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The Mirrors Model : Macroscopic Diffusion Without Noise or Chaos

Yann Chiffaudel1 and Raphaël Lefevere1

1Laboratoire de Probabilités et Modèles Aléatoires
UFR de Mathématiques Université Paris 7 Case 7012, 75205 Paris Cedex 13, France

We consider a discrete version of the mirrors model in a finite d-dimensional domain and connected
to particles reservoirs at fixed chemical potentials. The dynamics is purely deterministic and non-
ergodic. We study the macroscopic current of particles in the stationary regime. We show first that
when the size of the system goes to infinity, the behaviour of the stationary current of particles is
governed by the proportion of orbits crossing the system. Using this approach, we show that Fick’s
law relating the stationary macroscopic current of particles to the concentration difference holds in
three dimensions and above. The negative correlations between crossing orbits play a key role in the
argument.

PACS numbers: 05.20.-y, 05.60.Cd, 05.70.Ln

The mirrors model was introduced by Ruijgrok and Co-
hen [6] as a lattice version of the random Lorentz gas or
the Ehrenfest wind-tree model. A central question re-
garding those models is whether a non-chaotic dynamics
may give rise to a macroscopic diffusive behaviour. In this
respect, the mirrors model is quite spectacular : a quick
look at the structure of the orbits reveals its total lack of
ergodicity.

It has even been proved [2] that, in any dimension,
the motion of a particle in an environment of randomly
orientated mirrors is not a gaussian diffusion. More
precisely this means that, under a diffusive rescaling of
space and time, the law of the position of the particle
does not converge to a gaussian distribution. The goal
of this Letter is to show that in spite of these unpromis-
ing properties, the mirrors models does exhibit normal
macroscopic conductive properties when d ≥ 3. It turns
out that quite weak conditions on the statistics of orbits
are sufficient to ensure the validity of Fick’s law at the
macroscopic level. It is therefore not necessary that or-
bits behave as a Gaussian diffusion to ensure the validity
of Fick’s law. Thus, the normal macroscopic laws of dif-
fusion apply to a much wider class of dynamical systems
than generally expected. As we explain below, in a sys-
tem connected to particles reservoirs, proving Fick’s law
is equivalent to establishing a law of large number (in the
size of the system) for the macroscopic current of parti-
cles. Using the reversibility of the dynamics, we show
that the number of orbits travelling from one side of the
system to the other one basically determines the value
of the current in the stationary state, when the system
is large. This allows to formulate conditions on the ex-
pectation and on the variance of the number of crossing
orbits that ensure the validity of Fick’s law. This was also
the starting point of the analysis of [5] where a rigorous
proof is given in the case of an anisotropic version of the
random Lorentz gas.

We recall now briefly the set-up of the original mir-
rors model. Particles travel on the edges of Z2 with unit
speed. Mirrors are located at some vertices of the lat-

tice and take two possible angular orientations : {π4 ,
3π
4 }.

When a particle hits a mirror, it gets deflected according
to the laws of specular reflection, see figure 2 for sam-
ple trajectories of particles. It is convenient to think that
every particle starts at time zero with a given velocity at
a vertex of the lattice Q that is obtained by taking the
middle point of every edge of Z2. As all particles move
with unit velocity, one can simply observe the evolution
of the system at discrete times t ∈ N. At those times, the
particles will be always located at one of the vertices of
the new lattice Q with a well-defined velocity. In gen-
eral, the orientation of the mirrors is picked randomly.
It is obvious that the motion of a single particle can not
be described as a Markov process. When a particle hits a
mirror for the second time, no matter how far back in the
past the first visit occurred, its reflection is deterministic,
see for instance figure 2.

We come now to a more general definition of the dy-
namics in d dimensions . We denote by z = (z1, . . . , zd)
a generic element of Zd. As for Z2, we consider
the set of midpoints of edges of an hypercube of Zd
of side N and with periodic conditions in all but
the first direction. We call this set Q. It may be
described as follows : Q =

⋃d
i=1 Li where Li ={

z + 1
2ei : 0 ≤ z1 ≤ N − 1, (z2, . . . , zd) ∈ (Z/NZ)d−1

}
.

Let (e1, . . . , ed) the canonical basis of Rd, the space of
possible velocities is P = {±e1

2 , . . . ,±
ed

2 } and the phase
space of the dynamics is

M = {(q,p) : q ∈ Q,p ∈ P s. t. if q ∈ Li then p = ±ei
2
}.

We denote a generic point of M by (q,p). The set of
points in M whose spatial coordinate belongs to the
boundaries of the system is B = B− ∪B+, with

B− = {x = (q,p) ∈M : q = (q1, . . . , qd) ∈ L1, q1 =
1

2
}

B+ = {x = (q,p) ∈M : q = (q1, . . . , qd) ∈ L1, q1 = N − 1

2
}.

