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AStrion is an automatic spectrum analyzer software, which proposes a new generic and data-driven method without any a priori information on the measured signals. In order to compute some general characteristics and derive properties of the signal, the first step in this approach is to give some insight into the nature of the signal. This pre-analysis, so called the data validation, contains a number of tests to reveal some properties and characteristics of the data such as the acquisition validity (absence of saturation and a posteriori respect of the sampling theorem), the stationarity (or non-stationarity), the periodicity and the signal-to-noise ratio. Based on these characteristics, the proposed method defines indicators and alarm trigger thresholds, also categorizes the signal into three classes which help to guide the following spectral analysis. The present paper introduces the four tests of this pre-analysis and the signal categorization rules. Finally, the proposed approach is validated on a set of wind turbine vibration measurements to demonstrate its applicability of a long-term and continuous monitoring on real-world signals.
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Introduction

The wind turbines are often installed in remote areas, which are hard to access for technicians. Hence the maintenance of the wind turbines is very difficult to carry out. By allowing a predictive maintenance strategy, Condition Monitoring Systems (CMS) are an efficient solution for the maintenance of the wind turbines. To track the health of the wind turbine devices, CMS are often installed to alert users of mechanical faults [START_REF] Márquez | Condition Monitoring of Wind Turbines: Techniques and Methods[END_REF] . In general, CMS are based on the acquisition of a set of relevant real-time signals from the sensors, and then signal processing is further applied to deduce health indicators of the system. To realize this system health maintenance, there are two kinds of methods: system-driven ones and data-driven ones. System-driven methods are more common used, while the monitored system kinematic and specific thresholds are predefined by the users. Different from system-driven methods, data-driven methods do not need any priori information but only depend on the measured process data [START_REF] S Yin | Data-driven design of robust fault detection system for wind turbines[END_REF] .

In our context, the data-driven CMS are preferred since they do not require any user configuration to set the monitoring system functionality. This type of CMS requires the signal processing algorithm to be stand alone and self-configurable using only the acquired data to set up all necessary parameters. Moreover it has to be reliable in all kinds of situations to liberate the users from unexpected manual maintenance tasks.

AStrion answers this need by elaborating a set of comprehensive spectral analysis. It is capable to deduce reliable mechanical fault indicators thanks to many spectrum analysis modules, which are described in previous publications [START_REF] Gerber | Monitoring based on time-frequency tracking of estimated harmonic series and modulation sidebands[END_REF][START_REF] Li | AStrion strategy: from acquisition to diagnosis. Application to wind turbine monitoring[END_REF] . In this paper, we focus on the angular resampling and data validation modules in AStrion. In general, angular resampling is an optional module to reduce the problem of non-stationarity in wind turbine signals, while data validation provides a pre-analysis of the acquired signals.

Wind turbines often operate in variable environmental conditions, such as the wind speed, the temperature and the azimuth that result in different non-stationarity patterns. To reduce the influence of the non-stationarity in spectral analysis, we propose an angular resampling method to reduce the non-stationarity caused by a variable rotational speed. Among all the data-validation tests of AStrion, in this paper we focus on four tests to check four properties of wind turbine signals. The first test verifies whether any amplitude saturation exists in the instrumentation process. The second test verifies whether the signal is well sampled. The third test is on the stationarity. Under the hypothesis that the spectral content of the vibration signal of a machine is time-invariant during a limited time-length, the time-varying spectral content indicates non-stationarity of the signal. The fourth test checks whether the signal is periodic, reveals the periodicity of the signal, and estimates the signal to noise ratio. Combining the results of the four tests, properties of the signal are highlighted which are used to set up the following analysis strategy.

In this paper, we first present the methodology of angular resampling and the tests in data validation module. Then, we demonstrate the accuracy of the proposed method on a wind turbine simulation test bench, and we demonstrate the applicability of the proposed methods on the characterization of real world wind turbine signals.

Angular resampling

AStrion-A is an angular resampling module in AStrion. The angular resampling aims to transform a time-domain signal in angular domain with the help of the phase marker signal. In such a way the non-stationarity caused by the variation of the rotational speed can be eliminated since the signal sampling is synchronized with the rotation. Let us note the vibration signal as s[n] and the raw tachometer signal as I[n] where n is the discrete time index: n ∈ Z + , n ≤ N, with N the number of samples.

