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Introduction

Transmission problems naturally arise in various fields of physics and have been extensively studied. An introduction to this class of problems can be found in [START_REF] Hung | Phénomènes de transmission à travers des couches minces de conductivité élevée[END_REF] and several applications are detailed in [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF]. Such problems were more recently studied in the case when the interface is irregular, Lipschitz continuous or even fractal. These problems find many applications, such as the study of rough electrodes in electrochemistry or diffusion across irregular membranes in physiological processes, etc. (see [START_REF]General formulation of laplacian transfer across irregular surfaces[END_REF][START_REF] Filoche | Transfer across random versus deterministic fractal interfaces[END_REF]). Several transmission problems with fractal interfaces have been studied in the case of the Koch flake or the Sierpiński gasket in 2D and 3D (see e.g. [START_REF] Lancia | A transmission problem with a fractal interface[END_REF][START_REF] Mosco | Variational problems with fractal layers[END_REF][START_REF] Mosco | An example of fractal singular homogenization[END_REF][START_REF] Lancia | Irregular heat flow problems[END_REF][START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF][START_REF] Capitanelli | Asymptotics for mixed Dirichlet-Robin problems in irregular domains[END_REF][START_REF] Capitanelli | On the Laplacean transfer across fractal mixtures[END_REF][START_REF] Capitanelli | Insulating layers of fractal type[END_REF]). This paper deals with transmission problems between two domains Ω int and Ω ext where Ω int is a ramified bounded domain as defined in Section 2.2 (see Figure 2). The domain Ω int presents infinitely many ramifications, and its boundary contains a fractal self-similar set Γ which plays the role of the interface. The domain Ω int can be seen as a bidimensional idealization of the bronchial tree, for example. Since the exchanges between the lungs and the circulatory system take place only in the last generations of the bronchial tree (the smallest structures), it is reasonable to consider transmission problems with specific transmission conditions accross the fractal boundary Γ of the tree. We will however limit ourselves to simple transmission conditions. The fractal boundary Γ belongs to a family of self-similar sets introduced by Mandelbrot et al. in [START_REF] Mandelbrot | The canopy and shortest path in a self-contacting fractal tree[END_REF]. Elliptic boundary value problems in the domain Ω int have been studied in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF], and traces and extension results for these domains have been proved in [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF][START_REF] Deheuvels | Sobolev extension property for tree-shaped domains with self-contacting fractal boundary[END_REF].



The considered problem can be formally stated as

                   -∆u = f in Ω int ∪ Ω ext , [u] = 0 on Γ, [∂ n u] = αu on Γ, ∂ n u int = ∂ n u ext = 0 on ∂Ω int \ Γ, ∂ n u ext = 0, u int = u 0 on Γ 0 , ∂ n u ext = 0 on ∂D, (P )
where α is a positive real number, D is a regular bounded open domain in the plane with D = Ω int ∪ Ω ext such that Γ ⋐ D, and Γ 0 is a line segment included in the boundary of Ω int . The sets Ω int and Ω ext are disjoint subdomains of D, and [u] (resp. [∂ n u]) denotes the jump of u (resp. of the "normal derivative" ∂ n u of u) accross the fractal set Γ. Since the interface Γ is fractal, the normal derivative on Γ has to be understood in a suitable weak sense, which will be made precise later. Problem (P ) is a model problem. Its study is the first step in the modelling of physical transmission problems in ramified structures.

The goal is to study approximations (P n ) of problem (P ), obtained by stopping the construction of the ramified domain Ω int at step n. The interfaces in the problems (P n ) are called prefractal approximations of the fractal set Γ. They consist of disjoint finite unions of line segments, which makes problems (P n ) much simpler than problem (P ). A natural question is to understand the asymptotic behavior of the problems (P n ) as n → ∞, and in particular to investigate the convergence of the solutions u n of the problems (P n ) to the solution u of problem (P ).

Remark 1. In contrast with the references [START_REF] Lancia | A transmission problem with a fractal interface[END_REF][START_REF] Mosco | Variational problems with fractal layers[END_REF][START_REF] Mosco | An example of fractal singular homogenization[END_REF][START_REF] Lancia | Irregular heat flow problems[END_REF][START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF][START_REF] Capitanelli | Asymptotics for mixed Dirichlet-Robin problems in irregular domains[END_REF][START_REF] Capitanelli | On the Laplacean transfer across fractal mixtures[END_REF][START_REF] Capitanelli | Insulating layers of fractal type[END_REF], the boundary value problem does not only involve transmission conditions at the interface between Ω int and Ω ext : there are also homogeneous Neumann conditions on the polygonal part of ∂Ω int ; as a consequence, the traces of u int and u ext on this set do not match a priori. Coping with these discontinuities will be a difficulty in studying the convergence of the solutions u n of the problems (P n ) to the solution u of problem (P ).

Remark 2. We have chosen that the source term in (P ) appear both in the Dirichlet boundary condition on Γ 0 for u int and in the Poisson equations in Ω int and Ω ext ; this is of course completely arbitrary.

A crucial step in the study of the asymptotic behavior of (P n ) is the question of extending functions defined in the domain Ω int . More precisely, it is of particular importance that Ω int should satisfy a W 1,p -extension property for some p ∈ [1, ∞], i.e. there should exist a bounded linear operator

E : W 1,p (Ω int ) → W 1,p (R 2 )
such that E(u) |Ωint = u for all u ∈ W 1,p (Ω int ). The domains satisfying this property for all p ∈ [1, ∞] will often be referred to as Sobolev extension domains. It is well known that every Lipschitz domain in R n , that is every domain whose boundary is locally the graph of a Lipschitz function, is a Sobolev extension domain. Calderón proved the W 1,p -extension property for p ∈ (1, ∞) (see [START_REF] Calderón | Lebesgue spaces of differentiable functions and distributions[END_REF]), and Stein extended the result to the cases p = 1 and p = ∞ (see [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]). In [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF], Jones generalized this result to the class of (ε, δ)-domains, also referred to as Jones domain, or locally uniform domains (see [START_REF] Martio | Injectivity theorems in plane and space[END_REF]). In dimension two, the definition of (ε, δ)-domains is equivalent to that of quasi-disks, see [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF]. This extension result is almost optimal in the plane, in the sense that every plane finitely connected Sobolev extension domain is an (ε, δ)-domain, see [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF][START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF]. The case of an unbounded domain in R 2 has been studied in [START_REF] Vodop ′ Janov | A criterion for the extension of functions of the class L 1 2 from unbounded plane domains[END_REF]. Extension properties for domains which do not have the (ε, δ)-property have been studied e.g. in [START_REF] Maz | Differentiable functions on bad domains[END_REF], where the authors examine in particular the case of domains with cusps.

When the fractal boundary Γ of the domains Ω int studied in this paper has no self-contact, Ω int can be proved to be an (ε, δ)-domain, and and is therefore a Sobolev extension domain. However, in the case when the boundary self-intersects, Ω int does not have the W 1,p -extension property for all p 1. In particular, the extension property does not hold for p = 2, which is the relevant case here, since the variational formulations of (P ) naturally involve the spaces H 1 (Ω int ). In the particular geometry considered in Section 5, it will be proved that the transmission condition imposed on Γ yields a better regularity of the trace on Γ, for functions belonging to the function space arising in the variational formulation. It is then possible to deduce an extension result in this case (see Theorem 9).

The main question investigated in this paper is the question of the convergence in the sense of Mosco of the energy forms associated with problem (P n ) to the energy form of the problem (P ). The notion of Mosco-convergence, or M -convergence, was introduced in [START_REF] Mosco | Convergence of convex sets and of solutions of variational inequalities[END_REF], see also [START_REF] Mosco | Composite media and asymptotic Dirichlet forms[END_REF]. It is a stronger convergence in the space of forms than Γ-convergence. In particular, it also implies the convergence of minimizers of the energy forms to the minimizer of the limit form. The M -convergence of forms is equivalent to the convergence of the resolvent operators associated with the relaxed forms in the strong operator topology (see [START_REF] Mosco | Composite media and asymptotic Dirichlet forms[END_REF]).

The main results of this paper are Theorems 6 and 9. Theorem 6 is about the convergence of the energy forms associated with (P n ) in the sense of Mosco to the energy form associated with (P ), in the case when the fractal interface has no self-contact. The proof uses the extension operator from H 1 (Ω int ) to H 1 (R 2 ) as a main ingredient. The existence of a continuous extension operator from H 1 (Ω int ) to H 1 (R 2 ), for a particular geometry where the fractal interface self-intersects, is stated in Theorem 9. As a consequence, the proof of Theorem 6 can be reproduced in this case, to show the M -convergence of the energy forms.

The paper is organized as follows: the geometry of the interior and exterior domains is detailed in Section 2, as well as the prefractal geometry. Section 3 is devoted to the study of the function spaces involved in the paper, and emphasis is put on trace and extension results for the domains under study. The considered transmission problem is described in Section 4. Section 4.3 is devoted to the M -convergence of the energy forms associated with the problem with prefractal interface to the energy form of the problem with fractal interface, in the case when the boundary of Ω int has no self-contact. In Section 5, a particular geometry in which the fractal part of the boundary of Ω int self-intersects is considered; an extension result is proved in this particular case and the M -convergence of the energy forms follows. 

