol, that is the mean of the
energies mentioned in Table 1.
Once the secondary structure is computed by MIR-

INHO, we may verify if the reads aligned on the locus
mimic the constraints consistent with Dicer processing by
using an a posteriori script called CHECKDICER.We check
the position of the reads within the hairpin (on themature,
star or terminal loop), allowing facultative read overlaps
between these three regions. Such overlaps may cause
false positives. At the same time, directly discarding the
candidates with overlapping reads may also result in false
negatives. To thus allow a flexible tradeoff between FP
and FN, the user may provide two parameters to CHECK-
DICER: (i) the percentage of the overlap for each read; and
(ii) the percentage of the number of reads overlapping.
The user may thus choose to be strict with Dicer process-
ing by setting the first parameter to zero (risk of FN); or to
allow small percentages for one or both values (risk of FP).
It is important to specify that the Dicer processing validity
check implemented in CHECKDICER has not been used in
any of the analyses that were performed.

Comparison with other methods
Comparedmethods
To compare the accuracy of our method with the one of
other predictors, we first made an extensive search of the
available ones (see Additional file 1: Table S1). We put
aside the predictors that required other kinds of input files
than just the fasta sequence, as well as those incompatible

Table 1 Computing time comparison

Method Time

MIRINHO 0.998

MIRPARA 68.008

MIRENA 989.958

CSHMM 1824.474

Computing time (in seconds) for the prediction of pre-miRNAs in a sequence of
length 5,000nt (dataset D2), on a Mac OS X 10.6.8, 2.7GHz Intel Core i7.

with the Unix system. Web-servers were also disregarded
because there always is a restriction to the length of the
sequence that may be input. The methods that remained
were CSHMM, MIRENA, and MIRPARA. Notice that as
one of our main contributions is the efficiency in the
prediction of pre-miRNAs in relation to other methods
that use cubic complexity algorithms, it was natural to
compare MIRINHO to methods that adopt this kind of
algorithm. However, we also included in the comparison
a method such as CSHMM which does not use a cubic
algorithm for the prediction of miRNAs.
Since the set of input parameters differs for each

method, it is not a trivial task to set them in accor-
dance with the data and at the same time be fair in
the comparison. We thus decided to apply the methods
with default parameters. However, we adapted one aspect
that was common to all the methods: the set of known
(pre-)miRNAs. All the methods were trained, when
required, with animal (pre-)miRNA sequences. A descrip-
tion of each method, and how each was set up is given
below.
CSHMM uses a Context-Sensitive Hidden Markov

Model to predict pre-miRNAs [7]. To set the initial
parameters for CSHMM, we used the secondary struc-
tures of the kingdom metazoan that are available in MIR-
BASE release 20. To generate the likelihood score, the
metazoan hairpin sequences were used as positive train-
ing set, and as negative instances the sequences employed
by the authors.
MIRENA applies a series of consecutive filters to deter-

mine a pre-miRNA and does not require a training step
[18]. It provides different starting points for the prediction
depending on the type of file given as input. We set the
parameter to allow for a genomic input (-M option). The
set of knownmature miRNAs required was from the same
metazoan kingdom, taken from MIRBASE release 20.

MIRPARA (version 6.2) is an SVM implementation
trained with sequences from MIRBASE [19]. It makes
available a script to generate the model according to the
MIRBASE release and to the desired organism(s)/clade. In
our case, we chose the model trained with the metazoan
pre-miRNAs of MIRBASE release 20. It is worth observing
that among the compared methods, MIRPARA is the only
one that also predicts the position of the miRNA within
the pre-miRNA.
To compare the performance of our method when using

sRNAseq data, we used MIRDEEP which is a method
for the discovery of miRNAs from deep sequencing data
[20]. To obtain potential pre-miRNAs, the authors use
information of the mapped reads against the genome. Pre-
miRNAs with an unlikely structure are discarded and the
core algorithm computes a probabilistic score related to
the structure and to the signature of the pre-miRNA can-
didate. It is worth reminding that the core algorithm of
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MIRINHO only requires a fasta sequence; sRNAseq data,
when available, are used to pre-process the input sequence
by considering only the mapped regions, as is described in
Section “Pre-processing input sequences with small RNA
sequencing data” .
To analyse the quality of the predicted structures, we