Extraction of the time-length of each revolution

The ideal phase marker signal is a noise-free pulse train, the time-of-arrival of each pulse clearly indicates a revolution. However, raw phase marker signals can be recorded in a non-impulse format, sometimes with an additive noise. To identify the time-length of each revolution from a raw signal, the first step is to take only the positive valued part of the derivative of the raw tachometer signal I[n] to generate a pseudo-impulse format

I d [n] = I[n + 1] -I[n], f or 1 ≤ n ≤ N. (1) 
Then three thresholds are set up

λ 1 = 2 * Var(I d [n]) + Mean {I d [n]} , λ 2 = λ 1 + λ 3 2 , λ 3 = Max (I d [n]) √ 2 
The pseudo-impulse tachometer signal is finally transformed to the ideal format of a noise-free impulse train

I δ [n] = N δ ∑ i=1 δ (n -n i ) , (2) 
where δ (n) is a Kronecker delta, N δ is the number of pulses, n i is the discrete time index of the i th sample. The transformation is realized by the following pseudo-code Repeat the following steps for each λ in {λ 1 , λ 2 , λ 3 }.

• Obtain I δ ,λ [n] by thresholding I d [n] with λ I δ ,λ [n] = I d [n] I d [n] > λ 0 I d [n] ≤ λ (3) 
• Localize the pulse n i by finding the maximum of the λ -th cluster of non-zero points, where the number of consecutive zero-valued points is equal to or smaller than 4 to reduce false identification of pulses.

• Calculate the time length of each revolution as the interval between two adjacent impulses such as

T λ [i] = n i -n (i-1) . • Calculate the coefficient of variation cv λ = std{T λ [i]} mean{T λ [i]} . • Update T [i] = T λ [i] if cv T is lower than the value of the previous iteration.
Finally, the revolution time-length vector is obtained as

T [i], for 1 ≤ i ≤ N λ .

Time-length adjustment and speed calculation

In raw phase-marker signals, the identification of the revolutions is disturbed by the noise. The smooth varying non-impulse waveforms makes the identification even more difficult. These types of disturbance often result in false measurements and outliers in the timelength vector. Therefore, the time-length vector has to be adjusted to compute the correct rotational speed. Firstly identify the outliers in T [i] by calculating the difference between T [i] and a reference time-length vector T [i]

T [i] = T [i] -T [i] with T [i] = Median {T [i -1], T [i], T [i + 1]} , (4) 
since we assume that the rotational speed is stable over 3 consecutive revolutions. The outliers of T [i] can be found as the outliers of T [i] by the following procedure.

Initialize the outlier set X = ϕ; Do the following iteration.

• Calculate the Z-score of T [i] as zs[i] = T [i]-Mean{ T [i]} std{ T [i]}
.

• Localize i max the maximum of zs[i], and exclude it by

zs[i max ] = Mean {zs[i]}.
• Calculate the coefficient of variation of zs[i] as cv z s = Std{zs rem } Mean{zsrem} .

• X = X ∪ i max ; Continue iterating if cv zs > 0.01.

Then calculate the phase shift ϕ[i] and the angular speed v[i] in each revolution i as

ϕ[i] = 2π K T [i] T [i] i ∈ X 2π K otherwise , v[i] = ϕ[i] 2π T [i]F S I , (5) 
where K is the number of pulses emitted by the tachometer in every revolution, F s I is the tachometer sampling frequency. The revolution-wise speed is interpolated to each time sample n to calculate the instantaneous rotational speed

v inst [n] = Interp(v[i]; i → n). (6) 

Phase calculation and resampling

Calculate the instantaneous phase ϕ inst [n] and the angular-resampled instantaneous phase θ [n] as

ϕ inst [n] = ϕ 0 + 2π F S vib n ∑ m=1 v inst [m], θ [n] = ϕ 0 + ϕ inst [N] -ϕ 0 N n (7) 
where

ϕ 0 = 2π K -ϕ[1]
is the initial phase. The signal resampled in angular domain is obtained by interpolating the vibration signal

x[n] from v[n] to θ [n] x res [n] = Interp(x[n]; ϕ inst [n] → θ [n]).
(8)

Data validation methods

In order to estimate basic global and general properties regarding the signal, the first step in this data-driven approach is to collect fundamental information about the input signal nature. As mentioned in section 1, a number of tests based on spectral analysis from the Fourier type estimators are carried out on the input signal to reveal its nature. This preanalysis consists of successive and independent steps. One or more criteria are taken into account without any a priori information of the signal for each step. With respect to the amplitude saturation, the sampling validity, the non-stationarity and the periodicity, four steps are described below. This function is realized by module AStrion-D.

3.1 Amplitude saturation test [START_REF] Matthieu | Une Stratégie Pour L'interprétation En Analyse Spectrale[END_REF] This is a simple test to provide an indication regarding the amplitude saturation, which is performed by comparing two consecutive signal samples to the maximum and minimum of the signal. If there are two consecutive samples equal to either maximum or minimum, the signal is considered saturated.