Consider four real numbers r, β 1 , β 2 , θ such that 1/2 r < 1/ √ 2, β 1 > 0, β 2 > 0 and 0 θ < π/2. Let f i , i = 1, 2 be the two similitudes in R 2 given by f 1 x 1 x 2 = -β 1 β 2 + r x 1 cos θ -x 2 sin θ x 1 sin θ + x 2 cos θ , f 2 x 1 x 2 = β 1 β 2 + r x 1 cos θ + x 2 sin θ -x 1 sin θ + x 2 cos θ .
The two similitudes have the same dilation ratio r and opposite angles ±θ. One can obtain f 2 by composing f 1 with the symmetry with respect to the vertical axis {x 1 = 0}. Let Γ denote the self-similar set associated with the similitudes f 1 and f 2 , i.e. Γ is the unique compact subset of

R 2 such that Γ = f 1 (Γ) ∪ f 2 (Γ).
It was stated in [START_REF] Mandelbrot | The canopy and shortest path in a self-contacting fractal tree[END_REF] (see [START_REF] Deheuvels | Contributions à l'étude d'espaces de fonctions et d'EDP pour une classe de domaines frontière fractale auto-similaire[END_REF] for a complete proof) that for any θ, 0 θ < π/2, there exists a unique positive number r ⋆ θ ∈ [1/2, 1/ √ 2[ which only depends on the angle θ such that

⋄ if 0 < r < r ⋆ θ , then Γ is totally disconnected, ⋄ if r = r ⋆ θ , then Γ is connected.
In the following, we will always assume that r r ⋆ θ .

Notations For every integer n > 0, we note A n = {1, 2} n . For σ ∈ A n , we note f σ the similitude f σ1 • . . . • f σn . We agree to extend the notation to the case n = 0: f σ = Id if σ ∈ A 0 . We also introduce the notation A := n 0 A n .

For σ ∈ A, we note Γ σ = f σ (Γ 0 ), and for every integer n 0, Γ n = σ∈An f σ (Γ 0 ).

Hausdorff dimension of Γ

If r r ⋆ θ , then it can be seen that the open set condition (or Moran condition) holds, see [START_REF] Moran | Additive functions of intervals and Hausdorff measure[END_REF] or [START_REF] Kigami | Analysis on fractals[END_REF] for a definition. The open set condition is satisfied e.g. for the domain Ω int defined in [START_REF] Adams | Sobolev spaces[END_REF], if Assumption 1 below is satisfied (Theorem 2 proves the existence of such a domain). The open set condition implies that the Hausdorff dimension of Γ is

d := dim H Γ = - log 2 log r
see [START_REF] Moran | Additive functions of intervals and Hausdorff measure[END_REF][START_REF] Kigami | Analysis on fractals[END_REF]. If 0 θ < π/2, then 1/2 r r ⋆ θ < 1/ √ 2 and thus 1 d < 2. In the case when r = r ⋆ θ , introduce the set

Ξ = f 1 (Γ) ∩ f 2 (Γ). (1) 
In this case, the fractal set Γ self-intersects, and union of the images of Ξ by the similitudes f σ1 • . . . • f σn , σ 1 , . . . , σ n ∈ {1, 2} is the set of the multiple points of Γ. Two situations can occur, depending on the angle θ (see [START_REF] Mandelbrot | The canopy and shortest path in a self-contacting fractal tree[END_REF]):

-if θ is not of the form π 2k for any integer k > 0, then Ξ is reduced to a single point, and Γ has countably many multiple points, -if θ is of the form π 2k where k > 0 is an integer, then Ξ is a Cantor set, and the Hausdorff dimension of Ξ, noted dim H Ξ, is dimH Γ 2 .

The self-similar measure µ

Recall the classical result on self-similar measures, see [START_REF] Falconer | Techniques in fractal geometry[END_REF][START_REF] Hutchinson | Fractals and self-similarity[END_REF] and [START_REF] Kigami | Analysis on fractals[END_REF] page 26.

Theorem 1. There exists a unique Borel regular probability measure µ on Γ such that for any Borel set A ⊂ Γ,

µ(A) = 1 2 µ f -1 1 (A) + 1 2 µ f -1 2 (A) . (2) 
The measure µ is called the self-similar measure defined in the self-similar triplet (Γ, f 1 , f 2 ). Let L p µ (Γ), p ∈ [1, +∞) be the space of the measurable functions v on Γ such that ´Γ |v| p dµ < ∞, endowed with the norm v L p (Γ) = ´Γ |v| p dµ 1/p . A Hilbert basis of L 2 µ (Γ) can be constructed e.g. with Haar wavelets. The space W s,p (Γ) for s ∈ (0, 1) and p ∈ [1, ∞) is defined as the space of functions v ∈ L p (Γ) such that |v| W s,p (Γ) < ∞, where

|v| W s,p (Γ) = ˆΓ ˆΓ |v(x) -v(y)| p |x -y| d+ps dµ(x) dµ(y) 1 p
.

Endowed with the norm v W s,p (Γ) = v L p (Γ) + |v| W s,p (Γ) , the spaces W s,p (Γ) are Banach spaces. In the special case p = 2, the space W s,p (Γ) is a Hilbert space, and is noted H s (Γ).

The domains Ωint and Ωext  Remark 3. In the special case when θ = 0 and r = r ⋆ θ = 1/2, the set Γ is in fact a line segment. This geometry will be discussed in Section 5 (see Figure 3). In this case, it can be proved that if s ∈ (0, 1), then an equivalent norm of the space W s,p (Γ) is given by

v p Lip p,p s (Γ) := ˆΓ |v| p dµ + k 0 2 skp σ∈A k ˆ2fσ(Γ) |v -v 2fσ (Γ) | p dx (3) 
where 2f σ (Γ) is the intersection with Γ of the segment obtained by expanding the line segment f σ (Γ) with a factor 2 around its center (see [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF][START_REF] Jonsson | Function spaces on subsets of R n[END_REF]). As in the rest of the paper, if v is a measurable function in a measured space (X, m), the notation v X refers to the mean value 1 m(X) ´X v dm.

The domains Ω int and Ω ext

Call P 1 = (-1, 0) and P 2 = (1, 0) and Γ 0 the line segment Γ 0 = [P 1 P 2 ]. Let us assume that f 2 (P 1 ) and f 2 (P 2 ) have positive coordinates, i.e. that r cos θ < β 1 and r sin θ < β 2 .

Let us also assume that the open domain Y 0 inside the closed polygonal line joining the points P 1 , P 2 , f 2 (P 2 ), f 2 (P 1 ), f 1 (P 2 ), f 1 (P 1 ), P 1 in this order must be convex and hexagonal, except if θ = 0, in which case it is trapezoidal. With (4), this is true if and only if

(β 1 -1) sin θ + β 2 cos θ > 0. ( 5 
)
Under assumptions (4) and ( 5), the domain Y 0 is contained in the half-plane x 2 > 0 and symmetric with respect to the vertical axis x 1 = 0.

Call K 0 = Y 0 . It is possible to glue together K 0 , f 1 (K 0 ) and f 2 (K 0 ) and obtain a new polygonal domain.

The assumptions (4) and ( 5) imply that Let the open domain Ω int (see Figure 2) be defined as follows:

Y 0 ∩ f 1 (Y 0 ) = ∅ and Y 0 ∩ f 2 (Y 0 ) = ∅. Γ 0 Y 0 f 1 (Γ 0 ) f 2 (Γ 0 ) P 2 P 1
Ω int = Interior σ∈A f σ (K 0 ) , (6) 
with the notations of §2.1.1.

For a given θ, with r ⋆ θ defined as above, the following assumption on (α, β) will be made: Assumption 1. For 0 θ < π/2, the parameters α and β satisfy (4) and ( 5) for r = r ⋆ θ , and are such that    i. for all r, 0 < r r ⋆ θ , the sets

Y 0 , f σ (Y 0 ), σ ∈ A, are pairwise disjoint, ii. for all r, 0 < r < r ⋆ θ , f 1 (Ω int ) ∩ f 2 (Ω int ) = ∅, iii. for r = r ⋆ θ , f 1 (Ω int ) ∩ f 2 (Ω int ) = ∅. Remark 4. Assumption 1 implies that if r = r ⋆ θ , then f 1 (Ω int ) ∩ f 2 (Ω int ) = ∅.
In the case θ = 0, Assumption 1 is satisfied by any α > r ⋆ θ = 1/2 and β > 0. The following theorem, proved in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF], asserts that for all θ ∈ (0, π/2), there exists (α, β) satisfying Assumption 1.

Theorem 2. If θ ∈ (0, π/2), then for every α > r ⋆ θ cos θ, there exists β > 0 such that for all β β, (α, β) satisfies Assumption 1.

Let D be an open bounded domain with a Lipschitz boundary, containing the closure of Ω int . The exterior domain Ω ext is defined by

Ω ext := Interior(D \ Ω int ). ( 7 
)
Remark 5.

The assumption that Ω int ⋐ D may be relaxed: in fact, it would be enough to assume that Γ ⋐ D.

Displayed on Figure 2 are examples of the domains Ω int and Ω ext , for the parameters θ = π/5 in the left-hand side and θ = π/4 in the right-hand side. 

Γ Ω int D Ω ext Γ Ω ext D Ω int

The truncated domain Ω n int and the prefractal interface

For every integer n 0, the truncated domain Ω n int is defined by

Ω n int = Interior   0 k n σ∈A k f σ (K 0 )   , (8) 
with the notations of §2.1.1. As above, the exterior domain associated to Ω n int is

Ω n ext = Interior(D \ Ω n int ). ( 9 
)
Note that the set Γ n defined in §2.1.1 is a part of the boundary of Ω n int . The sets Γ n , n 0, will be referred to as prefractal approximations of the fractal set Γ.

Function spaces

Hereafter, we consider a domain Ω int as defined in 2.2, with θ in [0, π/2) and r r ⋆ θ , and we assume that the parameters α, β are such that Assumption 1 is satisfied.