used RNAFOLD [21] and MIRNAFOLD [22]. The first
is a classical method for predicting an RNA secondary
structure through energy minimisation. The second is
a method for predicting a hairpin structure that takes
into account specific criteria (such as the length of the
stem, the percentage of nucleotides, the size of the termi-
nal loops) related to known hairpins from MIRBASE, and
verifies if these are present in the query structure. MIR-
NAFOLD is moreover, as far as we know, the only other
method that has quadratic complexity for predicting a
pre-miRNA structure. Formore details on how each of the
methods were used, see the next section.

Pre-miRNA hairpin structure in plants
To evaluate the performance of each method in the pre-
diction of pre-miRNAs, we used as measures sensitivity,
precision and specificity. The first is the proportion of true
pre-miRNAs that are correctly predicted, the second is
the fraction of predicted pre-miRNA candidates that are
real pre-miRNAs, and the third is the proportion of false
pre-miRNAs that are correctly excluded:

Sensitivity = TP
TP + FN

(10)

Precision = TP
TP + FP

(11)

Specificity = TN
TN + FP

(12)

where TP stands for True Positive, TN for True Negative,
FP for False Positive, and FN for False Negative.
To compute the number of true pre-miRNAs predicted

by each method, we did the following. For a given species,
there is a control set C = {cj, cj+1, ...} of miRNAs that
are considered to be true miRNAs according to MIRBASE,
where j ∈ {1..n} and n is the number of true miRNAs for
a given species. For each predicted pre-miRNA, denoted
by ppm, we verified whether one of its arms fully covers
a control miRNA, denoted by cmj. If that was the case,
we accounted for one TP. If the same ppm covered more
than one control miRNA, we considered just the one with
the best prediction score according to each method. It is
worth observing that a large proportion of the miRNA
sequences in MIRBASE are not supported by experimen-
tal evidence. However, it is considered as a reference
database.

Results and discussion
Regression analysis of the free energies
To verify how close we get to the algorithms based on
a secondary structure prediction, we present a regres-
sion analysis between the energies of the pre-miRNAs
corresponding to the true positive pre-miRNAs pre-
dicted by MIRINHO and their energies when predicted by
RNAFOLD [23].
Figure 4 shows the relationship of the energies for the

true positive pre-miRNAs of the chromosomes in dataset
D1. We consider as the dependent variable the energies
of MIRINHO and as the independent variable the energies
of RNAFOLD. As we can see, the energies are quite close
to each other with, in general, bigger energies predicted
by MIRINHO. This provides reasonable evidence that our
method approximates well the free energy of hairpins.

Computing time
As mentioned (in Section “Algorithm”), we further
improved the alignment algorithm by pruning the DP
matrix and focusing on its diagonal only.
To establish the size of the diagonal portion of the DP

matrix that should be explored, we assessed different val-
ues for the parameter dw (diagonal width). Additional file
1: Table S2 shows the results of the evaluation performed
to determine a reasonable value for this parameter. The
values for dwwere evaluated empirically; they varied from
4 to 6. A too small value for dw would constrain the align-
ment to a very limited space around the diagonal part of
the DP matrix, that is, would permit a few or almost no
bulges or internal loops. This situation would not repre-
sent the real structure of a stem-loop and that is why we
chose as minimum value dw = 4. On the other hand,
a very large value for dw would not achieve the goal of
the pruning strategy, that is time efficiency. In our experi-
ments, the best results were obtained when using dw = 4
or dw = 5, which corresponds to themaximumnumber of
unpaired nucleotides in the stem formed by both strands.
The user of MIRINHO is given the freedom to compute

the whole matrix instead of only its diagonal for a given
value of dw. In this case, dw should be set equal to the
length of the stem-arm (option -a).
Using this pruning strategy, the region explored by the