3.2 Shannon sampling test [START_REF] Matthieu | Une Stratégie Pour L'interprétation En Analyse Spectrale[END_REF] The aim of this test is to detect potential problems of the signal recovery from its spectrum due to aliasing. In particular, three tests are performed -test to a posteriori verify if the signal is properly sampled (by observing the spectrum as we approach the Shannon frequency), test to determine the last significant frequency component (by observing the logarithm of the spectrum), and test to confirm the presence of an anti-aliasing filter (by observing the noise estimation). To evaluate the performance, three criteria are carried out, such as linear power frequency, decibel power frequency and noise power frequency.

Non-stationarity tests

The definition of a stationary process can explain that there exists no unique efficient test.

An ergodic random process is completely stationary if its probability density function remains unaltered under a time shift. This definition is a severe requirement and should be relaxed. A time-frequency test was proposed. Then, using the result of this timefrequency test, a second test based on the signal spectrum only will confirm, refute or eventually detect other types of non-stationarities [START_REF] Martin | A non-stationary index resulting from time and frequency domains[END_REF] .

The first time-frequency based detection test is to verify if the analysed signal contains non-stationarities in terms of variation of its spectral contents versus time. The second time based detection test provides a measure of stationarity of the signal in a statistical sense. A process is statistically stationary if it is characterized by time independent moments. The second, third and fourth moments are calculated for N consecutive nonoverlapping segments of the input signal. A significant variation of these quantities, detected by thresholding the cumulative sum, indicates that the signal is non-stationary.

Periodicity tests

These tests validate the assumption that the considered signal, corrupted by noise, is periodic in time. It is performed by using the autocorrelation function of the signal, which preserves the periodicity property. Two criteria are taken into account. For each one, a coefficient between 0% and 100% is calculated in order to quantify the hypothesis confidence that the underlying signal is a periodic signal embedded in white Gaussian noise [START_REF] Martin | About periodicity and signal to noise ratio -The strength of the autocorrelation function[END_REF] .

The first criterion of fundamental periodicity is estimated as a median value of distances between consecutive maxima of the autocorrelation function. The non-biased autocorrelation estimation is used; maxima are determined considering the estimation variance. The second one is dominant-power periodicity test, which does not necessarily coincide with a fundamental one. It is estimated as a median value of distances between consecutive minima of the smoothed autocorrelation function.

Strategy

The following identification function is driven by the data validation results. The data validation does not reveal the spectral characteristics of the signal, it gives us a clue about the nature of the analysed signal. Rough conclusions regarding this nature, and conclusions regarding the periodicity of the signal, the correlation support and the signal-to-noise ratio (SNR), define three possible strategies are implemented in the identification block.

Results of characterization of real world signals

The proposed angular resampling and data validation methods have been tested on real world signals from two data sets. One records the signals over a wind turbine simulation test bench [START_REF] Gerber | Monitoring based on time-frequency tracking of estimated harmonic series and modulation sidebands[END_REF] . The other named Arfons is composed by real world wind turbine signals.

Data validation on test bench data

The test bench developed in KAStrion project has been specified to design a wind turbine at a smaller scale. The experimental platform monitored thanks to several sensors, including accelerometers, thermocouples and torquemeters etc. To test the proposed method, we focus on an accelerometer, which is installed on the main bearing with the direction (+y). Figure 1 illustrates the position and the directions of the accelerometer. • Time saturation test: The input signals passed the saturation test normally. We consider the input signal has no time saturation.

• Shannon sampling test : The decibel spectrum test detects the aliasing of strong power frequency components close to the Shannon frequency. Figure 3 (a) presents the power spectral density map of the signal acquired at operating time of 85.97 hours. The power is mainly concentrated at low frequencies. However, the decibel and noise power maximum frequency estimators detected high power peaks appearing in high frequencies (16 KHz and 19 KHz), which are unusual. These high power peaks in high frequencies appear all the time. It may be due to instrumentation fault. 

Results on Arfons data

Arfons data came by courtesy of VALOREM, France and are acquired from the onsite installation of sensors in windfarm. Two wind turbines with the size described in Fig. 7(a) have been equipped with identical hardware and software configuration of the developed system. Continuous monitoring and signal acquisition is carried out using vibration, Since the rotational speed of the wind turbine is variable, the speed-related spectral content is located on frequency trajectories varying proportionally to the rotational speed. This is a main source of non-stationarity of the signal. The angular resampling is an efficient solution to cancel this type of non-stationarity, as Fig. 8 shows.