We define W 1,p (Ω), p = [1, ∞], Ω = Ω int or Ω = Ω ext , to be the space of functions in L p (Ω) with first order partial derivatives in L p (Ω).

The space W 1,p (Ω) is a Banach space with the norm u

p L p (Ω) + ∂u ∂x1 p L p (Ω) + ∂u ∂x2 p L p (Ω) 1/p
, see for example [START_REF] Adams | Sobolev spaces[END_REF]. Elementary calculus shows that u

W 1,p (Ω) := u p L p (Ω) + ∇u p L p (Ω) 1/p is an equivalent norm, with ∇u p L p (Ω) := ´Ω |∇u| p and |∇u| = | ∂u ∂x1 | 2 + | ∂u ∂x2 | 2 .
In the special case p = 2, the space W 1,p (Ω) is a Hilbert space, and is noted H 1 (Ω). The spaces W 1,p (Ω int ) as well as elliptic boundary value problems in Ω int have been studied in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF], with, in particular Poincaré inequalities and a Rellich compactness theorem. The same results in a similar but different geometry were proved by Berger [START_REF] Berger | Eigenvalue distribution of elliptic operators of second order with Neumann boundary conditions in a snowflake domain[END_REF] with other methods.

Trace results

The classical definition of traces

We recall the classical definition of a trace operator on ∂ω when ω is an open subset of R 2 (see for instance [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] p. 206).

Definition 1. Consider an open set ω ⊂ R 2 . The function u ∈ L 1 loc (ω) can be strictly defined at x ∈ ω if the limit u(x) = lim r→0 1 |B(x, r) ∩ ω| ˆB(x,r)∩ω u(y) dy (10) 
exists, where |B(x, r) ∩ ω| is the 2-dimensional Lebesgue measure of the set B(x, r) ∩ ω. In this case, x is said to be a Lebesgue point of u.

The trace u |∂ω is defined to be the function given by u |∂ω (x) = u(x) at every point x ∈ ∂ω such that the limit u(x) exists.

Remark 6. Recall that for any p > 1, a function which belongs to W 1,p (R n ) can be strictly defined except on a set with zero p-capacity, see for example [START_REF] Federer | The Lebesgue set of a function whose distribution derivatives are p-th power summable[END_REF] and [START_REF] Kinnunen | The Sobolev capacity on metric spaces[END_REF].

A trace theorem on Γ

It has been shown in [START_REF] Achdou | Comparison of different definitions of traces for a class of ramified domains with self-similar fractal boundaries[END_REF] (see Theorem 11) that every function in W 1,p (Ω int ) can be strictly defined on Γ H 1 -almost everywhere, where H 1 is the one-dimensional Hausdorff measure. Moreover, the following trace result holds.

Theorem 3. (see [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF])

• Assume r < r ⋆ θ . For all p ∈]1, ∞], if u ∈ W 1,p (Ω int ), then u |Γ ∈ W 1-2-d p ,p ( 
Γ), and there exists a constant C > 0 independent of u such that

u |Γ W 1-2-d p ,p (Γ) C u W 1,p (Ωint) . • Assume r = r ⋆ θ , then ⋄ the previous result holds if 1 < p < 2 -dim H Ξ, ⋄ if p 2 -dim H Ξ, then W 1,p (Ω int ) |Γ ⊂ W s,p (Γ) for all s < 1 p (d -dim H Ξ), and the embedding is continuous. Moreover, if s > 1 p (d -dim H Ξ), then W 1,p (Ω int ) |Γ ⊂ W s,p (Γ).
Remark 7. The space of the traces on Γ of functions in W 1,p (Ω int ), 1 < p < ∞ was characterized in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF], whether r < r ⋆ θ or r = r ⋆ θ , as the space JLip(1 -2-d p , p, p; 0; Γ), which was first introduced in [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF]. Of course, if r < r ⋆ θ , then JLip(1 -2-d p , p, p; 0; Γ) coincides with W 1-2-d p ,p (Γ). An easy consequence of this characterization is that the space of the traces on Γ of functions in W 1,p (Ω int ) is relatively compact in L p µ (Γ).

Proposition 1 below will be useful in the proofs of the main theorems of this paper.

Proposition 1. For every u ∈ H 1 (Ω int ), 1 |Γ n | ˆΓn u |Γ n 2 dx -→ n→∞ ˆΓ u |Γ 2 dµ.
Proof. The present proof relies on Proposition 1 in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF], which states that for any u ∈ H 1 (Ω int ), the sequence of piecewise constant functions (ũ n ) n∈N defined on Γ:

ũn = σ∈An u Γ σ ½ fσ(Γ) ,
where

u Γ σ = 1 |Γ σ | ´Γσ u |Γ σ (z) dz, is such that lim n→∞ ũn -u |Γ L 2 µ (Γ) = 0. Note also that ´Γ ũ2 n dµ = σ∈An |Γ σ | |Γ n | u 2 Γ σ .
Hence, in order to prove Proposition 1, it is enough to prove that

1 |Γ n | ´Γn u |Γ n 2 dx -´Γ ũ2 n dµ -→ n→∞ 0,
or in an equivalent manner, that S n -→ n→∞ 0, where

S n = 1 |Γ n | σ∈An ˆΓσ u 2 |Γ σ (z) dz -|Γ σ | u 2 Γ σ = 1 |Γ n | σ∈An ˆΓσ u |Γ σ (z) -u Γ σ 2 dz.
From a standard trace result on Γ 0 and appropriate rescalings, we know that for a positive constant independent of n, σ

∈ A n and u ∈ H 1 (Ω int ), ´Γσ u |Γ σ (z) -u Γ σ 2 dz ≤ C|Γ σ | ´fσ(Ωint) |∇u| 2 . Hence, S n ≤ C σ∈An |Γ σ | |Γ n | ´fσ(Ωint) |∇u| 2 = C 2 n σ∈An ´fσ(Ωint) |∇u| 2 , which implies that S n -→ n→∞ 0. ⊓ ⊔
We also recall the following refined trace inequality, we refer to [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF] for the proof.

Theorem 4.

[see [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF], Th. 11] Assume that r 1/2, then for all real number κ ∈ (2r 2 , 1), there exists a constant C such that for all v ∈ H 1 (Ω int ) with v |Γ 0 = 0,

v |Γ 2 L 2 µ (Γ) C m 0 κ m τ ∈An ∇v 2 L 2 (fτ (Y 0 )) . (11) 

Extension results

The subcritical case r < r ⋆ θ

As seen in § 1, it was proved in [START_REF] Achdou | Trace results on domains with self-similar fractal boundaries[END_REF] that if r < r ⋆ θ , then Ω int is an (ε, δ)-domain (see [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] for a definition), or in an equivalent manner, a quasi-disk (see [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF]). Hence, the extension result of Jones and Vodop'janov et al. applies, and Ω int is a Sobolev extension domain (see [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF]), i.e. Ω int has the W 1,p -extension property for every p ∈ [1, ∞]: there exists a continuous linear operator

E from W 1,p (Ω int ) to W 1,p (R 2 ) such that E(u) |Ωint = u, ∀u ∈ W 1,p (Ω int ). ( 12 
)
Similarly, the set Ω ext = D \ Ω int is an (ε, δ)-domain, and thus a Sobolev extension domain.

3.2.2

The critical case r = r ⋆ θ When r = r ⋆ θ , it is easily seen that Ω int is not an (ε, δ)-domain, and the extension results of Jones and Vodop'janov et al. do not apply. In fact, if p ∈ (1, ∞), it is easy to construct a function u ∈ W 1,p (Ω int ) such that u ≡ 1 in f 1 (Ω int ) and u ≡ -1 in f 2 (Ω int ). If p > 2, u cannot be extended to a function belonging to W 1,p (R 2 ) because the existence of such an extension would contradict the Sobolev imbedding of W 1,p (R 2 ) in C(R 2 ). In the case when r = r ⋆ θ , the situation depends in fact on the Hausdorff dimension of the set Ξ = f 1 (Γ) ∩ f 2 (Γ). The following extension theorem holds. θ  Theorem 5. see [START_REF] Deheuvels | Sobolev extension property for tree-shaped domains with self-contacting fractal boundary[END_REF][START_REF] Achdou | Comparison of different definitions of traces for a class of ramified domains with self-similar fractal boundaries[END_REF] Set p ⋆ = 2dim H Ξ (recall that Ξ is defined in (1)).

1. If p ∈ (1, p ⋆ ), then Ω int has the W 1,p -extension property.

2. If p > p ⋆ , then Ω int does not have the W 1,p -extension property.

Point 1 in Theorem 5 was obtained in [START_REF] Deheuvels | Sobolev extension property for tree-shaped domains with self-contacting fractal boundary[END_REF]. Point 2 is a consequence of [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF] and [START_REF] Achdou | Comparison of different definitions of traces for a class of ramified domains with self-similar fractal boundaries[END_REF]: by Theorem 3, if

p > p ⋆ , then W 1,p (Ω int ) |Γ ⊂ W 1-2-d p ,p (Γ) = W 1,p (R 2 )
|Γ . This is in contradiction with the existence of a continuous extension operator from W 1,p (Ω int ) to W 1,p (R 2 ) (see [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF] for the proof that the notions of traces coincide µ-almost everywhere on Γ).