alignments is much smaller and the method performs, in
general, 30% faster than the original version. Sensitivity
and precision remain similar between the original and the
optimised versions; in the great majority of the cases it
remained the same.
Time efficiency is even more evident when compar-

ing our method to other predictors, such as CSHMM,
MIRENA, and MIRPARA. Table 2 presents the computing
times for the prediction of pre-miRNAs in a sequence of
dataset D2, running under a Mac OS X 10.6.8, 2.7GHz
Intel. As one can see, our method is indeed much faster
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Figure 4 Regression analysis. Regression analysis of the energies predicted by MIRINHO and RNAFOLD. On the left, chromosome 25 of B. taurus,
chromosome I of C. briggsae, chromosome 2R of D. simulans. On the right, chromosome 25 of G. gallus, chromosome 22 of G. gorilla, chromosome
19 ofM.musculus.

than the others, making the prediction of pre-miRNAs
much more feasible.
To show this, we compared the prediction time of MIR-

INHO, CSHMM, and MIRPARA. To facilitate the compari-
son of the predicted pre-miRNAs, we used dataset D4, as
did the authors of CSHMM. All three software were sub-
mitted to a cluster queue of 29 hours. MIRINHO finished
its job after 5 hours, while the other two exceeded the 29
hours without finishing their prediction, with no reported
result.

Pre-miRNA hairpin structures
Information on the length of the stem-arms and terminal
loop may produce higher quality pre-miRNA structures.

Table 2 Setting the energy threshold

Species Energy threshold Chromosome GC%

C. briggsae −16 I 37,76

M.musculus −19 19 42,73

G. gorilla −19 22 47,74

D. simulans −21 2R 43,93

G. gallus −24 25 54,96

B. taurus −25 25 46,96

C. elegans − III 35,75

D. melanogaster − 2R 41,84

H. sapiens − 19 50,06

Energy thresholds, obtained with the methodology mentioned in Section
“Setting the energy threshold”, and the GC% of the different chromosomes from
dataset D1, including the ones for test from dataset D4 (three last lines). To
choose the genomes, we mainly considered the GC content (varying from 37%
to 54%), as this plays an important role in determining a hairpin structure.

When the search is made at a genomic scale, such precise
information is not available. However with sRNAseq data,
the length of the stem-arms and terminal loop may be
naturally inferred from the alignment of the reads against
the genome (see Section “Pre-processing input sequences
with small RNA sequencing data”). The way we screen the
input sequence thus allows for a direct application ofMIR-
INHO to sRNAseq data, thus enriching the prediction and
the quality of the hairpin structures.
To demonstrate this, we first set the parameters l (length

of the stem-arm) and n (length of the terminal loop) using
dataset D6, as described in Section “Pre-processing input
sequences with small RNA sequencing data” . We then
gave the pre-miRNA sequence and the latter parameters
as input to MIRINHO, RNAFOLD, and MIRNAFOLD. For
MIRINHO, we set the stem-arm length to l using option
-a and the minimum and maximum length of the termi-
nal loop to n using options -n and -x respectively. Given
that RNAFOLD is a method for predicting the secondary
structure of an RNA in general, we used the option -C to
force the structure to be a hairpin. We then required that
the stem-arm regions, each of length l, were paired, and
that the terminal loop region of length n was unpaired.
For MIRNAFOLD, we established as the sliding window
parameter the length of the whole pre-miRNA, that is,
l+n+l.
It is worth observing that the structures in MIRBASE

are also predictions. We however use them as a standard
because MIRBASE is considered as a reference database:
it is being constantly updated leading to new releases
and it incorporates criteria based on experimental (i.e.,
sRNAseq) approaches to reinforce the evidence provided
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[24]. In order to compare the structures predicted by the
three methods, we considered four criteria: (i) the number
of internal loops within the stem; (ii) the number of bulges
within the stem; (iii) the length of the predicted stem-arm;
(iv) the length of the predicted terminal loop. For each
predicted structure, we verified which method produced
the best result. This corresponded to the predicted struc-
ture that produced values that are closest to those of the
structure in MIRBASE. For example, if the MIRBASE struc-
ture s has 3 bulges, and RNAFOLD predicted a structure
with 2 bulges while MIRINHO predicted one with 1 bulge,
the first method would be considered the best one.
From the set of 57 pre-miRNAs of chromosome 4 of A.