For each z ∈ Zd, we define the action of a “mirror” on
the velocity of an incoming particle by π(z; ·), a bijection
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FIG. 1: The spatial component of the phase space M and of
the sets B− and B+ in 2D.

of P into itself. It satisfies the following conditions : π(z;−π(z;p)) = −p, ∀z ∈ Zd,∀p ∈ P
π(0, z2, . . . , zd;−e1

2 ) = e1

2
π(N, z2, . . . , zd;

e1

2 ) = −e1

2 , (z2, . . . , zd) ∈ (Z/NZ)d−1

(1)
The dynamics is defined onM in the following way. For
any (q,p) ∈M :

F (q,p) = (q + p + π(q + p;p), π(q + p;p)) .

It is easy to check that the map F is a bijection on M.
The two last conditions in (1) are just saying that when
particles hit the boundaries they are reflected backwards.
We define an operator R : M → M which reverses the
velocities by R(q,p) = (q,−p) and we see that the first
of the conditions (1) ensures that the map F is reversible,
i.e. F−1 = RFR. We define the orbit of a point x ∈ M,
Ox = {y ∈ M : ∃t ≥ 0, F t(x) = y} and its period,
T (x) = inf{t ≥ 0 : F t(x) = x}. From the fact that F is
bijective, one infers that for every x ∈ M, Ox is a loop
: T (x) ≤ |M| and that orbits are non-intersecting : if
y /∈ Ox, then Ox ∩Oy = ∅. A given orbit is also non-self-
intersecting : if y ∈ Ox and y 6= x then F (y) 6= F (x).

As we are interested in the transport of particles, we
define occupation variables σ(q,p; t) ∈ {0, 1} that record
the absence or presence of a particle at position q with
velocity p at time t ∈ N. When connecting the system
to external particles reservoirs, we obtain the following
evolution rule : given σ(·; t − 1), we define σ(·; t) for all
t ∈ N∗ by

σ(x; t) =

 σ(F−1(x); t− 1) if x /∈ B− ∪B+

σ−x (t− 1) if x ∈ B−
σ+
x (t− 1) if x ∈ B+.

The families of random variables {σ−x (t) : x ∈ B−, t ∈
N} and {σ+

x (t) : x ∈ B+, t ∈ N} consist of indepen-
dent Bernoulli variables with respective parameters ρ−
and ρ+. If one chooses {σ(x; 0) : x ∈ M} to be a collec-
tion of independent random variables, then it is easy to
see by induction that at any t ≥ 0, {σ(x; t) : x ∈ M} is a

collection of i.i.d Bernoulli random variables. To simplify
a bit the discussion, we choose an homogeneous initial
distribution, i.e. all Bernoulli random variables have a
common parameter ρI . The distribution of the collection
{σ(x; t) : x ∈ M} becomes stationary after a finite time.
More precisely, for any t ≥ |M|, we have the following
equality in law :

σ(x, t) =


σI if O(x) ∩B = ∅
σ− if F−t

∗
(x) ∈ B−

σ+ if F−t
∗
(x) ∈ B+

where t∗ = inf{t : F−t(x) ∈ B} and σ± and σI are
Bernoulli random variables of parameter ρ± and ρI .

Proceeding as in [5], it is possible to show that when
the size of the system goes to infinity, the stationary cur-
rent converges in probability to the proportion of cross-
ing orbits times the chemical potentials difference. We
define the average current of particles that crosses the
hyperplaneQl = {q ∈ Q : q1 = l+ 1

2} , l ∈ {1, . . . , N−2}
during a diffusive time interval N2 as a function of a con-
figuration σ ∈ {0, 1}M :

J(l, t) =
1

Nd+1

t+N2∑
s=t

∑
x∈M

σ(x; s)∆(x, l) (2)

where ∆(x, l) = 2(p · e1)1q∈Ql ,with x = (q,p). Thus
∆(x, l) takes the value +1 (resp. −1) if x crosses the
slice Ql from left to right (resp. from right to left). We
denote by N± the numbers of crossings from B± to B∓
induced by F , i.e. N± = |S±| where S± is given by

S± = (3)

{x ∈ B± : ∃s > 0,∀0 < j < s, F j(x) /∈ B±, F s(x) ∈ B∓}.