Remark 8. As it was seen in §2.1.2, only two situations can occur, depending on the geometry of Ω int :

-if θ is not of the form π/(2k) for any integer k, then dim H Ξ = 0 and p ⋆ = 2,

-if θ is of the form π/(2k) for an integer k, then dim H Ξ = (dim H Γ)/2, and p ⋆ = 2 -(dim H Γ)/2.
Remark 9. The special case p = p ⋆ is not dealt with in Theorem 5. The latter is of particular importance in case 1 of Remark 8 above, since the case p = p ⋆ = 2 corresponds to the question of the H 1 -extension property.

In fact, it was proved by Koskela in [START_REF] Koskela | Extensions and imbeddings[END_REF] that if a domain in R n has the W 1,n -extension property, then it must have the W 1,p -extension property for every p n. Hence, a consequence of Theorem 5 is that Ω int cannot have the W 1,p -extension property when p = 2. In particular, the domains that we will consider in Section 5 fail to satisfy the H 1 -extension property.

To the best of our knowledge, the question of the extension property for p = p ⋆ in case 2 of Remark 8 seems to be open. [START_REF] Achdou | Trace results on domains with self-similar fractal boundaries[END_REF] The transmission problem in the case r < r ⋆ θ

The transmission problem with fractal interface

The transmission problem can be formally stated as

                   -∆u = f in Ω int ∪ Ω ext , [u] = 0 on Γ, [∂ n u] = αu on Γ, ∂ n u int = ∂ n u ext = 0 on Σ, ∂ n u ext = 0, u int = u 0 on Γ 0 , ∂ n u ext = 0 on ∂D, (13) 
where

α > 0, Σ = ∂Ω int \ (Γ ∪ Γ 0 ), [u] (resp. [∂ n u]
) denotes the jump of u (resp. of the normal derivative of u) across Γ, f ∈ L 2 (D) and u 0 ∈ H 1/2 (Γ 0 ). We also use the notations u int := u |Ωint and u ext := u |Ωext . The transmission condition [∂ n u] = αu on Γ has no real meaning, since the normal is not defined on Γ.

The rigorous meaning of ( 13) is the following variational formulation:

find u ∈ V such that for all v ∈ V 0 , a(u, v) = ˆD f v dx, (P )
where V is the affine space defined by

V = {u ∈ L 2 (D), u int ∈ H 1 (Ω int ), u ext ∈ H 1 (Ω ext ), u int|Γ 0 = u 0 , u int|Γ = u ext|Γ }. ( 14 
) Recall that v ∈ H 1 (Ω int ) → v |Γ ∈ H 1/2 (Γ) and v ∈ H 1 (Ω ext ) → v |Γ ∈ H 1/2 (Γ) are continuous maps, hence V is closed. Note that if u ∈ H 1 (D) and u |Γ 0 = u 0 then u ∈ V .
The vector space V 0 is defined as V , except that the condition u int|Γ 0 = u 0 is replaced by u int|Γ 0 = 0. Finally,

a(u, v) = ˆΩint ∇u int • ∇v int dx + ˆΩext ∇u ext • ∇v ext dx + α ˆΓ u |Γ v |Γ dµ. ( 15 
)
Remark 10. The traces in the condition u int|Γ = u ext|Γ in [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF] are meant in the sense of Definition 1.

The above definition of the space V is suitable when r < r ⋆ θ and in the special case when r = r ⋆ θ and θ = 0 discussed in Section 5. In the other cases, the transmission condition has to be considerably changed, see Remark 14.

Note that the space V 0 , equipped with the norm a(u, u) 1/2 is a Hilbert space. From the Lax-Milgram theorem, we see that for every function f given in L 2 (D), there exists a unique weak solution u ∈ V to (P ). Moreover, u minimizes the functional

v ∈ V → a(v, v) -2 ˆD f v dx. ( 16 
)

The transmission problem with prefractal interface

For any positive integer n, let us consider the similar transmission problem in which the interior domain has been truncated by stopping the construction at step n. This class of problems is much more standard since the interface Γ n consists of 2 n pairwise disjoint line segments. The boundary value problem reads:

                   -∆u = f in Ω n int ∪ Ω n ext , [u] = 0 on Γ n , [∂ n u] = α |Γ n | u on Γ n , ∂ n u n int = ∂ n u n ext = 0 on Σ n , ∂ n u n ext = 0, u n int = u 0 on Γ 0 , ∂ n u n ext = 0 on ∂D, (17) 
where

Σ n = ∂Ω n int \ (Γ n ∪ Γ 0 ), and [u] (resp. [∂ n u]
) denotes the jump of u (resp. of the normal derivative of u) across Γ n . We also use the notations

u n int = u |Ω n int and u n ext = u |Ω n ext .
The variational formulation of problem [START_REF] Falconer | Techniques in fractal geometry[END_REF] can be stated as follows:

find u ∈ V n such that for all v ∈ V n 0 , a n (u, v) = ˆD f v dx, (P n )
where V n is the affine space defined by

V n = {u ∈ L 2 (D), u n int ∈ H 1 (Ω n int ), u n ext ∈ H 1 (Ω n ext ), u n int|Γ 0 = u 0 , u n int|Γ n = u n ext|Γ n }. (18) 
Remark 11. Let G n be the closure of the set ∂Ω n int \ (Γ 0 ∪ Γ n ), which is a finite union of polygonal lines. It is easy to see that V n is the set of the functions in

H 1 (D \ G n ) such that u int|Γ 0 = u 0 .
Similarly, if we define G as ∂Ω int \ (Γ 0 ∪ Γ), we observe that G is not closed, since its closure contains Γ. Observe that, in general, the functions u ∈ H 1 (D \ G) do not satisfy u int|Γ = u ext|Γ , so V cannot be identified with the set of the functions u ∈ H 1 (D \ G) satisfying the Dirichlet boundary condition on Γ 0 . On the other hand, since D \ G is not an open set, dealing with H 1 (D \ G) is not very straightforward.

Here also, V n 0 is defined as V n , except that the condition u n int|Γ 0 = u 0 is replaced by u n int|Γ 0 = 0, and a n is defined by

a n (u, v) = ˆΩn int ∇u n int • ∇v n int dx + ˆΩn ext ∇u ext • ∇v n ext dx + α |Γ n | ˆΓn u |Γ n v |Γ n dx. ( 19 
)
The space V n 0 , equipped with the norm a n (u, u) 1/2 is a Hilbert space. We also remark that V n ⊂ V with a continuous imbedding. Again, the Lax-Milgram theorem implies that for every function f given in L 2 (D), there exists a unique weak solution u n ∈ V n to that problem, and u n minimizes the functional

v ∈ V n → a n (v, v) -2 ˆD f v dx. ( 20 
)
 Lemma 1. The sequence u n is bounded in V .

Proof. Let ũ0 be a function in H 1 (D) such that ũ0|Γ 0 = u 0 , and such that ũ0 is supported in a compact set which does not intersect the sets Γ n , ∀n ≥ 1. It is clear that ũ0 ∈ V and that ũ0 ∈ V n for all n ≥ 1.

Let us define C 0 = ´D |∇ũ 0 | 2 -2f ũ0 dx. Thus, for all n ≥ 1,

a n (u n , u n ) -2 ˆD f u n dx a n (ũ 0 , ũ0 ) -2 ˆD f ũ0 dx = C 0 , (21) 
because ũ0|Γ n = 0. On the other hand, since

V n ⊂ V , a n (u n , u n ) ˆΩn int |∇u n | 2 dx + ˆΩn ext |∇u n | 2 dx = ˆΩint |∇u n | 2 dx + ˆΩext |∇u n | 2 dx. ( 22 
)
We shall also use the following Poincaré inequality: there exists a constant C > 0 such that, for all v ∈ V ,

v 2 L 2 (D) C v |Γ 0 2 L 2 (Γ 0 ) + ˆΩint |∇v| 2 dx + ˆΩext |∇v| 2 dx . (23) 
From ( 21), ( 22) and ( 23), we deduce that

ˆΩint |∇u n | 2 dx+ ˆΩext |∇u n | 2 dx-2 √ C f L 2 (D) u 0|Γ 0 2 L 2 (Γ 0 ) + ˆΩint |∇u n | 2 dx + ˆΩext |∇u n | 2 dx 1 2 C 0 ,
which implies that the quantity ´Ωint |∇u n | 2 dx + ´Ωext |∇u n | 2 dx is bounded by a constant independent of n. Using (23) again, this implies that u n L 2 (D) is also bounded by a constant independent of n.

Combining the previous two observations, we obtain that the sequence u n is bounded in V . ⊓ ⊔

M-convergence of the energy forms in the case r < r ⋆ θ

We start by extending the definition of the forms a and a n to the whole space L 2 (D) by setting

a(u, u) = ∞ if u ∈ L 2 (D) \ V, (24) 
a n (u, u) = ∞ if u ∈ L 2 (D) \ V n . ( 25 
)
We are interested in proving the convergence of the forms a n to a in the following sense, introduced by Mosco (see [START_REF] Mosco | Composite media and asymptotic Dirichlet forms[END_REF]).

Definition 2. A sequence of forms (a n ) n is said to M-converge to a form a in L 2 (D) if i. for every sequence (u n ) n weakly converging to a function u in L 2 (D), lim a n (u n , u n ) a(u, u) as n → ∞, (26) 
ii. for every u ∈ L 2 (D), there exists a sequence (u n ) n converging strongly in

L 2 (D) such that lim a n (u n , u n ) a(u, u) as n → ∞. ( 27 
)
Theorem 6. Assume that r < r ⋆ θ , then the energy forms a n M-converge in L 2 (D) to the form a.

Remark 12. The M -convegence of forms differs from the Γ-convergence only in that the sequence (u n ) in point i. of Definition 2 is assumed to converge weakly instead of strongly. In the following, only the Γ-convergence of the energy forms a n will be needed.