thaliana, we randomly chose 10 sequences for the predic-
tion of the hairpin structures by the three methods. In the
end, MIRINHO obtained the closest structure in 80% of
the cases, RNAFOLD was the second with 50%, and MIR-
NAFOLD the third with 40% (the predicted structures are
present in the Additional file 2 for MIRBASE, MIRINHO,
and MIRNAFOLD, the ones for RNAFOLD are present in
the Additional file 3).

Figures 5, 6 and 7 show, respectively, cases in which
the closest structure was found by RNAFOLD, MIR-
INHO, or MIRNAFOLD. As we can see, even in the cases
where MIRINHO was not the best, it was very close to
the best.
To extend the comparison to broader cases, we com-

pared, for the whole set of pre-miRNAs of the Arabidopsis
genus, the location of the miRNA within the pre-miRNA
structure. More specifically, the secondary structures of
the pre-miRNAs of A. thaliana and A. lyrata were com-
puted with MIRINHO and RNAFOLD (using the -C option
to force a hairpin structure). The respective miRNAs were
then aligned to these structures. RNAFOLD misplaced the
miRNAs (putting them in a place different from a stem-
arm) 10% of the times, while MIRINHO correctly placed
the miRNAs in all the cases.
To verify how the energies of MIRINHO and RNAFOLD

correlated, we computed a linear regression between the
energies predicted by the two methods, as shown in
Figure 8. The free energies predicted by both methods are
in general similar (ρ = 0.80 for A. thaliana and ρ = 0.73

Figure 5 Predicted secondary structures (RNAFOLD). From top to bottom: gold standard structure in MIRBASE (with miRNA coloured in red), and
structures predicted by, respectively, MIRINHO, MIRNAFOLD, and RNAFOLD. Secondary structure of pre-miRNA MI0019239, the best prediction was by
RNAFOLD with the closest values of stem length, terminal loop length, and number of bulges and internal loops as in MIRBASE.
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Figure 6 Predicted secondary structures (MIRINHO). From top to bottom: gold standard structure in MIRBASE (with miRNA coloured in red), and
structures predicted by, respectively, MIRINHO, MIRNAFOLD, and RNAFOLD. Secondary structure of pre-miRNA MI0002409: the best prediction was by
MIRINHO with the closest values of stem length, and number of bulges and internal loops as in MIRBASE.

Figure 7 Predicted secondary structures (MIRNAFOLD). From top to bottom: gold standard structure in MIRBASE (with miRNA coloured in red), and
structures predicted by, respectively, MIRINHO, MIRNAFOLD, and RNAFOLD. Secondary structure of pre-miRNA MI0005382: the best prediction was by
MIRNAFOLD with the closest values of terminal loop length, and number of bulges and internal loops as in MIRBASE.
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Figure 8 MIRINHO and RNAFOLD energy correlation. Correlation of the free energies predicted by MIRINHO and RNAFOLD for A. thaliana (ρ = 0.80)
on the left, and A. lyrata (ρ = 0.73) on the right.

for A. lyrata), with the energies of MIRINHO being slightly
bigger in general.

Comparison with other methods
To compare the performance of the methods, we used
datasets D3, D4, D5, and D6. Specificity was computed
only in the case that a true negative pre-miRNA was pre-
cisely defined: this happens for dataset D3 in which a
true negative is represented by a pseudo pre-miRNA. At a
genomic scale, it is not an easy task to define a true neg-
ative pre-miRNA; specificity values are thus often overes-
timated. For this reason, this measure was not included in
the genomic scale experiments. It was not included either
in the case of sRNAseq because other kinds of transcripts
may be expressed, and one may not know a priori if they
correspond to a true or to a false pre-miRNA.

