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Summary : Gallium arsenide phosphide nitride shows promise for developing highefficiency 
tandem solar cells on low-cost silicon substrates..  
 
To date, the highest efficiency conversions have been reached by using III–V (that is, compounds of 

elements from groups III and V of the periodic table) monocrystalline multijunction solar cells (MJSCs) under 
concentrated sunlight. Soitec and the Fraunhofer Institute have pushed the solar cell record to 44.7% for 
terrestrial applications.1 

They achieved this record with a wafer-bonded fourjunction gallium indium phosphide / gallium 
arsenide // gallium indium arsenide phosphide / gallium indium arsenide (GaInP/GaAs//GaInAsP/GaInAs) 
solar cell under concentration of 297 suns (that is, light 297 times as bright as sunlight). Soitec and Fraunhofer 
also announced on the Soitec website very recently the achievement of 46% efficiency under concentration of 
508 suns. Moreover, Solar Junction has demonstrated a III–V triple junction coherently grown (lattice-
matched) onto a gallium arsenide (GaAs) substrate with 44% efficiency under 942 suns (AM1.5D spectra, 
representing the direct-radiation— that is, without the diffuse radiation and albedo—annually averaged solar 
spectrum at ground level at mid-latitudes).2 It contains a highly sought-after 1eV gallium indium arsenide 
nitride antimonide (GaInAsNSb) diluted-nitride compound. However, maintaining the GaAs or germanium 
substrates to build these high-efficiency III–V solar cells is costly. 

With the strategic challenge cost of e0.25–0.5 per watt of peak power in mind, we have investigated 
using silicon, which is the most abundant element on earth and inexpensive. Indeed, true monolithic 
integration of III–V compound semiconductor heterostructures with silicon would enable both highly efficient 
and low-cost PV production and is the subject of great research interest. 

A tandem solar cell, made of a 1.7eV III–V top and a 1.1eV crystalline silicon (c-Si) bottom cell, 
would theoretically reach an efficiency of 37%, under AM1.5G illumination (that is, the global incident solar 
radiation, including the direct, diffuse, and albedo radiation).3 However, MJSC efficiency is very sensitive to 
structural defects, such as misfit dislocations, which appear during metamorphic growth; they dramatically 
reduce the carrier lifetime and thus current extraction and solar cell performance. A perfect lattice-matched 
epitaxial PV structure of III–V and silicon technologies on silicon substrate would significantly increase 
efficiency, as well as reducing the overall cost of multijunction PV cells. 

We have developed promising building blocks for GaAsPN/silicon-based dual-junction solar cells. 
The tandem GaAsPN/silicon double-junction solar cell will be electrically connected with a tunnel junction 
(TJ), which connects successive p-n junctions made up of a p-type semiconductor and an n-type 
semiconductor. One of the main issues in developing the dual-junction solar cell is obtaining an efficient TJ. 
We have modeled this and found high theoretical current densities for both GaP/silicon and silicon/silicon TJs 
with experimentally attained GaP alloy doping levels and considering an n-doped silicon bottom absorber.4 
Modeling the top-PIN-junction GaAsPN absorber with a ‘tight-binding’ calculation crossed with critical 
thickness modeling showed that a GaAsPN alloy (composition 9% arsenide and 4% nitride) is promising with 
an expected bandgap energy of 1.81eV and a critical thickness that allows pseudomorphic growth of a 1µm-
thick absorber.5 To assess this material independently of defects potentially generated at the GaP/silicon 
interface, we grew a lattice-matched 100nm-thick GaAsPN alloy on the 001 face of a gallium phosphide (GaP) 
substrate. After a post-growth annealing step, this alloy displays strong absorption around 1.8–1.9eV, and 
efficient photoluminescence at room temperature suitable for targeted solar cell top junction development. 

Finally, we have developed early stage GaP/GaAsPN/GaP PIN (that is, made up of layers of p-type, 
intrinsic, and n-type semiconductors) solar cell prototypes by molecular beam epitaxy (MBE) on a (001)-



 

oriented GaP substrate, which is easier than growth directly on a silicon (001) substrate.6 Next, we will do the 
same on a GaP/silicon pseudo-substrate—a silicon substrate with a thin (45nm) GaP layer on top—and then on 
a silicon solar cell with a GaP layer on top). The difficult part is growing a defect-free GaP crystalline layer on 
top of the silicon substrate. Indeed, the first GaP layer of the PIN junction will be the GaP layer of the GaP/Si 
pseudo-substrate in the case of a silicon/ silicon TJ, or will be part of the TJ in case of an hybrid GaP/siicon 
TJ. 

The internal quantum efficiency of around 40% shows that carriers have been successfully extracted 
from a 1µm-thick GaAsPN alloy absorber (see Figure 1). Current-voltage measurements performed on this 
sample show a remarkable record open-circuit voltage of 1.18V. Our best-performing cell contained a 300nm-
thick absorber with 2.25% efficiency under AM1.5G illumination (see Figure 2). This cell exhibits a 
remarkable fill factor (the ratio of the maximum obtainable power and the product of the open-circuit voltage 
and short-circuit current) of 71%.7 The short-circuit current is 3.77mA/cm2 but the open-circuit voltage is 
relatively low at 0.89V. Assuming that a 1µm thick GaAsPN layer is necessary to absorb the main part of the 
solar spectrum and, considering the absence of any anti-reflective coating, the sample with a thinner (300nm) 
absorber displays a short-circuit current density close to its theoretical maximum at 1 sun of roughly 
5mA/cm2. The theoretical maximum takes into account the small absorber thickness and assumes perfect 
carrier collection, but in practice some carriers are lost inside the absorber. That carrier extraction is better 
from the thinner than the thicker absorber may be attributed to a small carrier diffusion length, which is less 
than the thickness of the thicker absorber. 

In summary, we have developed promising building blocks for GaAsPN/silicon-based dual-junction 
solar cells. Concerning the top subcell development, we have obtained an efficient absorber by growing a 
lattice-matched GaAsPN alloy on a GaP substrate.We next grew early-stage GaP/GaAsPN/GaP PIN solar cell 
prototypes by MBE on GaP substrates.We are now working to grow a defect-free GaP crystalline layer on a 
silicon substrate. These results are promising and validate our approach for elaborating a lattice-matched dual 
junction solar cell on silicon substrate. We are now developing the tunnel junction and the overall tandem cell 
with a purpose-designed bottom silicon subcell. A clear pathway to higher efficiency of the top GaAsPN cell 
would require thorough optimization of both the MBE growth and the post-growth annealing steps 
accompanied by improvements in PIN junction architecture similar to the development of the GaInAsN 1eV 
subcell on GaAs substrates.2 
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photonics and applied information technology nanostructures) project funding from the Region of Brittany. 
The work was also supported by the French national projects MENHIRS (2011-PRGE-007-01) and 
SINPHONIC (2011 JS03 006-01). 

 

 

Fig1. Internal quantum efficiency of a PIN junction made up of 
a p-doped gallium phosphide (GaP) on top of a 1µm-thick layer 
of an intrinsic gallium arsenide phosphide nitride (GaAsPN) 
absorber on top of an n-doped GaP layer, grown on a (001)-
oriented GaP substrate, where (001) represents a particular 
crystal plane 

 

 

Fig2. Current-voltage measurements under AM1.5G 
solar spectrum, of a GaP/GaAsPN 300nm/GaP PIN 
junction grown on a (001)-oriented GaP substrate 
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