One notes that N+ = N−. Indeed, since every or-

FIG. 2: N = 6. Crossing orbits are coloured in purple, in-
ternal loops in black and non-crossing orbits are coloured in
green. The travel direction given by the arrows is arbitrary.
Each edge of the crossing orbits will be used twice in a given
orbit : once in each direction. For this configuration of mir-
rors N = 2.

bit is closed, it must contain as many left-to-right than



3

right-to-left crossings. Thus, we set N = N+ = N−.
Proceeding as in [5], we get that for any t ≥ |M|,
E[J(l, t)] = N

Nd−1 (ρ−−ρ+). This relation implies that the
average current flows in the “right” direction and that
when ρ− 6= ρ+, the average current in the stationary
state is different from 0 if and only if N 6= 0. Moreover,
for every δ > 0, any t ≥ |M| and l ∈ {1, . . . , N − 2},

P
[∣∣∣∣J(l, t)− N

Nd−1 (ρ− − ρ+)

∣∣∣∣ ≥ δ] ≤ 2 exp(−δ2Nd+1).

(4)
We take now random configurations of reflectors

{π(z; ·) : z ∈ Zd}. The law of the reflectors is denoted by
Q. The map F becomes now a random map. The model
satisfies Fick’s law if and only if there exists some κ > 0
(the conductivity) such that ∀ε > 0,

lim
N→∞

lim
t→∞

P×Q[|NJ(l, t)− κ(ρ− − ρ+)| > ε] = 0. (5)

As in [5], it is easy to infer from (4) that this holds if and
only if there exists κ > 0 such that for any ε > 0,

lim
N→∞

Q
[∣∣∣∣ NNd−2 − κ

∣∣∣∣ > ε

]
= 0. (6)

We see that the central object to study is the distribu-
tion of the number of crossing orbits N . The expectation
of this quantity is related to the probability that one orbit
crosses the system, while the variance is given in terms of
the joint probability that orbits with two different start-
ing points cross the system. Indeed by periodicity, we
have, using the notation O = (( 1

2 , 0, . . . , 0), e1

2 ) :

E
[
N

Nd−2

]
=

N

Nd−1

∑
x∈B−

E[1x∈S ] = NQ[O ∈ S] (7)

and

Var

[
N

Nd−2

]
=

1

N2d−4

∑
x,y∈B−

δ(x, y) =
1

Nd−3

∑
x∈B−

δ(O, x)

(8)

with δ(x, y) = Q[x ∈ S, y ∈ S]−Q[x ∈ S]Q[y ∈ S].
Thus if the two following

Crossing Conditions are satisfied :

1. There exist κ > 0 such that the RHS of (7) converges
to κ as N →∞.

2. The RHS of (8) goes to zero as N →∞.

then Fick’s law (5) holds in the stationary state. We note
first that when d = 2, (6) can not hold, whatever the dis-
tribution Q is. To see this, we adapt an argument found
in [4]. Indeed the spatial part of each crossing orbit
crosses any “vertical” sectionQl an odd number of times.
On the other hand, the spatial part of any non-crossing

orbit must cross any vertical section an even number of
times, see Figure 2. Thus, N and N must have the same
parity. This implies that there can not exists κ > 0 such
that (6) holds when d = 2. The origin of this issue lies in
the strong correlations between crossing orbits that are
present in two dimensions.

We turn now to the higher dimensional case d ≥ 3
equipped with some natural distribution Q. Now observe
that if Q[π(z; ei2 ) = − ei2 ] > 0 for some i = 1, . . . , d then
an orbit starting from O will encounter this type of re-
flecting mirror after an exponential number of steps and
therefore Q[0 ∈ S] ≤ e−cN for some c > 0. This, in turn,
implies that limN→∞NQ[0 ∈ S] = 0 and that Fick’s law
can not hold. Thus from now on, we consider maps such
that π(z; ei2 ) 6= − ei2 if 0 < z1 < N and such that the con-
ditions (1) are satisfied. We call the set of such maps Π.
We take Q such that the collection of maps

{π(z; .) : 0 < z1 < N, (z2, . . . , zd) ∈ (Z/NZ)d−1}

is independent and that each map is uniformly dis-
tributed over Π. We note first that if the law of an or-
bit with respect to Q was similar to the law of a simple
random walk, then there would be a κ > 0 such that
limN→∞NQ[0 ∈ S] = κ, this follows from the gambler’s
ruin argument. Similarly, if the orbits were independent
objects, then the RHS of (8) would go to zero because
the only non-zero term would be the one with x = O
and Q[O ∈ S] ∼ κ/N . We also note that the average
stationary current is identified as the difference between
chemical potentials times the probability that a particle
crosses the system, an idea that was put forward in [3],
in the context of chaotic systems. The law Q of the mir-
rors induces a law on the set of orbits which is a priori
very far from the distribution of independent simple ran-
dom walks. The set of orbits is a very interesting lattice
object in itself which features some (self-)avoiding prop-
erties as we mentioned above.