Angular resampling

In Fig. 8, the red curves in the detection plot (on the middle of each figure) mark up the frequency trajectories where non-stationarity is detected either in amplitude or in frequency. At the medium and low frequency range (lower than 7700 Hz) of Fig. 8(a), the non-stationarity trajectories correspond to the speed-related harmonic series. In Fig. 8(b), the disappearance of these non-stationary trajectories (lower than 280 orders) proves that the time-varying frequency become constant thanks to the angular resampling. However, on both subfigures, the high frequency trajectories (higher than 7700 Hz on Fig. 8(a) and larger than 280 orders on (b)) can not be eliminated by the angular resampling, because the non-stationary is not produced by the variation of the rotational speed. The details in the time-frequency domain can be found in Fig. 9, where the presentation of the results of Fig. 8 are zoomed at the medium and at the low frequency range (lower than 2500 Hz and lower than 92 orders). Compared to the spectrogram of the original signal which presents a series of time-varying frequency trajectories, that of the resampled signal contains a group of constant frequency components. The non-stationarity trajectories are almost eliminated in the resampled signal. Accordingly, a significantly lower non-stationarity rate can be found in the resampled signal (5%, alert level) with respect to the original signal (19%, alarm level).

On the whole data set of 75 signals, the effect of the angular resampling in the reduction of the non-stationarity is evident, as shown in Fig. 10. It successfully reduced the nonstationarity rate by maximum 20%. The non-stationarity rate is a log-scale index, hence the gain of using the angular resampling is enormous for these signals. However, there are signals which have higher or equivalent non-stationarity rates after angular resampling, for example the 16 th and the 38 th signals, since the non-stationarity is not related to the rotational speed. In this case, the angular resampling shows little benefit.

Data validation

• Amplitude saturation test: The input signals passed the saturation test normally. We consider the input signal has no time saturation. • Shannon sampling test : The decibel spectrum test detects the aliasing of strong power frequency components close to the Shannon frequency. Figure 3 (b) presents the power spectral density map of the 75 th signal. Unlike test bench data, this power is mainly concentrated in high order. The decibel power maximum frequency estimator detects high power peak appear in 427.14 order, which is unusual. These high power peaks in high order appear all the time. It may be due to the electromagnetic disturbance or the resonance of other structures.

• Non-stationarity test: In wind turbine signals, the non-stationarity problem frequently appears. To reduce the non-stationarity influence on following calculation, we proposed angular resampling (described in 4.2.1), which indeed reduces the non-stationarity percentage.

• Periodicity test: 

Conclusions

In this paper, we present two methods to validate some necessary properties on the acquired signal. The angular resampling method is able to retrieve the rotation speed from non-impulse or noisy phase marker signals, the method is able to correct the speed measurement faults by calculating the true phase shift. The data validation step consists of several tests based on spectral analysis and the autocorrelation function to collect fundamental information about the nature of the input signal. The proposed methods are part of the first two modules in an automatic spectrum analyzer called AStrion, the core of a data-driven CMS.

The results show that the proposed angular resampling method efficiently reduces the non-stationarity rate on real-world wind turbine signals. Also the data validation step can help to detect the signals which have acquisition errors. These corrupted signals are not suitable for the following analysis. Moreover, the surveillance of the indicators of the data validation may indicate an early problem of acquisition due to the hardware break down.
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 12 Figure 1: A picture of the wind turbine test bench. The orange ellipsis circles zooms in the main bearing and its loading unit, while the green arrows represents the 3 wired accelerometers.
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 3 Figure 3: Power spectral density (PSD) of the signal acquired from (a) Test bench data at operating time of 85.97 hours. (b) Arfons data of the 77 th signal.
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 4 Figure 4: Surveillance of the non-stationarity test of accelerometer (+y) (main bearing of the test bench) from 0.96 hours to 189.85 hours of operation.
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 5 Figure 5: Time-frequency spectrogram (left), non-stationarity detection (middle) and its variance (right) of the signal at operating time of 168.57 hours.
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 6 Figure 6: Surveillance of the periodicity tests of accelerometer (+y) (main bearing of the test bench) from 0, 96 hours to 189.85 hours of operation. (a) Detected fundamental frequency (b) Correlation support of the signal length.
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 7 Figure 7: General information of the wind turbines under study. (a) Dimensions of the wind turbines. (b) Location of the installed sensors.
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 8 Figure 8: The spectrogram and the non-stationarity detection results of the same signal (75 th measurement) without (a) and with (b) the angular resampling (sampled at 911.7 orders). The time-frequency spectrogram (left), nonstationarity detection (middle) and its variance (right).

  (a) Without angular resampling (b) With angular resampling
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 9 Figure 9: A zoomed presentation of the results of Fig. 8 at the medium and the low frequency range(lower than 2500 Hz and lower than 92 orders)
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 10 Figure 10: The non-stationarity rate with and without angular resampling on 75 signals of accelerometer A6 of the Arfons windfarm.

  Figure 11 presents the surveillance of the indicators: the fundamental frequency and the correlation support. In (a), we can normally detect the fundamental frequency around 82 order with some outliers. In (b), correlation support value is normally 100% with some outliers.(a) Fundamental frequency (b) Correlation support
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 11 Figure 11: Surveillance of the periodicity tests on 77 signals of accelerometer A6. (a) Detected fundamental frequency (b) Correlation support.
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