Proof. We will prove separately points i. and ii. in Definition 2.

Proof of point i. Suppose that (u n ) weakly converges to u in L 2 (D). Without loss of generality, one can suppose lim a n (u n , u n ) is finite. We may further assume that there exists a subsequence, still called (u n ), such that a n (u n , u n ) converges to some real number as n → ∞; as a consequence, there exists a constant c independent of n such that a n (u n , u n ) c.

In particular, for all n, u n ∈ V n , which implies that u n ∈ V . Then, (66) implies that (u We will now prove that 1 |Γ n | ´Γn u 2 n dx → ´Γ u 2 dµ as n → ∞, which will yield point i. The following inequality was proved in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF]:

n|Ω int ) is bounded in H 1 (Ω int ),
for every v ∈ H 1 (Ω int ), v -v Γ 0 L 2 µ (Γ) C ∇v L 2 (Ωint) . This implies that | v Γ 0 | v L 2 µ (Γ) + C ∇v L 2 (Ωint) . Similarly, v -v Γ 0 L 2 (Γ 0 ) C ∇v L 2 (Ωint) implies that 1 |Γ 0 | v L 2 (Γ 0 ) | v Γ 0 | + C ∇v L 2 (Ωint) .
for some constant independent of v that we still note C. Combining these two inequalities, we obtain that 1

|Γ 0 | v L 2 (Γ 0 ) v L 2 µ (Γ) + C ∇v L 2 (Ωint) .
Hence, for every σ ∈ A n ,

1 |Γ σ | v L 2 (Γ σ ) v • f σ L 2 µ (Γ) + C ∇(v • f σ ) L 2 (Ωint) = 2 n 2 v L 2 µ (fσ (Γ)) + C ∇v L 2 (fσ (Ωint)) . This yields that 1 |Γ σ | v 2 L 2 (Γ σ ) 2 n v 2 L 2 µ (fσ (Γ)) + 2C2 n 2 v L 2 µ (fσ(Γ)) ∇v L 2 (fσ (Ωint)) + C 2 ∇v 2 L 2 (fσ (Ωint)) . Therefore 1 |Γ n | ˆΓn u n 2 dx = 1 2 n σ∈An 1 |Γ σ | ˆΓσ u n 2 dx u n 2 L 2 µ (Γ) + 2C2 -n 2 σ∈An u n L 2 µ (fσ (Γ)) ∇u n L 2 (fσ (Ωint)) + C 2 2 n σ∈An ∇u n 2 L 2 (fσ (Ωint)) u n 2 L 2 µ (Γ) + 2C2 -n 2 u n L 2 µ (Γ) σ∈An ∇u n 2 L 2 (fσ (Ωint)) 1 2 + C 2 2 n σ∈An ∇u n 2 L 2 (fσ (Ωint)) .
Since u n|Ω int is a bounded sequence in H 1 (Ω int ), there exists a constant M such that

1 |Γ n | ˆΓn u n 2 dx u n 2 L 2 µ (Γ) + 2CM 2 -n 2 u n L 2 µ (Γ) + C 2 M 2 2 n .
Moreover, since u n weakly converges to u in H 1 (Ω int ), then up to the extraction of a subsequence, u n|Γ strongly converges to u |Γ in L 2 µ (Γ), from Remark 7. Hence, we obtain that

lim 1 |Γ n | ˆΓn u n 2 dx ˆΓ u 2 dµ.



Similarly, the following inequality holds for every v ∈ H 1 (Ω int ):

v L 2 µ (Γ) 1 |Γ 0 | v L 2 (Γ 0 ) + C ′ ∇v L 2 (Ωint) (29) 
for some constant C ′ independent of v. As above, we deduce that

lim 1 |Γ n | ˆΓn u n 2 dx ˆΓ u 2 dµ,
and we obtain the desired result.

Proof of point ii. Take u ∈ L 2 (D). By [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], we may assume that u ∈ V . We must construct (u n ) converging strongly in L 2 (D) such that ( 27) holds. Note that the choice u n = u cannot be made, since u ∈ V n in general. Take δ > 0 and consider a neighborhood ω ⊂ D of Ω int such that Ω int ⋐ ω and sup x∈ω d(x, Ω int ) < δ, where d(x, Ω int ) = inf y∈Ωint |x-y|. We introduce the notations ω σ = f σ (ω) for σ ∈ A and ω n = σ∈An ω σ for all integer n. For every n, introduce the cut-off function χ n in D defined by

χ n (x) = (1 -δr -n d(x, ω n )) + , (30) 
where α + stands for the positive part of a real number α. Hence, χ n ≡ 1 in ω n and χ n ≡ 0 outside ωn := {x ∈ D, d(x, ω n ) < δr n }. Note that if we set ω := {x ∈ D, d(x, ω) < δ} and ωσ := f σ (ω) = {x ∈ D, d(x, ω σ ) < δr n } for σ ∈ A n , then ωn = σ∈An ωσ . We can assume that δ is small enough so that ωσ ∩ ωτ = ∅ when σ, τ ∈ A n and σ = τ , since

f σ (Ω int ) ∩ f τ (Ω int ) = ∅.
We now define a sequence of functions u n by

u n = (1 -χ n )u + χ n E(u int ), ( 31 
)
where E is the extension operator introduced in (12) and as above, u int = u |Ωint . Obviously, u n belongs to the space V n and the sequence (u n ) strongly converges to u in L 2 (D). We will prove that lim a n (u n , u n ) = a(u, u) as n → ∞. We start by showing that

I n := ˆΩint |∇u| 2 dx + ˆΩext |∇u| 2 dx - ˆΩn int |∇u n | 2 dx + ˆΩn ext |∇u n | 2 dx -→ 0 (32)
as n → ∞. First observe that

I n = ˆωn\Ωint |∇u| 2 dx - ˆωn\Ωint |∇u n | 2 dx. Hence, it is enough to show that ´ωn\Ωint |∇(u -u n )| 2 dx → 0 as n → ∞. Note that ˆωn\Ωint |∇(u -u n )| 2 dx = ˆωn\Ωint |∇(χ n (E(u int ) -u))| 2 dx 2(I 1 n + I 2 n ) ( 33 
)
where

I 1 n = ´ωn\Ωint |∇(E(u int ) -u)| 2 dx and I 2 n = ´ωn\Ωint |(∇χ n )(E(u int ) -u)| 2 dx. First observe that I 1 n → 0 as n → ∞ since ∇(E(u int ) -u) ∈ L 2 (Ω ext ).
We are left with dealing with I 2 n . One has

I 2 n c r -2n ˆωn\Ωint |E(u int ) -u| 2 dx c r -2n σ∈An ˆω σ \Ωint |E(u int ) -u| 2 dx.
where c > 0 is a constant independent of n. Introduce the set ω = f 1 -1 (f 1 (ω) \ Ω int ). We have the following Poincaré inequality: there exists a constant C such that for every v ∈ H 1 (ω) such that v |Γ = 0,

ˆω |v| 2 dx C ˆω |∇v| 2 dx. ( 34 
)
Observe that if δ is small enough, then ωσ \ Ω int = f σ (ω) for every σ ∈ A. Therefore, applying a rescaled version of [START_REF] Moran | Additive functions of intervals and Hausdorff measure[END_REF] to the function E(u int )u, we obtain that there is a constant c ′ > 0 indenpendant of n such that

I 2 n c ′ σ∈An ˆω σ \Ωint |∇(E(u int ) -u)| 2 dx = c ′ ˆωn\Ωint |∇(E(u int ) -u)| 2 dx
since the sets ωσ , σ ∈ A n are pairwise disjoint. We deduce that I 2 n → 0 as n → ∞, since E(u int )u ∈ H 1 (Ω ext ), which yields [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF]. We will now prove that 1

|Γ n | ˆΓn u n 2 dx -→ ˆΓ u 2 dµ ( 35 
)
as n → ∞, which will conclude the proof of point ii.. Observe that for every integer n, E(u int ) |Γ n = u, which implies that u n|Γ n = u. We are left with proving that 1 |Γ n | ´Γn u 2 dx -→ ´Γ u 2 dµ as n → ∞, which holds by Proposition 1. ⊓ ⊔ A standard consequence of the Mosco-convergence of the energy forms proved in Theorem 6 is the convergence of the solutions of the problems (P n ) to the solution of problem (P ), in L 2 (D) and in V (recall that u n is bounded in V from Lemma 1). Theorem 7. Take f ∈ L 2 (D), and note u n (resp. u) the solution of problem (P n ) (resp. (P )). The sequence (u n ) converges to u in the space V .

A particular geometry with r = r ⋆ θ

As seen before, the proof of Theorem 6 is based on the extension result of §3.2.1. In the case r = r ⋆ θ , the H 1 -extension property is no longer true for the domain Ω int (see Remark 9). In what follows, we focus on the special case when θ = 0. We will see that in this case, the transmission condition imposed on Γ yields an extension result (see Theorem 9) which is the main ingredient for proving the M -convergence of the energy forms. In the case θ = 0, it can be seen that r ⋆ θ = 1 2 , and the ramified domain described in §2.2 is as in Figure 3. In this particular case, the set f 1 (Γ) ∩ f 2 (Γ) is reduced to a single point that we call A. Observe that the self-similar part Γ of the boundary is a line segment, and the self-similar measure µ associated with Γ is the normalized one-dimensional Hausdorff measure. Since r = r ⋆ θ , the domain Ω ext has infinitely many connected components. Call U the outer connected component of Ω ext , ie the only connected component which has a nonempty intersection with ∂D (see Figure 3). Observe that Γ is a subset of ∂U , and that the intersection of Γ with the boundary of every other connected component of Ω ext is reduced to a single point. Apart from U , each connected component of Ω ext is a triangle whose top vertex is at a dyadic point of Γ. The largest triangle is named T , see Figure 3, and all the other triangles are the images of T by f σ , σ ∈ A n , n ≥ 1. We consider the transmission problem

                   -∆u + βu = f in Ω int ∪ Ω ext , u int|Γ = u ext|Γ [∂ n u] = αu on Γ, ∂ n u int = ∂ n u ext = 0 on ∂Ω int \ Γ, ∂ n u ext = 0, u int = u 0 on Γ 0 , ∂ n u ext = 0 on ∂D, (36) θ  
where α and β are positive numbers. The trace u ext|Γ in the transmission condition is meant as the trace of the function u |U on the set Γ.