Fortunately, what is needed to ensure the validity of
(6) is much less than the full joint distribution of the or-
bits. Thanks to (7) and (8), one only has to analyze the
marginal of a path starting on the boundary and also the
joint probability of two such paths. The distribution of a
path starting at O (i.e. on the boundary) is similar to the
the one of a “true” self-avoiding random walk [1] but
defined on Q rather than on Zd and with further con-
straints. The diffusive behaviour of those walks for d ≥ 3
has been conjectured in [1], see also the rigorous results
of [7]. It can be expected that as the dimensionality of
the system increases, the effect of the revisits of an or-
bit to the same mirror decreases. In a process where the
mirrors are flipped randomly after being used (i.e mem-
ory effects are killed), we computed that in d = 3 the
crossing probability is ∼ 3/2N . Numerical simulations
in d = 3 show that this number is indeed a good ap-
proximation. The log log plot of the crossing probability
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Q[O ∈ S] is given in figure 3 for N up to 400. The corre-
sponding conductivity is κ = 1.535 ± 0.005. As the con-
ductivity measured in simulations is slightly higher than
3/2, it indicates that recollisions tend to push forward
the orbit.

FIG. 3: Q(O ∈ S) for N from 5 to 420. The 95% confidence
interval is about half the size of a dot.

We must show now that
∑
x∈B−

δ(O, x) → 0 as N →
∞. We know that this sum is positive because it is a vari-
ance, and thus it is enough to get an upper bound on the
sum. In order to do this, we show that for most x ∈ B−,
δ(O, x) < 0. Given an orbit O, we denote by γ(O) the
set of edges of Zd used by O. Two crossing orbits O and
O′ are incompatible if γ(O) ∩ γ(O′) 6= ∅ and compatible
otherwise. If Q(O1,O2) is the joint probability of two
orbits O1 and O2 then Q(O1,O2) = 0 when O1 and O2

are incompatible. If they do not share any mirrors, then
Q(O1,O2) = Q(O1)QO2). From those two properties,
we obtain that for x ∈ B−,

δ(O, x) =
∑
O0,Ox

(Q(O0,Ox)−Q(O0)Q(Ox))

−
∑
O0,Ox

′
Q(O0)Q(Ox). (9)

Both sums run over orbits that cross the box Q. The
first sum runs over compatible orbits such that γ(O0) and
γ(Ox) share a vertex of Zd where a mirror sits. The sec-
ond (prime) sum runs over incompatible orbits O0,Ox.

Correlations are created from two opposite origins,
corresponding to each of the two sums. If two orbits
O1 and O2 share some mirrors, then it is easy to see
that Q(O1,O2) > Q(O1)Q(O2) implying that the first
sum is strictly positive. This is a “cooperative” effect,
the orbits help each other crossing the system. The
second sum corresponds to a jamming effect : an or-
bit starting from O and crossing the system occupies
a certain number of horizontal edges. Because dis-
tinct orbits can not share the same edges, the occupied
edges are no more available for an orbit starting from
x ∈ B−, this creates negative correlations. Numerical
simulations in d = 3 show that the latter effect domi-
nates. For all but a few points within confidence inter-
vals, the correlations δ(O, x) for x 6= O are not only

small but negative, see figure 4. The only exceptions
are points ((1/2, 1, 0), e1

2 ), ((1/2, 0, 1), e1

2 ), ((1/2, N −
1, 0), e1

2 ) and ((1/2, 0, N − 1), e1

2 ) which give clearly pos-
itive correlations. However, we checked that for N = 70∑N−1
y=1 δ(O, ((1/2, y, 0), e1

2 )) = −1.360 × 10−04 ± 1.47 ×
10−05, i.e. it is negative with a margin of more than
9σ.

∑N−1
z=1 δ(O, ((1/2, 0, z), e1

2 )) must be equal by sym-
metry. Increasing values of N do not modify this be-
haviour. Since we know already that Q[O ∈ S] ∼ κ/N ,
as N → ∞, we conclude with the same margin that∑
x∈B−

δ(O, x) ≤ κ/N → 0, as N → ∞. We expect

FIG. 4: δ(O, x) for x = ((1/2, y, 0), e1
2

). N=70. We draw the
95% confidence interval.

the same behaviour in d ≥ 3. A rigorous proof that the
crossing conditions introduced above are satisfied seems
to be within reach in the present model. Moreover, it
is possible to draw a general conclusion from the above
discussion. If one is really interested in deriving macro-
scopic laws from microscopic dynamics, many detailed
properties of the latter are irrelevant. What is required
are much weaker properties than chaoticity, ergodicity or
Gaussian behaviour of the orbits. In the present context,
the minimal properties necessary to obtain Fick’s law are
encapsulated in the crossing conditions. It is of course
natural to seek similar weak conditions in different con-
texts as for instance in the problem of the derivation of
Fourier’s law.
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