D3: artificial pre-miRNA dataset compiled by Xue et al.
Table 3 presents a comparison between the different
methods when using as input the pre-miRNA dataset D3
compiled by [8]. As one may observe, when considering
the measures separately, CSHMM and MIRINHO obtain
better sensitivity while for the other measures the overall
performance of MIRPARA and MIRENA is better. These
results reflect the underlying algorithms used by each
of the methods. While CSHMM and MIRINHO are spe-
cialised in finding stable hairpin structures, MIRPARA and
MIRENA use other characteristics during the prediction.
However, at a genomic scale such characteristics do not
enable to outperform the two other methods, as one may
see in Table 4.

Considering a practical aspect involving the tradeoff
between time and accuracy, one could boost the predic-
tion results in a feasible time by combining MIRINHO and
one of the methods that uses specific pre-miRNA charac-
teristics (namely MIRPARA orMIRENA). MIRINHO would
thus enable in a first step to quickly obtain all the stable
structures, which would then in a second step be given as
input to the other methods.

D4: artificial pre-miRNA dataset compiled by us
Table 5 presents a comparison between the different
methods using as input the pre-miRNA dataset D4. As
we can see, in humans, MIRINHO obtains the best sensi-
tivity (70%) and precision (50%) together with CSHMM.
As concerns D. melanogaster, MIRINHO also has the best
sensitivity (80%), while MIRENA gets the best precision

Table 3 Comparison of the sensitivity, precision and
specificity using as input the pre-miRNA dataset D3

CSHMM MIRPARA MIRINHO MIRENA

24760.118s 4376.739s 1.251s 3345.317s

Sensitivity 100 88 97 95

Precision 49 84 72 94

Specificity 0 84 64 94

Sensitivity 100 93 98 97

Precision 38 78 71 91

The first three lines contain the results when using the original dataset with 163
positive pre-miRNAs and 168 pseudo pre-miRNAs. The last two lines contain the
results when using only the 102 positive pre-miRNAs, from the same dataset,
annotated with high confidence according to MIRBASE. The energy threshold
used in MIRINHO was -20.6 kcal/mol. Values for the three measures are given in
percentage.
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Table 4 Comparison of the sensitivity and precision using
as input the insect genomes of dataset D5

Organism Method Sensitivity Precision

A. pisum

MIRINHO 69.92 0.52

CSHMM 23.58 0.05

MIRPARA 36.59 0.14

MIRENA 24.39 3.42

C. quinquefasciatus

MIRINHO 69.17 0.25

CSHMM 48.51 0.10

MIRPARA 28.33 0.07

MIRENA 18.33 2.00

H. melpomene

MIRINHO 78.22 0.94

CSHMM 48.51 0.10

MIRPARA 58.42 0.23

MIRENA 31.68 7.88

The energy threshold used in MIRINHO was e = -20.6. Values are given in
percentage.

(75%). For C. elegans, CSHMM obtains the best sensitivity
(70%), andMIRENA the best precision (44.44%). This kind
of analysis is important to verify how the methods behave
when “noise” is flanking the given pre-miRNA, such as in a
genomic scale where a lot of information may be confused
with the pre-miRNAs.

D5: insect genomes
To analyse the sensitivity and precision at a genomic scale
(dataset D5), we used the genomes of three insects, one of
which, A. pisum, is of particular interest to us. The results
are shown in Table 4. Notice that the prediction is often far
from being perfect for all methods; in particular, there is as
usual a delicate choice to be made between sensitivity and
precision, in as much as we are currently capable of accu-
rately measuring the latter. The low precision for all the
methodsmay be due to two reasons. One is that themodel
used for predicting (pre-)miRNAs needs refinement. The
other is that the precise definition of a FP miRNA is com-
pletely dependent on the known miRNAs, which could
represent just a small fraction of those that really exist.