Remark 13. The reason for considering the operator -∆u + βu with β > 0 instead of -∆u as in the former case is that, in the present case, Ω ext is an infinite union of disjoint connected sets: Ω ext = U ∪ σ∈A f σ (T ). Therefore, [START_REF] Mosco | Composite media and asymptotic Dirichlet forms[END_REF] involves Neumann problems in T and in f σ (T ), σ ∈ A n , n ≥ 1, which are not well posed if β = 0 and the average of f in these sets is not zero. It would also be possible to consider the case β = 0 under additional assumptions, on the support of f for example, but this would imply further technical details, because the solutions of Neumann problems in the holes would then be defined up to the addition of constants.

Remark 14. When θ > 0 and r = r * , the situation is quite different: Γ is not entirely contained in the boundary of any connected component of Ω ext . It can be shown that there exists δ ∈ (1, d) such that the intersections of Γ with the boundary of the connected components of Ω ext have Hausdorff dimension δ. These sets are called the canopies of the domain Ω int . In this case, the transmission condition has to be described more carefully. This is the topic of a work in progress.

The meaning of ( 36) is the variational formulation (P ) where V is defined by ( 14) and

a(u, v) = ˆΩint (∇u int • ∇v int + βu int v int ) dx + ˆΩext (∇u ext • ∇v ext + βu ext v ext ) dx + α ˆΓ u |Γ v |Γ dµ. ( 37 
)
In order to set the transmission problems in the geometries with prefractal interfaces, we first need to define some trapezoidal subsets of the triangular holes as follows: let H be the height of the triangle T . Choosing the coordinates in such a way that Γ 0 is a segment of the line {x 2 = 0}, we see that Γ is a segment of the line {x 2 = 2H}. Then, we can also define T n and T n σ by

T n = T ∩ {(2 -3/2 n+1 )H < x 2 < (2 -2 -n )H} and T n σ = f σ (T ) ∩ {(2 -3/2 n+1 )H < x 2 < (2 -2 -n )H} for σ ∈ A m and m < n. Finally we define ω n ext = n-1 m=0 σ∈Am T n σ ⊂ Ω n ext ∩ 2H - 3 2 n+1 H < x 2 < 2H -2 -n H . (38) 
The transmission problem with interface Γ n is then

                   -div (ν n ∇u) + βu = f in Ω n int ∪ Ω n ext , [u] = 0 on Γ n , [∂ n u] = α |Γ n | u on Γ n , ∂ n u n int = ∂ n u n ext = 0 on Σ n , ∂ n u n ext = 0, u n int = u 0 on Γ 0 , ∂ n u n ext = 0 on ∂D, (39) 
where

ν n = 2 -2n ½ ω n ext + ½ D\ ω n ext . (40) 
Note that ν n = 1 in Ω n int and that the Lebesgue measure of the set where ν n = 2 -2n vanishes as n → ∞. Hence ν n tends to 1 almost everywhere in D. The variational formulation of ( 39) is (P n ) with V n defined in [START_REF] Federer | The Lebesgue set of a function whose distribution derivatives are p-th power summable[END_REF], and a n defined as follows:

a n (u, v) = ˆΩn int (∇u n int • ∇v n int + βu n int v n int ) dx + ˆΩn ext (ν n ∇u n ext • ∇v n ext + βu n ext v n ext ) dx + α |Γ n | ˆΓn u |Γ n v |Γ n dx. (41) 
Remark 15. The reason for modifying the partial differential equation in [START_REF] Mosco | Thin fractal fibers[END_REF] by taking -div (ν n ∇u) instead of -∆u in ( 17) is that for a function u ∈ V , u |Ωint is completely independent from u |fσ(T ) . This explains why the construction of a sequence of functions

(u n ) such that u n ∈ V n , u n → u in L 2 (D) and a n (u n , u n ) → a(u, u)
, is difficult without modifying the coefficients of the partial differential equation near the top of the triangles T and f σ (T ) in order to cope with the possibly strong gradients of u n . Although we have not tried it, it may be possible to choose a parameter larger than 2 -2n in the definition of ν n . The main result of this paragraph is the following theorem Theorem 8. Assume that θ = 0 and r = r ⋆ θ = 1 2 . Then the energy forms a n defined in (41) M-converge in L 2 (D) to the form a defined in [START_REF] Mosco | Variational problems with fractal layers[END_REF].

T D Γ U A Ω int Y 0
Since ∂U is Lipschitz-continuous, a standard trace result yields that for every u ∈ V , u ext|Γ ∈ H 1/2 (Γ). Hence, the transmission condition in [START_REF] Mosco | Composite media and asymptotic Dirichlet forms[END_REF] implies that

u int|Γ ∈ H 1/2 (Γ). (42) 
Note that ( 42) is not only a consequence of the fact that u int ∈ H 1 (Ω int ), because the latter property only implies that u int|Γ in H s (Γ) for all s < 1 2 (see Theorem 3). For proving Theorem 8, we need the following extension result, which is not available in the literature: Theorem 9. There exist a linear extension operator

F from {v ∈ H 1 (Ω int ), v |Γ ∈ H 1/2 (Γ)} to H 1 (D) and a constant C > 0 such that for every v ∈ H 1 (Ω int ) with v |Γ ∈ H 1/2 (Γ)}, ṽ 2 H 1 (D) C v 2 H 1 (Ωint) + v |Γ 2 H 1/2 (Γ) . (43) 
Theorems 10 and 11 below will play an important role in the proof of Theorem 9. We start by recalling an extension result for multiple cones from [START_REF] Auscher | Sobolev spaces on multiple cones[END_REF].

Theorem 10. [see [START_REF] Auscher | Sobolev spaces on multiple cones[END_REF], Th. 5.1] Call C the double cone in R 2 defined by |x 1 | < |x 2 |. Write ρ(x) = x (the notation . stands for the euclidean norm), and, for every v ∈ H 1 (C), introduce the antiradial part v a of v in the cone C, defined by

v a (x) = v(x) -v S ρ(x) ,
where for any R > 0, S R = {x ∈ C, x = R}, and v SR is the mean value of v along the arc S R . There exists a linear extension operator

Λ : v ∈ H 1 (C), v a ρ ∈ L 2 (C) → H 1 (R 2 ), ( 44 
)
such that for every v ∈ {v ∈ H 1 (C), v a /ρ ∈ L 2 (C)}, Λv H 1 (R 2 ) c v H 1 (C) + v a ρ L 2 (C)
where c > 0 is a constant independent of v.

θ  Remark 16. The construction in [START_REF] Auscher | Sobolev spaces on multiple cones[END_REF] is such that if v is radial (resp. constant) in C ∩ B(0, R), then Λv is radial (resp. constant) in B(0, R).

As mentioned in [START_REF] Auscher | Sobolev spaces on multiple cones[END_REF], Theorem 10 can be immediately extended in R n to the case of a union of two halfcones sharing the same vertex, separated by a hyperplane passing through the vertex and not containing any direction of the boundaries.

Theorem 11 : Peetre-Tartar. [see [START_REF] Peetre | Espaces d'interpolation et théorème de Soboleff[END_REF][START_REF] Tartar | Nonlinear partial differential equations using compactness methods[END_REF]] Let E, E 1 , E 2 , F be Banach spaces, and let A i , i = 1, 2, be continuous linear operators from E to E i , and suppose A 1 is compact. Further assume that there exists a constant c 0 > 0 such that for any v ∈ E,

v E c 0 ( A 1 v E1 + A 2 v E2 ). ( 45 
)
If L is a coninuous linear operator from E to F such that L | ker A2 ≡ 0, then there exists a constant c 1 > 0 such that for any v ∈ E,

Lv F c 1 A 2 v E2 . ( 46 
)
Notations We start by introducing notations for the proof of Theorem 9.

We first introduce a domain C which is the union of two truncated half-cones included in Ω int , whose common vertex is the point A. Recall that T is the main hole of the domain Ω int . Call ϕ 0 ∈ (0, π 2 ) the upper half-angle of the triangular domain T (see Figure 4), and take ϕ 1 > ϕ 0 . Call C the half-cone whose boundary is made of the two half-lines through A with respective angles ϕ 0 and ϕ 1 with the vertical axis (see Figure 4). Call C 2 = C ∩ ( Ω int \ Y 0 ). We can assume that ϕ 1 > ϕ 0 is small enough so that C 2 ⊂ Ω int , in other words C 2 does not intersect any of the holes of Ω int . We define C 1 to be the symmetric of C 2 with respect to the vertical axis x 2 = 0, and we write

C = C 1 ∪ C 2 . We also introduce the sets Y k,1 := f 1 • f 2 k-1 (Y 0 ) and Y k,2 := f 2 • f 1 k-1 (Y 0
) for every k 1 (see Figure 4), and we write 5). Call Ω 1,1 := f 1 Ω int \ f 2 (Ω int ) and Ω 1,2 := f 2 Ω int \ f 1 (Ω int ) (see Figure 5). We introduce the sets Ω k,i defined by Ω k,i := g k-1 (Ω i ), k 1, i = 1, 2, where g is the homothety centered at A with ratio 1/2, see Figure 5.

Y k := Y k,1 ∪ Y k,2 . We also note γ := f 1 2 (Γ) ∪ f 2 2 (Γ) (see Figure
Y 2,2 Y 1,2 Y 1,1 Y 2,1 T C 2 C 1 ϕ 0 ϕ 1 A O P 1 P 2
For every integer k 1, we introduce Σ k := {τ ∈ A, f τ (Y 0 ) ⊂ Ω k,1 ∪ Ω k,2 }, with the notations of §2.1.1. Take κ ∈ (1/2, 1). We introduce the space

G = {v ∈ L 1 loc (Ω 1,1 ∪ Ω 1,2 ), v G < ∞}, where v 2 G = m 1 κ m τ ∈Σ 1 ∩Am ˆfτ (Y 0 ) |v| 2 dx. ( 47 
) γ = f 1 2 (Γ) ∪ f 2 2 (Γ) f 2 2 (Γ) f 1 2 (Γ) Ω 1,1 Ω 2,2 Ω 2,1 Ω 1,2
Figure 5: The domains Ω k,i , k, i = 1, 2 (in light grey: Ω 1,1 and Ω 1,2 , in dark grey: Ω 2,1 and Ω 2,2 ) and the sets f i 2 (Γ), i = 1, 2.

Endowed with the norm • G , the space G is a Hilbert space. We also introduce the space H = {v ∈ L 2 (Ω 1,1 ∪ Ω 1,2 ), ∇v ∈ G}, which is a Hilbert space with the norm

∇v 2 G + v 2 L 2 (Ω 1,1 ∪Ω 1,2 ) 1 2 .
Moreover, from Theorem 4, we see that v ∈ H → v |γ is a continuous operator from H to L 2 µ (γ). Arguing by contradiction, we can show that

∇v 2 G + v |γ 2 L 2 µ (γ) 1 2
is an equivalent norm on H.

We first state and prove two lemmas which will be useful in the proof of Theorem 9.

Lemma 2. There exists a constant c > 0 such that for every v ∈ H,

ˆY 1 |v(x) -v Y 1,1 | 2 + |v(x) -v Y 1,2 | 2 dx c ˆγ |v -v γ | 2 dµ + ∇v 2 G . (48) 
Proof. We introduce the Hilbert space E = {(v, w) ∈ H × L 2 µ (γ), v |γ = w}, endowed with the norm • E given by (v, w)

2 E = ∇v 2 G + w 2 L 2 µ (γ) .
We now introduce the operators

A 1 : (v, w) ∈ E → v γ , A 2 : (v, w) ∈ E → (∇v, w -w γ ), L : (v, w) ∈ E → (v -v Y 1,1 , v -v Y 1,2 ).
With the notations of Theorem 11, 

E 1 = R, E 2 = G × L 2 µ (γ) and F = L 2 (Y 1 ) 2 .
ˆC v a ρ 2 dx c   k 1 2 k ˆγk |v -v γ k | 2 dµ + k 1 p k κ p-k+1 τ ∈Σ k ∩Ap ˆfτ (Y 0 ) |∇v| 2 dx   θ 
for some constant c > 0 independent of v, where γ k = g k-1 (γ) (recall that g is the homothety centered at A, with ratio 1/2).

Proof. We first observe that, by self-similarity, there exists a constant c 1 > 0 such that for all x ∈ Y k , ρ(x)

c1 2 k . Therefore, ˆC v a ρ 2 dx c 1 k 1 2 2k ˆY k |v a | 2 dx, since C ⊂ k 1 Y k by construction. Hence, there is a constant c 2 > 0 such that ˆC v a ρ 2 dx c 2 (I 1 +I 2 ),
where

I 1 = k 1 2 2k ˆY k |v(x) -v Y k | 2 dx, (49) 
I 2 = k 1 2 2k ˆY k | v Y k -v S ρ(x) | 2 dx. ( 50 
)
We start by dealing with I 1 . We note that

I 1 1 2 k 1 2 2k ˆY k |v -v Y k,1 | 2 + |v -v Y k,2 | 2 dx. (51) 
For every k 1, we can apply Lemma 2 to the function v • g k-1 . Since γ k = g k-1 (γ), we obtain

I 1 c   k 1 2 k ˆγk |v -v γ k | 2 dµ + k 1 m 1 κ m τ ∈Σ 1 ∩Am ˆgk-1 (fτ (Y 0 )) |∇v| 2 dx   = c   k 1 2 k ˆγk |v -v γ k | 2 dµ + k 1 p k κ p-k+1 τ ∈Σ k ∩Ap ˆfτ (Y 0 ) |∇v| 2 dx   , (52) 
for some constant c > 0 independent of v, since {g

k-1 • f τ , τ ∈ Σ 1 ∩ A m } = {f τ , τ ∈ Σ k ∩ A m+k-1 }.
Let us now deal with I 2 . For every R > 0 and i = 1, 2, call

S i R = S R ∩ C i and v S i R
the mean value of v on the set S i R . We note that

I 2 1 2 i=1,2 k 1 2 2k ˆY k | v Y k,i -v S i ρ(x) | 2 . ( 53 
)
Take i ∈ {1, 2} and x 0 ∈ f i (Y 0 ), and, for every integer k 1,

ρ k = ρ(x 0 )/2 k-1 . We observe that k 2 2k ´Y k | v Y k,i -v S i ρ(x) | 2 2(J 1 + J 2 ),
where

J 1 = k 1 2 2k+1 |Y k,i |( v Y k,i -v S i ρ k ) 2 , (54) 
J 2 = k 1 2 2k ˆY k | v S i ρ k -v S i ρ(x) | 2 dx. ( 55 
)
Let us first examine J 1 . The following Poincaré inequality holds in

Y 1,i = f i (Y 0 ): for every v ∈ H 1 (Y 1,i ), ˆY 1,i |v(x) -v Sρ i | 2 dx M ˆY 1,i |∇v| 2 dx, (56) 
where the constant M > 0 is independent of v.

Observe that for every integer k 1, Y k,i = g k-1 (Y 1,i ), and

S i ρ k = g k-1 (S i ρ1 ). Then | v Y k,i -v S i ρ k | 2 = 1 |Y k,i | 2 ˆY k,i (v(x) -v S i ρ k ) dx 2 1 |Y k,i | ˆY k,i |v(x) -v S i ρ k | 2 dx 1 2 2(k-1) |Y k,i | ˆY 1,i |v • g k-1 (x) -v • g k-1 S i ρ 1 | 2 dx M 2 2(k-1) |Y k,i | ˆY 1,i |∇(v • g k-1 )| 2 dx = M 2 2(k-1) |Y k,i | ˆY k,i |∇v| 2 dx,
where we used (56). From this and (54), we deduce that

J 1 8M k 1 ˆY k,i |∇v| 2 . ( 57 
)
To deal with J 2 , we use polar coordinates (ρ, ϕ) centered at A. Introduce the positive constants R 0 , R 1 such that for all (ρ, ϕ)

∈ Y 1,i , R 0 ρ R 1 . Observe that if x ∈ Y k , | v S i ρ(x) -v S i ρ k | 2 = 1 ϕ 1 -ϕ 0 ˆϕ1 ϕ0 (v(ρ(x), ϕ) -v(ρ k , ϕ)) dϕ 2 = 1 ϕ 1 -ϕ 0 ˆϕ1 ϕ0 ˆρ(x) ρ k ∂v ∂ρ (s, ϕ) ds dϕ 2 1 (ϕ 1 -ϕ 0 ) 2 ˆϕ1 ϕ0 ˆρ(x) ρ k ∂v ∂ρ (s, ϕ) 2 s ds dϕ × ˆϕ1 ϕ0 ˆρ(x) ρ k ds s dϕ log R1 R0 ϕ 1 -ϕ 0 ˆϕ1 ϕ0 ˆR1/2 k-1 R0/2 k-1 ∂v ∂ρ (s, ϕ) 2 s ds dϕ = log R1 R0 ϕ 1 -ϕ 0 ˆC(k) |∇v(y)| 2 dy, where C(k) = {(ρ, ϕ), R0 2 k-1 < ρ < R1 2 k-1 , ϕ 1 < |ϕ| < ϕ 0 }. Hence, J 2 log R1 R0 ϕ 1 -ϕ 0 k 1 2 2k ˆY k ˆC(k) |∇v(y)| 2 dy dx,
and there is a constant c 3 > 0 independent of v such that

J 2 c 3 k 1 ˆC(k) |∇v(y)| 2 dy.
Note that every point (ρ, ϕ) in C(k) lies in at most log 2

R1

R0 sets C(l), l 1. Therefore,

J 2 c 3 log 2 R 1 R 0 ˆC |∇v(y)| 2 dy c 3 log 2 R 1 R 0 k 1 ˆY k |∇v| 2 dx. ( 58 
)
By the inequalities (57) and (58), I 2 c 4 k 1 ´Y k |∇v| 2 dx for some constant c 4 > 0 independent of v. Hence,

I 2 c 4 κ k 1 p k κ p-k+1 τ ∈Σ k ∩Ap ˆfτ (Y 0 ) |∇v| 2 dx. (59) 
θ  Indeed, observe that the terms in the sum of (59) for which p = k are exactly κ ´Y k |∇v| 2 dx.