D6: plant sRNAseq data
Although the approaches used to treat sRNAseq data
are different between our method and MIRDEEP2, we
included a comparison with the latter in terms of sen-
sitivity and precision as concerns the sRNAseq data of
A. thaliana (dataset D6). The computing time was also
compared considering only the module MIRDEEP2.PL.
The parameters given to MIRINHO were the following:
energy threshold of e = −42.8 kcal/mol (obtained as
described in Section “Setting the energy threshold” using
the genome of A. lyrata); stem length of 48nt (mean of the
stem lengths in A. thaliana); and loop range from 5nt to
70nt (see Additional file 1: Figure S10). For MIRDEEP2, the
following files were given as input: one containing the pre-
miRNA and mature miRNA sequences of A. thaliana and
another with the mature miRNA sequences of A. lyrata.
One may notice that the sRNAseq data are obtained

under a specific experimental condition and thus not
necessarily all the 57 known miRNAs of chromosome 4
of A. thaliana may be expressed. In order to obtain a
more accurate control set, we first mapped the sRNAseq
reads against the known pre-miRNAs of A. thaliana, and
used as a control only the pre-miRNAs with a mapped
read (i.e. pre-miRNAs that were expressed under the
given condition). From the 57 miRNAs, 23 miRNAs were
being expressed and were then used as a control. MIRD-
EEP2 (1120.904s) obtained a sensitivity and a precision of,
respectively, 13% and 100%, and MIRINHO (1050.120s) of
83% and 38% for the same measures. MIRDEEP2 considers
the highest local read stack, meaning that lower expressed
pre-miRNAsmay be disregarded. This can explain the low
sensitivity of MIRDEEP2.

Conclusion
We propose a fast and flexible method for the predic-
tion of pre-miRNAs that uses minimal information about
known pre-miRNAs. Concerning the prediction results,
we obtain sensitivity, precision, and specificity values
that are similar to those of the other tested methods,
and in some cases even better. As concerns the qual-
ity of the predicted structures, the hairpins predicted
by MIRINHO are much closer to the ones available in
MIRBASE than the ones predicted by RNAFOLD and MIR-
NAFOLD. Moreover, when comparing the location where

Table 5 Comparison of the sensitivity, precision, and computing time using as input the pre-miRNA dataset D4

CSHMM MIReNA miRPara Mirinho

32202.854s 918.588s 110.261s 1.667s

Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity

H. sapiens 23.08 60.00 50.00 10.00 13.00 60.00 50.00 70.00

D. melanogaster 26.92 70.00 75.00 30.00 08.00 60.00 61.54 80.00

C. elegans 29.17 70.00 44.44 40.00 04.00 20.00 35.71 50.00

The energy threshold used in MIRINHO was e = -20.6. The values for sensitivity and precision are given in percentage.



Higashi et al. BMC Bioinformatics  (2015) 16:179 Page 14 of 14

the miRNA aligns within the structure, RNAFOLD mis-
placed themiRNAs (putting them in a place different from
a stem-arm) 10% of the time, while MIRINHO correctly
placed them in all the cases.
Our method is faster because we employ a quadratic

time complexity algorithm to predict the free energy of the
hairpin, instead of the cubic algorithmwhich is commonly
used. We are flexible in two aspects. First, as concerns the
input type, we accept both whole genome sequences and
sRNAseq data. Second,MIRINHOmay be used for the pre-
diction of either plant or animal pre-miRNAs requiring
only a minimal adjustment (of the lengths of the stem-
arm and terminal loop, and of the threshold for the free
energy). Finally, the three features, plus the width of the
diagonal, represent the only a priori knowledge we use.

Availability
MIRINHO is available at http://mirinho.gforge.inria.fr.
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Additional file 2: Secondary structures (MIRBASE, MIRINHO,
MIRNAFOLD). Secondary structures as presented in MIRBASE, and the ones
predicted by MIRINHO and MIRNAFOLD.

Additional file 3: Secondary structures (RNAFOLD). Secondary
structures predicted by RNAFOLD.
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