Therefore, (52) and (59) yield, which (49), which achieves the proof. ⊓ ⊔ Proof of Theorem 9. In the proof we will write when there may arise in the inequality a constant that does not depend on the function v ∈ H 1 (Ω int ) we consider. By Lemma 3 and Theorem 10, for every v ∈ H 1 (Ω int ) such that v |Γ ∈ H 1/2 (Γ), there exists Λv ∈ H 1 (R 2 ) such that (Λv) |C = v and Λv 2

H 1 (R 2 ) v 2 H 1 (C) + v a ρ 2 L 2 (C)
.

Define C = Int(C ∪ Y 0 ) (see Figure 4). Introducing a cut-off function with support in the main hole T and using the operator Λ and Remark 16, we can construct a linear extension operator F 0 from H 1 ( C) to H 1 ( C ∪ T ) such that F 1 = 1 and for all v ∈ H 1 ( C)

ˆT |∇(F 0 v)| 2 dx ˆ C |∇v| 2 dx + ˆC v a ρ 2 dx, (60) 
which also implies

F 0 v 2 H 1 ( C∪T ) v 2 H 1 ( C) + v a ρ 2 L 2 (C) . (61) 
We will now define an extension ṽ ∈ H 1 ( Ω int ) of a function v as in Theorem 9, where Ω int is the convex hull of the domain Ω int . Recall that T is the main hole and {f σ (T ), σ ∈ A} is the collection of the holes of the domain Ω int (see Figure 4). Introduce the function ṽ defined in Ω int by ṽ := v in Ω int , ṽ := F 0 (v Observe that for every integer k 1, γ k ⊂ Γ σ k where σ k = (1, 2, . . . , 2) ∈ A k-2 , (recall that the sets Γ σ have been introduced in Remark 3). Therefore, We first deal with S 1 . Take σ, τ ∈ A and k, l 1. Note that if σσ k = τ σ l , then k = l and σ = τ . Therefore,

• f σ ) • f σ -1 in f σ (T ), σ ∈ A.
ˆγk |v -v γ k | 2 dµ ˆ Γ σ k |v -v Γ σ k | 2 dx, (63) 
S 1 k 0 2 k σ∈A k ˆ Γ σ |v -v Γ σ | 2 dµ v |Γ 2 H 1/2 (Γ) (64) 
by [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF].

We are left with dealing with S 2 . Assume that η ∈ A N and η = στ with τ ∈ Σ k ∩ A p , then p N . Since the sets Σ k , k 1, are pairwise disjoint, this means that the term ´fη(Y 0 ) |∇v| 2 dx appears at most N times in the sum S 2 . Moreover, we observe that pk + 1 ∈ [1, N + 1]. It can be seen that there is at most one quadruplet (σ ′ , τ ′ , l, q) with σ ′ ∈ A, τ ′ ∈ Σ l ∩ A q , l 1 and q l distinct from (σ, τ, k, p) such that η = σ ′ τ ′ and pk + 1 = ql + 1. As a consequence, Since Ω int is a polygonal domain, we can further extend ṽ into a function F v in H 1 (D), where F is a linear operator satisfying [START_REF] Tartar | Nonlinear partial differential equations using compactness methods[END_REF]. ⊓ ⊔ Proof of Theorem 8 We will prove separately points i. and ii. in Definition 2.

Proof of point i. Suppose that (u n ) weakly converges to u in L 2 (D). Without loss of generality, one can suppose lim a n (u n , u n ) is finite. We may further assume that there exists a subsequence, still called (u n ), such that a n (u n , u n ) converges to some real number as n → ∞; as a consequence, there exists a constant c independent of n such that a n (u n , u n ) c.

In particular, for all n, u n ∈ V n , which implies that u n ∈ V Then, (66) implies that (u n|Ω int ) is bounded in H 1 (Ω int ) and that √ ν n ∇u n|Ω ext is bounded in L 2 (Ω ext ). Therefore, there exists a subsequence that we still denote (u n ) such that 
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 2 Figure 2: The ramified domain Ω for θ = π/5 (left) and θ = π/4 (right) when r < r ⋆ θ , β 1 = 0.7, β 2 = 4.
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 3 Figure 3: An exemple of the domains Ω int and Ω ext in the case θ = 0
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 4 Figure 4: The region C = C 1 ∪ C 2 and the domains Y k,i , k, i = 1, 2.

By Lemma 3

 3 and (60), we get the estimateˆT |∇(F 0 v)| τ ∈Σ k ∩Ap ˆfτ (Y 0 ) |∇v| 2 dx. (62)Indeed, κ ´Y 0 |∇v| 2 dx (resp. κ ´C |∇v| 2 dx) is bounded from above by the terms for which k = p = 0 (resp. k 1, p = k) in the second sum in (62).

for i = 1 , 2 ,dx k 1 2 1 = n 0 σ∈An k 1 2 2 =

 121122 where the constant in the inequality does not depend on k. Take σ ∈ A n , one hasˆfσ(T ) |∇ṽ| 2 dx = ˆT |∇(F 0 (v • f σ ))| 2 k+n ˆfσ( Γ σ k ) |vv fσ ( Γ σ k ) | 2 dµ + k 0 p k κ p-k+1 τ ∈Σ k ∩Ap ˆfστ (Y 0 ) |∇v| 2 dx, where we applied (62) to the function v • f σ , and we used (63). The constant in the inequality does not depend on n. The notation στ for τ ∈ A k stands for (σ(1), . . . , σ(n), τ (1), . . . , τ (k)) ∈ A n+k . We can write ˆ Ωint |∇ṽ| 2 dx = ˆΩint |∇ṽ| 2 dx + σ∈A ˆfσ(T ) |∇ṽ| 2 dx ˆΩint |∇ṽ| 2 dx + S 1 + S 2 , where S k+n ˆfσ( Γ σ k ) |vv fσ ( Γ σ k ) | 2 dµ, S σ∈A k 0 p k κ p-k+1 τ ∈Σ k ∩Ap ˆfστ (Y 0 ) |∇v| 2 dx.
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  and (u n|Ω ext ) is bounded in H 1 (Ω ext ). Therefore, there is a subsequence that we still note (u n ) such that (u n|Ω int ) converges weakly in H 1 (Ω int ), and strongly in L 2 (Ω int ). Since u n ⇀ u in L 2 (D), we see that u n|Ω int ⇀ u int in H 1 (Ω int ). Similarly, up to a further extraction of a subsequence, u n|Ω ext ⇀ u ext in H 1 (Ω ext ). Consequently,

		ˆΩn		ˆΩn	ˆΩint	ˆΩext	
	lim	int	|∇u n | 2 dx +	ext	|∇u n | 2 dx	|∇u| 2 dx +	|∇u| 2 dx.

  It is easily seen that A 1 , A 2 and L are continuous linear operators, and A 1 is compact. Moreover, (45) is clearly satisfied. Observe that (v, w) ∈ E lies in ker A 2 if and only if v is constant in Ω 1,1 and in Ω 1,2 . Hence, it is obvious that L | ker A2 ≡ 0. From this, we deduce by Theorem 11 that there exists a constant c > 0 such that L(v, w) F c A 2 (v, w) E2 for all (v, w) ∈ E, which yields (48). ⊓ ⊔

Lemma 3. Assume that v ∈ H 1 (Ω int ) and v |Γ ∈ H 1/2 (Γ), then va ρ ∈ L 2 (C), and

  • (u n|Ω int ) converges to u |Ωint weakly in H 1 (Ω int ), and strongly in L 2 (Ω int )• √ ν n ∇u n|Ω ext converges weakly in L 2 (Ω ext ) to ∇u |Ωext (recall that ν n converges to 1 almost everywhere, so the weak limit of √ ν n ∇u n|Ω ext must be ∇u |Ωext .)

	Thus
	ˆΩn
	lim

int |∇u n | 2 + βu 2 n dx + ˆΩn ext ν n |∇u n | 2 + βu 2 n dx ˆΩint |∇u| 2 + βu 2 dx + ˆΩext |∇u| 2 + βu 2 dx.



Moreover, exactly as in the proof of Theorem 6, we see that 1 |Γ n | ´Γn u 2 n dx → ´Γ u 2 dµ as n → ∞. We have proved point i.

Proof of point ii. Take u ∈ L 2 (D). By [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], we may assume that u ∈ V . We must construct (u n ) converging strongly in L 2 (D) such that [START_REF] Koskela | Extensions and imbeddings[END_REF] holds. Recall that H is the height of the triangle T and that Γ 0 is a segment of the line {x 2 = 0}, Γ is a segment of the line {x 2 = 2H}. We then introduce a sequence of smooth cut-off functions

We now define the functions u n by

where E is the extension operator introduced in Theorem 9, u int = u |Ωint and u ext = u |Ωext . It is easy to check that u n belongs to the space V n and that the sequence (u n ) strongly converges to u in L 2 (D). We claim that

Indeed, we readily obtain (69) from the fact that the measure of m≥n σ∈Am f σ (T ) tends to zero and the fact that E(u int ) H 1 (D) and u ext H 1 (D) are finite. We obtain (68) because √ ν n ∇χ n L ∞ is bounded uniformly with respect to n and χ n is supported in a region with vanishing measure, and because E(u int ) H 1 (D) and u ext H 1 (Ωext) are finite. Therefore,

where u n int := u n|Ω n int and u n ext := u n|Ω n ext . Finally, from Proposition 1, 1 |Γ n | ´Γn u 2 dx -→ ´Γ u 2 dµ as n → ∞. Collecting all the above results, we obtain that lim a n (u n , u n ) = a(u, u) as n → ∞, thus point ii.